Controlled Space Physics Experiments using Laboratory Magnetospheres

Mike Mauel Jay Kesner, Darren Garnier, Matt Worstell, Matt Davis, Max Roberts Columbia University PSFC-MIT June 2013

Laboratory Magnetospheres: Facilities for Controlled Space Physics Experiments

How do laboratory magnetospheres work?

- Very strong, but small, dipole magnet inside a very large vacuum chamber *making possible the largest plasmas "on Earth"*
- Electron cyclotron waves ("chorus", ECH) and radio waves (Alfvén and ion-cyclotron waves) heat and maintain plasma and trapped particles giving variety and control over plasma properties
- Whole plasma access for unparalleled imaging and diagnostic measurement
- Polar boundary control and polar diagnostics when dipole is mechanically supported
- Extreme plasma pressure and high density *when dipole is magnetically levitated*

Laboratory Magnetospheres are facilities to develop and test integrated models in relevant magnetic geometry

- Wave-particle interactions, particle acceleration and loss, wave excitations, resonances, ...
- Radial transport, turbulent mixing, evolving density profiles, particle energization, PDF, ...
- Disturbances, impulsive events, ...
- Polar boundary sources, magnetopause boundary, ...

Scientific goal:

Test "whole plasma" models in relevant magnetic geometry and **Explore** magnetospheric phenomena by controlling the injection of heat, particles, and perturbations

Examples of Controlled Experiments using Laboratory Magnetospheres...

- "Artificial radiation belts" show drift-resonant and MHD turbulence are reproduced by bounce-averaged gyrokinetic simulations *and give quantitative verification of magnetospheric transport models*
- Low-frequency plasma dynamics is dominated by interchange turbulent convection allowing study of 2D physics, inverse-cascade, global mixing, etc... in the laboratory
- Levitated dipole can achieve > 50% peak beta with plasma profiles comparable to planetary magnetospheres showing key connection between plasma dynamics in the lab and in space
- (New) Exploring ULF and Alfvén wave interactions with trapped particles using controlled experiments at higher plasma density

Drift-Resonant Transport of "Artificial Radiation Belt"

Inward adiabatic transport and energization of "radiation belt" Observed with Polar Imager

Whole-Plasma Imaging of Magnetospheric Mixing

Exploring the physics of low-frequency turbulent convection

IMAGE: Sunlight reflected from He⁺ showing interchange mixing of plasmasphere

Streamfunction during Mach ~ 1 rotation showing plasma mixing from saturated centrifugal mode

Low-Frequency Turbulent Convection: Quantitative Verification of Particle Transport Models

- Gas injection controls turbulent dynamics: from fast energetic particle drive to slower MHD turbulent convection
- Mach ≥ 1 rotation drives centrifugal interchange ("Jupiter" mode)
- Chaotic dynamics of global convection structures
- High-speed imaging of "blobs" and "holes" during turbulent transport
- Inverse cascade in 2D turbulence
- Symmetry breaking
- Feedback

11

Low-Frequency Turbulent Convection: Quantitative Verification of Particle Transport Models

Recent Advancements in Dipole Turbulence Control

Symmetry Breaking Enhances Inverse Cascade and Coherence (Matt Worstell, PhD 2013)

Recent Advancements in Dipole Turbulence Control

Multiple Controllers Achieve Global Feedback Suppression (Max Roberts, Doctoral Student)

Problem: Turbulence decorrelates preventing global suppression **Solution**: Apply multiple independent controllers

Convection Electric Fields and the Diffusion of Trapped Magnetospheric Radiation

THOMAS J. BIRMINGHAM

$$\frac{\partial \langle \bar{Q} \rangle (\alpha, M, J, t)}{\partial t} = \frac{\partial}{\partial \alpha} \left[\overline{D_{\alpha \alpha}} \frac{\partial \langle \bar{Q} \rangle}{\partial \alpha} \right] \quad (5) \quad \overline{D_{\alpha \alpha}} \approx \frac{c^2 \mu^2}{4 \alpha^2} (\pi)^{1/2} \tau_c \Omega \tag{18}$$

α = magnetic flux, Ψ

dipole field. We describe \mathbf{E} by the potential V

$$V = \frac{A(t)r}{\sin^2\vartheta}\sin\phi \qquad (2)$$

A being a positive, time-dependent amplitude. The form equation 2 is the fundamental (m = 1)

on dipole field lines, **B** lines are equipotentials, and **E**•**B** is zero. In the $\vartheta = \pi/2$, equatorial plane tion time τ_{ϑ} is thus typically one hour.)

JOURNAL OF GEOPHYSICAL RESEARCH, SPACE PHYSICS

A reasonable direction to proceed, in view of the paucity of direct experimental evidence of electric fields and their time variations, is to assume that the autocorrelation $(\delta A(t - \tau))$ $\delta A(t)$ has the form

$$\langle \delta A(t - \tau) \ \delta A(t) \rangle = \alpha \exp - \frac{\tau^2}{\tau_s^2}$$
 (16)

asymmetric mode in Fälthammar's [1965] Fourier from dawn to dusk, and is random on the time expansion of a general longitudinally dependent scale on which the solar wind executes time potential. Since $r \sin^{-2} \vartheta$ and ϕ are both constant variations of large spatial extent. (The correla-

15

Vol. 74, No. 9, MAY 1, 1969

Convection Electric Fields and the Diffusion of **Trapped Magnetospheric Radiation**

THOMAS J. BIRMINGHAM

EXB {
$$\dot{\psi} = \nabla \psi \cdot \mathbf{V} = \frac{\partial \Phi}{\partial \varphi} = -RE_{\varphi}$$

$$D = \lim_{t \to \infty} \int_0^t dt \langle \dot{\psi}(t) \dot{\psi}(0) \rangle \equiv \langle \dot{\psi}^2 \rangle \tau_c$$

$$D = R^2 \langle E_{\varphi}^2 \rangle \tau_c$$

$$\underset{\text{Plasma Flux-Tubes}}{\text{Transport of}} \Big\{ \qquad \frac{\partial N}{\partial t} = \langle S \rangle + \frac{\partial}{\partial \psi} D \frac{\partial N}{\partial \psi}$$

Quantitative Verification of Inward Turbulent Convection

Using only measured electric field fluctuations, Thomas Birmingham's diffusion model is verified with levitated dipole

World's Largest Lab Magnetosphere

Size matters:

At larger size, trapped particle energy, intensity of "artificial radiation belt", and plasma density significantly increase

High Density and Large Size are required for Controlled Investigations of Alfvén Wave Dynamics

19

Alfvén Wave Excitation in LDX: Opportunity for a Many Important Experiments

- Alfvén Wave Spectroscopy and Resonances
- Toroidal-Poloidal Polarization Coupling
- · Alfvén Wave interactions with Radiation Belt Particles
- Ion Cyclotron Resonance and FLR

Example: 200 kHz m = 2 Polar Launcher

"Exploding Pellet" Experiments: Transient High Density and Plasmaspheric Mixing

First "Exploding Pellet" Experiments

Next-step: "Exploding Pellet" Experiments scheduled August in larger MIT device with **×100 more energy** with faster dynamics expected

200 micron Polystyrene

Fast Camera View

250 µsec/frame

First "Exploding Pellet" Experiments

Pellet Injection Allows Direct Measurement of Flux-Tube Mixing Dynamics

Near-Term Follow-on Experiments: Fast Injection & Pico-Pico-Satellites

 2.5 mm Pellet Injector (500 -1000 m/sec) for deep fast penetration

 ~ 5.0 mm Pico-Pico-Sats for laboratory validation of tiny satellite probes for swarm measurement in magnetosphere

Figure 4-1: Schematic of Lithium Pellet Injector, designed and constructed by Darren Garnier [77]

25

Laboratory Magnetospheres: Very Large Plasma Experiments World-Wide

- **Columbia University**: 1.7 m dia; 1.5 kW heating power Turbulence studies, radiation belt dynamics and transport
- MIT: 5.0 m dia; 25 kW heating power; *Levitated* World's largest, highest energy, most capability (1 MW available)
- Univ. Tokyo: 2.0 m dia; 40 kW heating power; Levitated e⁻/e⁺ plasmas, supersonic flow, highest power and near "perfect" confinement
- HIT (Harbin, China): 3.5 m x 10 m (under construction) Solar wind, magnetotail distortion, space weather

NASA's early effort in Laboratory Testing and Validation can be Significantly Advanced with Modern Modeling and Diagnostics

NASA Glenn #5 (1966)

Opportunity Exists to Explore a Large Scale Laboratory Magnetosphere

Laboratory Magnetospheres are Unique Opportunities for Controlled Space Physics Experiments

- Laboratory magnetospheres are facilities for conducting controlled tests of space-weather models in relevant magnetic geometry and for exploring magnetospheric phenomena by controlling the injection of heat, particles, and perturbations
- Very large plasmas can be produced in the laboratory, continuously, with low power and great flexibility. Verification and discovery of critical plasma science.
- "Artificial radiation belt" dynamics and transport can be studied. Preliminary tests of radiation belt remediation underway.
- Larger laboratory magnetospheres significantly increase trapped particle energy, intensity of "artificial radiation belt", and plasma density. Allowing controlled tests of *complex Alfvén wave interactions* in the magnetosphere.
- *Outlook*: We can build/operate the largest magnetosphere on Earth

Acknowledgements

Thank you to students, engineers, scientists, and collaborators:

R. Bergmann, A. Boxer, D. Boyle, D. Brennan, M. Davis, G. Driscoll, R. Ellis, J. Ellsworth, S. Egorov, D. Garnier,
B. Grierson, O. Grulke, C. Gung, A. Hansen, K.P. Hwang, V. Ivkin, B. Levitt, J. Kahn, B. Kardon, I. Karim, J. Kesner,
S. Kochan, V. Korsunsky, R. Lations, S. Mahar, D. Maslovsky, M. Mauel, P. Michael, E. Mimoun, J. Minervini, M. Morgan,
R. Myatt, G. Naumovich, S. Nogami, E. Ortiz, M. Porkolab, S. Pourrahami, T. Pedersen, A. Radovinsky, A. Roach,
T. Roberts, A. Rodin, D. Ryutov, G. Snitchler, D. Strahan, J. Schmidt, J. Schultz, B. Smith, S. Taromina, P. Thomas,
H. Warren, J. Waksman, P. Wang, B. Wilson, M. Worstell, P. Woskov, B. Youngblood, A. Zhukovsky, S. Zweben