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Abstract

Magnetic feedback control of the resistive wall mode in
tokamaks use derivative (and proportional) gain in order to
optimize stabilization (e.g. M. Okabayshi, et al., PoP2001;Y. Liu, et
al., NF2004.) and to adjust the phase response during control of
rotating kinks (A.Klein, et al, PoP2005.) Derivative gain
amplifies noise and can lead to large and undesirable
fluctuations in the feedback control current. In this poster, a
recipe is presented for the implementation of a Kalman filter
that tracks kink mode dynamics as recently described (M. E.
Mauel, et al, NF2005.) Numerical simulations demonstrate the
use of the control algorithm for various configurations of
magnetic field sensors and control coils used in the HBT-EP
device. By properly tracking both the wall and plasma modes,
feedback control is maintained up to the ideal wall limit in
rotating discharges in the presence of measurement noise.



Outline

1. Modeling RWM/Kink Feedback
® Chu/Fitzpatrick-Aydemir Dispersion Relation
e HBT-EP & DIII-D (Example) Stability Diagrams

2. RWM and Kink Feedback Simulations
e Simple digital filter

e Kalman filter

Key Results

e Feedback control of HBT-EP and DIII-D requires derivative
gain. In the presence of noise, the control power becomes
large.

e Kalman filtering is superior to digital low-pass filters since
Kalman filtering introduces little phase-shift.

e \We illustrate the simplest Kalman filter: the growing, rotating
rotor model. With both poloidal and radial more robust
Kalman filters can be built.

e With direct coupling between control coils and plasma and
with low-latency, kink modes near (and above) the ideal wall
limit can be stabilized.



Non-ldeal Kinks (with Wall)

Chu, et al., (1995)...
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RWM Stabilization by Rotation
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For plasma rotation faster than the wall rate, then
the RWM is stable for & > 0.5. In other words, the
rate of energy dissipation (i.e. power) in the plasma
must be greater than |/2 the power available for
dissipation in the wall.

HBT-EP and DIII-D Kink-Wall Parameters

Table 1: Examble RWM Control Parameters for
HBT-EP and DIII-D.

HBT-EP DIII-D

Y (msec™!) 5.0 0.26
Ty (M) 0.16 1.0
¢ 0.17 0.14
cy 0.5 0.5
Yvup (msec™t) 100.0 100.0
vy/Ymup (msec™!) 4.5 1.6
Mc/Le 0.3 0.3

R./L. (msec™1) 10.0 2.0




RWMI/Kink Stability

HBT-EP Stability Diagram DIII-D Stability Diagram
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Figure 1: Open-loop stability diagrams characteristic of the HBT-EP and DIII-D tokamaks. The
black curve represents marginal stability, and the orange and red curves represent exponential
growth rates of 0.1, 0.5, and 1.0 msec™! respectively.

RWM Example: @
Kink Example: @

Simulating RWM/Kinks

e Fitzpatrick-Aydemir equations are (relatively) simple
ODEs for time-analysis

e High plasma dissipation further simplifies kink/RWM
dynamics (Shilov, Mauel, et al.)

e Assumption: plasma/wall parameters are time-
invariant

e Feedback simulation models sensors and coils with
fixed coupling parameters.



Simulating RWM/Kinks

See this article for notation and comparison between
model and experiment
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Modeling Plasma-Wall

(The “Reduced” F-A Model)
dy -
— =A-7+ R
dt y wc
71 G G e b S E Gl K G (M 1

where cris the direct coupling of the control coils
to the plasma. (This is required for kink control.)



Control Colls

Le dip. N R
M. dt M.

(Embarrassingly easy, but, well, it’s easy!)
This simple model illustrates noise and filtering.

Sensors

Bpoaw? (97 qb) =R {bp(rw) eim(@—nqb/m)}

bp(rw) = (3/rw)(1 = ¢) 7 x {2Ve, =(c+ 1)} - ¢

br(rw) = (3/1w) x {0, 1} -7

For these examples, only poloidal field sensors are used.
With both b, and by sensors and with both sine and cosine detectors, then
both unstable and stable modes can be used for a more robust Kalman filter.



“Smart-Shell” Controller

dthy
Ve = Gpthy, + de

Only proportional and derivative
gain needed for these examples.

Mode Control with Rotation

dby, (Tw)

V. = Gpe_i”‘w Twbp(Tw) + G e ¢y o

This is the controller demonstrated by Klein, et al....
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Rules of Thumb...

When the mode is slow, the control coils respond in the
‘resistive limit”. The RWM is stabilized with proportional
gain:

~Gp > 5(Re/M,)/(1 = ¢)

HBT-EP: G, > 40 s/scit msec™

When the mode is fast, the control coils respond in the

“inductive limit”. Rotating kinks are stabilized with
derivative gain:

Ga> (5—1)(1 — ¢)(Le/M,)/6cs/c

Only Proportional Gain

Only Derivative Gain

HBT-EP Examples

Stability Diagram: Gp, Gq = {-7., 0.} Stability Diagram: Gp, Gq = {-7., -0.5}

RWM Example: @
Kink Example: @



Only Proportional Gain

Only Derivative Gain

DIlI-D Examples

DIl-D

Stability Diagram: G,, Gq = {-1., 0.}

This gain for
for RWMs

Stability Diagram: G,, Gq = {-1.5, -0.5}
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Stability Diagram: Gp, Gg = {0., 0.5}

1.2

Stability Diagram: Gp, Gg = {-1., 0.5}

RWM Example: @
Kink Example: @
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Without Feedback...

HBT-EP RWM: Measured B, (No Feedback)

DIII-D RWM: Measured B, (No Feedback)
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HBT-EP:Digital Feedback with 10us Latency

HBT-EP Kink:

Measured By

(Feedback)

HBT-EP RWM: Measured B, (Feedback)
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Feedback With Random Noise
(Toroidal Phase & Amplitude)

HBT-EP RWM: Measured B, (Feedback/Noise) HBT-EP Kink: Measured B, (Feedback/Noise)
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Adding Low-Pass Digital Filters

Bylnl = Bp[n—1]+@(bm—6p[n—11)

Bp[” —1]
ot

dby[n] = dbpln — 1] + — - (bp[n] — dbpln — 1]>

For these examples 7, = 7,4 = 58t, and V;[n+ 1] oc Gypbp[n] + G ydbp[n].



HBT-EP: Low-Pass Digital Filters

HBT-EP RWM: Measured B, (Feedback/Noise/Filter) HBT-EP Kink: Measured B, (Feedback/Noise/Filtered)
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“W

0.015

W ‘,‘.r _J“MM B Vvvvvvv \

-0.005
|

-0.01

0 1 2 3 4 5 6 7 0 0.5 1
msec msec

Similar results for DIII-D.

‘63 Rudolf Emil Kalman (May 19, 1930 -) is most famous for his invention of

= the Kalman filter, a mathematical digital signal processing technique widely

“ used in control systems and avionics to extract meaning (a signal) from
ki chaos (noise).

Kalman’s ideas on filtering were initially met with scepticism. He had more success in
presenting his ideas, however, while visiting Stanley Schmidt at the NASA Ames Research
Center in 1967. This led to the use of Kalman filters during the Apollo program.

He was born in Budapest, Hungary. He obtained his bachelor’s (1953) and master’s
(1954) degrees from MIT in electrical engineering. His doctorate (1957) was from Colum-
bia University. His worked as Research Mathematician at the Research Institute for
Advanced Study, in Baltimore, from 1958-1964, Professor at Stanford University from
1964-1971, and Graduate Research Professor, and Director, at the Center for Mathemati-
cal System Theory, University of Florida, Gainesville from 1971 to 1992. Starting in 1973,
he simultaneously filled the chair for Mathematical System Theory at the Swiss Federal
Institute of Technology, (ETH) Zurich.

He received the IEEE Medal of Honor (1974), the IEEE Centennial Medal (1984), the
Inamori foundation’s Kyoto Prize in High Technology (1985), the Steele Prize of the Amer-
ican Mathematical Society (1987), and the Bellman Prize (1997).

He is a member of the National Academy of Sciences (USA), the National Academy of
Engineering (USA), and the American Academy of Arts and Sciences (USA). He is a
foreign member of the Hungarian, French, and Russian Academies of Science. He has
many honorary doctorates. This year’s recipient of Columbia’s Eggelston Prize!



Simple Kalman Filter: Predictor & Corrector

The “prediction” step is
x;, = A-x,_1+u,
P, = A-P,1-AT+Q

where x;, and P;, are predictions of the next step state vector and error
covariance.

The “correction” step is

K, = P, -H .(H-P:;-HT +R)™!
xp, = x,+Kn-(z)' —H-x})
K,, is the “Kalman Gain”. R is the measurement noise covariance. With

R large, the tracking is less sensitive to noise. With H = H” =1, these
are especially simple.

Simplest Kalman Filter: Rotating, Growing Rotor

Let x,, = {bp[n] cos ¢n, bp[n] sin ¢n, bp[n—1] cosS¢,—1, bp[n—1]sinp,_1},
then
%{’)%}25‘[5 —%{’)%}25‘[5 10
S{vp}20t R{y}26t 0 1
1 0 00
0 1 00

representing a rotating, growing “rotor”. The complex growth rate, ~;, is a
filter parameter. Does not have to be too close to actual mode.

A=

Note: this is a single-mode approximation, because only two independent
measurements are available: b, cos ¢ and by, sin ¢. If we had both poloidal
and radial sensors, then the Kalman model could be written in terms of 5
and a.



Control Vector is Constructed from F-A Eigensystem

Let V be the eigenvectors of the “reduced” Fitzpatrick-Aydemir Equations.
V,; = {va, ¥w} for the ith eigenvector (i.e. either the RWM or the kink).
Then, with C = {—cv3; 5 p/Va, [1—ccs/(1—c)lyw}, the control vector
(for the single-mode, or “rotor”) is

Up = 26t [m- V] [(VT)—1 : c} X eln]

where (in this simple model) 1. is proportional to the “measured” control
coil current.

HBT-EP: Kalman Fllter

HBT-EP RWM: Measured B, (Feedback/Noise/Kalman) HBT-EP Kink: Me d B, (Feedback/Noise/Kalman)

' rV¢ry eﬁectlve for kink control

HBT-EP RWM: Filtered B, (Feedback/Noise/Kalman) HBT-EP Kink: Filtered B, (Feedback/Noise/Kalman)

Coupling to kink (?)...
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DIII D Kalman Filter

eedback/

Very effective for RWM control...

> 2-fold control coil

power reduction as

compared to digital
low-pass filter!
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Summary

e Kink mode/Wall system is characterized by para-
meters and coupling coefficients. (See Maurer.)

e When these change slowly in time, then a simple set
of coupled ODEs can be used to simulate feedback
control and allow rapid prototyping of control
algorithms.

e When noise is reduced (low-latency and Kalman
filtering), then derivative gain can be used for kink/
RWM control.



