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Historical Comment (1996)
Advance Plasma Science:

“Plasma science is a cornerstone of the scientific infrastructure of
the country, and is a prerequisite competency to pursue many
national science and technology goals, ....

FEAC (1996)

e» Fusion Energy is the Grand Challenge of Plasma Science and
is the largest driver for the intellectual development of Plasma
Science.

The people tackling the scientific and technological issues
involved [with plasma research] have created a wellspring of
knowledge and capability which is a national asset of enduring
value.

As the centerpiece of the nation’s plasma science infrastructure,
FES must explicitly move to broaden it’s intellectual and
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institutional base in fundamental plasma science and attendant s

enabling technologies, preferably in partnership with other
agencies.”
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Personal Comment (Today)

=p> * Fusion Energy is still the Grand Challenge of Plasma Science

* Today, progress in fusion research requires sophisticated, and costly,
experiments that need the highest levels of plasma science ...

Confidence in the techniques to heat and produce plasma and to control
instabilities and turbulence

Campaign planning to gain highest scientific value requires precise high-
resolution measurement and whole-plasma simulation and prediction

New technologies and ideas for the plasma heat flux of fusion
experiments that may approach the heat flux found on surface of sun

 Fusion research still needs the benefits from a broad intellectual base for
plasma science and technology linking fusion research < related fields.

20TH ANNIVERSARY WORKSHOP FOR THE NSF/DOE PARTNERSHIP IN
BASIC PLASMA SCIENCE AND ENGINEERING, January, 2017




Fusion and Magnetospheric Physics are Linked

* Strongly magnetized plasma torus * Strongly magnetized plasma torus

* Dense thermal plasma (i.e. fusion fuel) * Dense inner plasmasphere
Waves, turbulence, and confinement are Waves, disturbances from rotation and
the critical metrics for fusion solar wind are critical for space weather

* Fast energetic ions from fusion reactions * Radiation belts contain MeV ions and
(e.g. 3.5 MeV alpha-particles) electrons
Fast ions orbit every 50 pusec and must be Fast particles orbit every 50 min and can
confined for 100’s of orbits persist for days

* When instabilities resonate with energetic * High-energy protons leave ionization
particles, they will damage the first wall tracks that upset space electronics and
and prevent sustained fusion energy relativistic electrons can be devastating to
production. spacecraft.

\‘! { O

20TH ANNIVERSARY WORKSHOP FOR THE NSF/DOE PARTNERSHIP IN
BASIC PLASMA SCIENCE AND ENGINEERING, January, 2017




3 -
oS

Common Scientific Questions

How do waves and fluctuations energize particles?
How do energetic particles excite waves and fluctuations?

How does the strong magnetic field influence motion of
plasma energy, momentum, and particle number?

How does the field-line geometry within the magnetic torus
influence plasma stability and dynamics?

Can laboratory study of magnetized plasma help to validate
predictive models for space weather?

Can understanding magnetospheric plasma help to scientists
achieve the fusion grand challenge?
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Bringing the Physics of Magnetosphere
to the Laboratory
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Laboratory Magnetospheres

Large space chambers with small strong magnets
(plus Japan, Germany, India)




NSF/DOE Partnership Allowed Students to Discover
Many Fundamental Processes

=> Energetic particle instabilities and drift-resonant transport
= + Low-frequency turbulence, turbulent cascades, and transport

“Whole-plasma,” nonlinear, bounce-averaged, drift-kinetic
simulation reproduces both energetic particle modes and low-
frequency turbulent cascades

» Turbulent “profile self-organization” and the “curvature” pinch
» Centrifugal instability at high-speed plasma rotation

« Whole-plasma imaging of turbulence and “swarm” multi-point
measurements of plasma dynamics

* Dynamics of an “artificial moon” with fast mass injection

» Controlling turbulent convection with an “artificial ionosphere”

Each study involved undergraduate students, were lead by doctoral students, and
gave opportunities to explore new physics relevant to both space and fusion science.
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Acknowledging the Pioneers

mature Driven Interchange Modes

“eommory oratory Magnetic Dipole
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Laboratory Magnetospheres are Simple and Flexible

Simple...

« Large plasma with small magnet
 Apply heat and inject gas
» Observe steady-state transport of heat & particles

Flexible...

* Heat electrons at low plasma density

 Energetic particle pressure dominates over
thermal plasma

« Excite energetic particle modes

 Heat plasma at high plasma density
» Thermal plasma pressure dominates
« Excite interchange/entropy mode turbulence
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Laboratory Magnetospheres are Simple and Flexible

AN

Flexible...

 Heat electrons at low plasma density

* Energetic particle pressure dominates over
thermal plasma

* EXxcite energetic particle modes

“Chirping” Nonlinear Wave Resonances
with Energetic Particles

Instability saturates coherently and slowly
convects energetic particles around buoyant
drift-resonant phase-space “bubbles”
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Laboratory Magnetospheres are Simple and Flexible

Flexible...

Turbulent Cascade and Diffusion of
Magnetized Plasma Filaments

Instability saturates incoherently with spectrum of
interacting chaotic modes driving “bursty” radial
transport of plasma-filled flux tubes

 Heat plasma at high plasma density

» Thermal plasma pressure dominates
« Excite interchange/entropy mode turbulence
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RF Pulse “pops” Phase-Space Holes

Validating model for frequency sweeping used to predict

alpha-particle resonant diffusion in tokamaks.
H. L. Berk, B. N. Breizman, et al., Phys. Plasmas, 6, (1999)
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Energetic Particle Physics Key to Burning Plasma Physics

onthy Newslttr o the Controlling Energetic Particle Modes in
U.S. Burning Plasma Organization
R WBPO 5, Buming Plams rgnizet Laboratory Magnetosphere
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FIG. 9. Possible ways for interchange instability to develop as prescribed by
Berk and co-authors. By changing the effective collisionality of the system,
we destroy the phase-space “holes™ and arrest the frequency-sweeping as
shown 1n Fig. 10.

Vinicius Duarte .
October 2015 Dmitry Maslovsky
December 2016 PRL, POP. 2003
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Magnetlzed Tubes of Plasma

(Credit: W7X, Nat comm, 2016)
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“Profile Consistency” and the Inward Pinch

A (Historic) Density Rise Experiment on PLT
Jim Strachan, et al., Nuc. Fusion (1982)
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Inward pinch “is necessary to model the experimental results”

2.5 MW NBI & 5 MW ICRF of peaked density from edge gas source.
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Inward “Curvature Pinch” is largest (?) in
(Laboratory) Magnetospheres

Turbulent “Self-Organization” creates highly peaked profiles
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Inward “Curvature Pinch” is largest (?) in
(Laboratory) Magnetospheres

Indirect measure of inward temperature pinch
“Artificial moon” reverses direction of entropy modes.

Measured Entropy Mode Dispersion
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“Bursty” Turbulence with Inward and Outward moving Plasma Filaments
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Direct Imaging of Turbulent Mixing of Plasma Filaments
(a) Fast Videography/Polar Imaging of Density Fluctuations
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Surprising “Universal” Turbulence Statistics of the Plasma Torus
[Fusion tools GS2 Simulation: Kobayashi, et al., PRL (2009), PRL (2010)]
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Three Challenges for the Future

(i) Can we fully regulate turbulent mixing of strongly magnetized plasma, e.g. by
connecting the “artificial ionosphere™?

(i) Can we validate “whole-plasma” predictive models, e.g. with reduced dimensional
models and the “simplest” steady-state plasma torus?

(iif) Can we explore turbulent transport across the “Extreme Scales” found in space,
e.g. through increased plasma density of the laboratory magnetosphere?

Contributing to...

« Can laboratory study of magnetized plasma help to validate predictive models for
space weather?

« Can understanding magnetospheric plasma help to validate predictive models for
the fusion grand challenge?
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(i) Controlling turbulent convection with an “artificial ionosphere”
(i.e. field-aligned current injection feedback)
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Can we regulate only part (yes!) or the whole laboratory magnetosphere?
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(lll) Explore turbulent transport across the “extreme scales” found in space

Next-step discoveries are significant...

« Magnetospheric Alfvén wave turbulent
emission at high plasma f3

* FLR and isotope effects in bounce-averaged
gyrokinetics and turbulent self-organization

» Explore critical plasma physics linking space
science and high- toroidal confinement

Mercury Earth Jupiter
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Density (¢/wy; L) 0.1 0.003 0.00001
New Physics | (Va4 /L) ~ we; |Alfvén Resonances Propa\g;\?atxégsAlfvén

D

20TH ANNIVERSARY WORKSHOP FOR THE NSF/DOE PARTNERSHIP IN
BASIC PLASMA SCIENCE AND ENGINEERING, January, 2017




(lll) Explore turbulent transport across the “extreme scales” found in space

@ %
-~ Alfvén wave emission and t:f’7

dynamics will appear as turbulence
bends flux-tubes at higher density
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