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Abstract
Magnetic feedback control of the resistive wall mode in 
tokamaks use derivative (and proportional) gain in order to 
optimize stabilization (e.g. M. Okabayshi, et al., PoP2001; Y. Liu, et 
al., NF2004.) and to adjust the phase response during control of 
rotating kinks (A.Klein, et al., PoP2005.) Derivative gain 
amplifies noise and can lead to large and undesirable 
fluctuations in the feedback control current. In this poster, a 
recipe is presented for the implementation of a Kalman filter 
that tracks kink mode dynamics as recently described (M. E. 
Mauel, et al., NF2005.) Numerical simulations demonstrate the 
use of the control algorithm for various configurations of 
magnetic field sensors and control coils used in the HBT-EP 
device. By properly tracking both the wall and plasma modes, 
feedback control is maintained up to the ideal wall limit in 
rotating discharges in the presence of measurement noise.



Outline

1. Modeling RWM/Kink Feedback

• Chu/Fitzpatrick-Aydemir Dispersion Relation

• HBT-EP & DIII-D (Example) Stability Diagrams

2. RWM and Kink Feedback Simulations

• Simple digital filter

• Kalman filter 

Key Results
• Feedback control of HBT-EP and DIII-D requires derivative 

gain. In the presence of noise, the control power becomes 
large.

• Kalman filtering is superior to digital low-pass filters since 
Kalman filtering introduces little phase-shift.

• We illustrate the simplest Kalman filter: the growing, rotating 
rotor model. With both poloidal and radial more robust 
Kalman filters can be built.

• With direct coupling between control coils and plasma and 
with low-latency, kink modes near (and above) the ideal wall 
limit can be stabilized.



Non-Ideal Kinks (with Wall)
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RWM Stabilization by Rotation

−ᾱ ≡

(D/K) Ω

γ2

MHD

=
νΩ

γ2

MHD

For plasma rotation faster than the wall rate, then 
the RWM is stable for ! > 0.5. In other words, the 
rate of energy dissipation (i.e. power) in the plasma 
must be greater than 1/2 the power available for 
dissipation in the wall.

HBT-EP and DIII-D Kink-Wall Parameters

Table 1: Examble RWM Control Parameters for
HBT-EP and DIII-D.

HBT-EP DIII-D
γw (msec−1) 5.0 0.26
rw (m) 0.16 1.0
c 0.17 0.14
cf 0.5 0.5
γMHD (msec−1) 100.0 100.0
νd/γMHD (msec−1) 4.5 1.6
Mc/Lc 0.3 0.3
Rc/Lc (msec−1) 10.0 2.0
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Figure 1: Open-loop stability diagrams characteristic of the HBT-EP and DIII-D tokamaks. The
black curve represents marginal stability, and the orange and red curves represent exponential
growth rates of 0.1, 0.5, and 1.0 msec−1 respectively.

With this definition, the proportional gain has units of Volts per flux ∼ msec−1, and the deriva-
tive gain is dimensionless. Also notice that the measured perturbed poloidal field, bp(rw), re-
quires detectors at multiple toroidal locations. bp(rw)e−inδφ is a complex phasor rotated by the
controller by an amount δφ. For simplicity, the toroidal rotation is the same for both the pro-
portional and derivative gain terms. The feedback controller is defined by three real numbers,
(Gp, Gd, δφ). The closed-loop system response is defined by

(
I−Gde

−iδφ{0, 0, Mc/Lc} %m′
)
· d%y′

dt
= A′ · %y′ + Gpe

−iδφ{0, 0, Mc/Lc} %m′ · %y′ , (11)

with %m′ = 3(1− c)−1 × {2
√

c, −(1 + c), 0} and (m, n) = (3, 1).
The response of the magnetic control coil is an important consideration. When the instability

eigenvalue is slow, |γ| % Rc/Lc, then the control coil responds in the “resistive limit”, ψc ≈

4
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RWM Example:
Kink Example:

Simulating RWM/Kinks

• Fitzpatrick-Aydemir equations are (relatively) simple 
ODEs for time-analysis

• High plasma dissipation further simplifies kink/RWM 
dynamics (Shilov, Mauel, et al.) 

• Assumption: plasma/wall parameters are time-
invariant

• Feedback simulation models sensors and coils with 
fixed coupling parameters.



Simulating RWM/Kinks
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Abstract
Fundamental theory, experimental observations and modelling of resistive wall mode (RWM) dynamics and active
feedback control are reported. In the RWM, the plasma responds to and interacts with external current-carrying
conductors. Although this response is complex, it is still possible to construct simple but accurate models for
kink dynamics by combining separate determinations for the external currents, using the VALEN code, and for
the plasma’s inductance matrix, using an magnetohydrodynamics code such as DCON. These computations have
been performed for wall-stabilized kink modes in the HBT-EP device, and they illustrate a remarkable feature of
the theory: when the plasma’s inductance matrix is dominated by a single eigenmode and when the surrounding
current-carrying structures are properly characterized, then the resonant kink response is represented by a small
number of parameters. In HBT-EP, RWM dynamics are studied by programming quasi-static and rapid ‘phase-flip’
changes of the external magnetic perturbation and directly measuring the plasma response as a function of kink
stability and plasma rotation. The response evolves in time, is easily measured, and involves excitation of both
the wall-stabilized kink and the RWM. High speed, active feedback control of the RWM using VALEN-optimized
mode-control techniques and high-throughput digital processors is also reported. Using newly installed control coils
that directly couple to the plasma surface, experiments demonstrate feedback suppression of the kink instability in
rapidly rotating plasmas near the ideal wall stability limit.

PACS numbers: 52.35.Py, 52.55.Fa

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Among fusion’s significant accomplishments during the past
decade is the improved understanding and control of long-
wavelength kink instabilities that grow on the rate of resistive
penetration of a nearby conducting wall, γw. These slowly
growing instabilities, called resistive wall modes (RWMs),
appear when non-axisymmetric eddy currents in the wall
oppose, or wall-stabilize, fast ideal kink modes. When the
RWM is controlled, tokamaks and spherical tori can operate
with high plasma pressure making possible advanced steady-
state operating scenarios having good confinement and low
current drive power requirements [1]. Stabilization of the
RWM has been seen in tokamak experiments through sustained
plasma rotation [4] or by active feedback control [6, 7].
Using the three-dimensional electromagnetic modelling code

VALEN [8], experiments have been realistically modelled,
theoretical predictions have been benchmarked, and advanced
control systems have been designed for several toroidal
devices including HBT-EP [9], DIII-D, NSTX, JT-60SC,
FIRE and ITER. Although tremendous progress has been
made, important questions remain concerning the physics of
plasma dissipation, the torque applied between the RWM
and the external conductors, the dynamics of wall-stabilized
kink modes, and the development of practical techniques that
insure robust feedback control of the RWM [10].

This paper begins with a presentation of the fundamental
theory behind the VALEN code and describes a general
eigenmode procedure that can be used to implement optimized
feedback systems for the RWM. Quantitative modelling
requires (i) accurate information about the inductive coupling
between current-carrying structures and coils that lie outside
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See this article for notation and comparison between 
model and experiment…

Modeling Plasma-Wall
(The “Reduced” F-A Model)

d!y

dt
= A · !y + !Rψc

where cf is the direct coupling of the control coils 
to the plasma. (This is required for kink control.)



Control Coils

Lc

Mc

dψc

dt
+

Rc

Mc

ψc = Vc

(Embarrassingly easy, but, well, it’s easy!)
This simple model illustrates noise and filtering.

Sensors

B̃p(rw, θ, φ) = !

{

bp(rw) eim(θ−nφ/m)
}

bp(rw) = (3/rw)(1 − c)−1 × {2
√

c, −(c + 1)} · !y

br(rw) = (3/rw) × {0, 1} · !y

For these examples, only poloidal field sensors are used.
With both br and bp sensors and with both sine and cosine detectors, then 

both unstable and stable modes can be used for a more robust Kalman filter.



“Smart-Shell” Controller

Vc = Gpψw + Gd
dψw

dt

Only proportional and derivative 
gain needed for these examples.

Mode Control with Rotation

Vc = Gpe
−inδφ

rwbp(rw) + Gde
−inδφ

rw
dbp(rw)

dt

Suppression of rotating external kink instabilities using optimized mode
control feedback
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Rotating external kink instabilities have been suppressed as well as excited in a tokamak using

active magnetic coils that directly couple to the plasma through gaps in passive stabilizing

conducting shells that surround the plasma. The kink instability has a complex growth rate,

approximately !3+ i2!5""103 s!1, and is near the ideal wall stability limit when discharges are
prepared with a rapid plasma current ramp and adjusted to have an edge safety factor near 3. The

active control coils are driven by a digital mode control feedback system that uses multiple

field-programmable gate arrays to analyze signals from 20 poloidal field sensors and achieve

high-speed feedback control. The feedback coil geometry used was designed to optimize feedback

effectiveness. Signal processing is of critical importance to optimize phase transfer functions for

control of rotating modes. © 2005 American Institute of Physics. #DOI: 10.1063/1.1868732$

External kink instabilities in tokamaks are driven by ra-

dial gradients of the plasma current,
1
and they set the stabil-

ity limit of high beta tokamak plasmas.
2
The stability of the

external kink depends significantly on the location and con-

ductivity of a wall surrounding the plasma. For a perfectly

conducting wall, the stability limit increases because eddy

currents in the wall generate fields to oppose the helical kink

perturbation. For any wall configuration, the ideal wall sta-

bility limit can be calculated using a three-dimensional !3D"
electromagnetic code, like VALEN,

3
and an ideal magneto-

hydrodynamic !MHD" stability code, like DCON.4 For a
wall with finite conductivity, the wall eddy currents decay,

and the external kink instability is called the resistive wall

mode !RWM" when the plasma is above the no-wall stability
limit but below the ideal wall stability limit.

5
Although the

RWM grows slowly at a rate proportional to the eddy current

decay rate #w the RWM instability must be prevented in

order to operate steady-state tokamak reactors with both high

bootstrap current fraction and high fusion power density.
6,7

Previous experiments have demonstrated stabilization of

the external kink with a conducting wall
8
and stabilization of

the RWM instability either by plasma rotation
9,10

or by active

feedback control.
11,12

In rotating plasma, plasma dissipation

stabilizes the RWM
13,14

when the rate of dissipation exceeds

the rate at which energy is released from a slowly growing

!in proportion to #w" kink perturbation. Although the physics
of RWM stabilization due to rotation remains a subject of

study, recent measurements using the HBT-EP tokamak
15

have shown rotationally stabilized kink perturbations to be

consistent with a semiempirical viscous model of

Fitzpatrick
16
in the high-dissipation regime. Near the ideal

wall stability limit, the RWM is stable when the plasma ro-

tation $ exceeds a critical value dependent upon the dissipa-

tion rate vd,

$crit = 2#MHD%#w/%d, !1"

where #MHD is the ideal MHD growth rate of the external

kink at the no-wall limit. The external kink growth rate for

rotating plasma at the ideal wall limit is #& i$+ !#MHD
2 /%d"

"!S–1", where S is a normalized stability parameter. Kink
instability results when S exceeds the ideal wall limit or

when S&1. S can be calculated with an ideal MHD code, it
is defined as the ratio of the ideal kink perturbed energy 'W
calculated without a wall, to the difference of the perturbed

vacuum energy when evaluated with and without an ideal

wall. High plasma dissipation slows the kink mode growth

rate from its usual value
17
by the factor %d /#MHD&1.

While feedback control of the slow RWM has been dem-

onstrated, feedback control near the ideal wall limit requires

consideration of both the marginally stable external kink that

rotates with the plasma $ and the RWM that rotates much

more slowly at a rate near #w($.16 Near the ideal wall
stability limit in rotating plasma, the dominant frequency of

interest will be '#'($, and the active feedback controller
must be capable of high-speed control with low latency. In

addition, limitations to the feedback system arise from !1"
the mutual inductive coupling between control and sensor

coils !leading to self-oscillations and ceilings on attainable
gain, as well as noise", !2" coupling between the control coils
and the conducting shell !leading to finite response time of
the system, as well as limiting the stability range over which

fixed feedback coefficients are effective
18 ", and !3" coupling

between the sensor coils and conducting shells that slow the

response time of the feedback control fields. When these

limitations are eliminated, we describe feedback as “opti-

mized mode control.” Numerical modeling has predicted ex-

ternal kinks can then be feedback controlled up to the ideal

wall limit.
3

In this paper, we report the first successful use of opti-

mized mode control of rotating external kink instabilities at

the ideal wall limit. External kink instabilities are excited in

PHYSICS OF PLASMAS 12, 040703 !2005"
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This is the controller demonstrated by Klein, et al.…



Rules of Thumb…
• When the mode is slow, the control coils respond in the 

“resistive limit”. The RWM is stabilized with proportional 
gain:

•  

• HBT-EP: Gp > 40 s/scrit msec-1

• When the mode is fast, the control coils respond in the 
“inductive limit”. Rotating kinks are stabilized with 
derivative gain:

•

−Gp > s̄(Rc/Mc)/(1 − c)

Gd > (s̄ − 1)(1 − c)(Lc/Mc)/6cf

√

c
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DIII-D
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Figure 2: Closed-loop stability diagrams (like Fig. 1) characteristic of the HBT-EP and DIII-D
tokamaks with various values for the proportional, Gp, and derivative, Gd, gains.
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DIII-D Examples
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Without Feedback…
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HBT-EP:Digital Feedback with 10!s Latency
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DIII-D:Digital Feedback with “20!s” Latency
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Feedback With Random Noise 
(Toroidal Phase & Amplitude)
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Adding Low-Pass Digital Filters

b̄p[n] = b̄p[n− 1] +
δt

τb

(
bm
p − b̄p[n− 1]

)

d̄bp[n] = d̄bp[n− 1] +
δt

τdb

(
b̄p[n]− b̄p[n− 1]

δt
− d̄bp[n− 1]

)

For these examples τb = τbd = 5δt, and Vc[n+1] ∝ Gb̄bp[n]+Gdd̄bp[n].



HBT-EP: Low-Pass Digital Filters

Filter phase-shift 
destabilizes kink…
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Improves RWM control…

Similar results for DIII-D.

Rudolf Emil Kalman (May 19, 1930 -) is most famous for his invention of
the Kalman filter, a mathematical digital signal processing technique widely
used in control systems and avionics to extract meaning (a signal) from
chaos (noise).

Kalman’s ideas on filtering were initially met with scepticism. He had more success in
presenting his ideas, however, while visiting Stanley Schmidt at the NASA Ames Research
Center in 1967. This led to the use of Kalman filters during the Apollo program.

He was born in Budapest, Hungary. He obtained his bachelor’s (1953) and master’s
(1954) degrees from MIT in electrical engineering. His doctorate (1957) was from Colum-
bia University. His worked as Research Mathematician at the Research Institute for
Advanced Study, in Baltimore, from 1958-1964, Professor at Stanford University from
1964-1971, and Graduate Research Professor, and Director, at the Center for Mathemati-
cal System Theory, University of Florida, Gainesville from 1971 to 1992. Starting in 1973,
he simultaneously filled the chair for Mathematical System Theory at the Swiss Federal
Institute of Technology, (ETH) Zurich.

He received the IEEE Medal of Honor (1974), the IEEE Centennial Medal (1984), the
Inamori foundation’s Kyoto Prize in High Technology (1985), the Steele Prize of the Amer-
ican Mathematical Society (1987), and the Bellman Prize (1997).

He is a member of the National Academy of Sciences (USA), the National Academy of
Engineering (USA), and the American Academy of Arts and Sciences (USA). He is a
foreign member of the Hungarian, French, and Russian Academies of Science. He has
many honorary doctorates. This year’s recipient of Columbia’s Eggelston Prize!



Simple Kalman Filter: Predictor & Corrector

The “prediction” step is

x∗n = A · xn−1 + un

P∗n = A · Pn−1 · AT + Q

where x∗n and P∗n are predictions of the next step state vector and error
covariance.

The “correction” step is

Kn = P∗n · HT · (H · P∗n · HT + R)−1

xn = x∗n + Kn · (zm
n −H · x∗n)

Pn = (I−Kn · H) · P∗n
Kn is the “Kalman Gain”. R is the measurement noise covariance. With

R large, the tracking is less sensitive to noise. With H = HT = I, these

are especially simple.

Simplest Kalman Filter: Rotating, Growing Rotor

Let xn = {bp[n] cosφn, bp[n] sinφn, bp[n−1] cosφn−1, bp[n−1] sinφn−1},
then

A =





"{γk}2δt −#{γk}2δt 1 0
#{γk}2δt "{γk}2δt 0 1

1 0 0 0
0 1 0 0





representing a rotating, growing “rotor”. The complex growth rate, γk, is a

filter parameter. Does not have to be too close to actual mode.

Note: this is a single-mode approximation, because only two independent

measurements are available: bp cosφ and bp sinφ. If we had both poloidal

and radial sensors, then the Kalman model could be written in terms of s̄

and ᾱ.



Control Vector is Constructed from F-A Eigensystem

Let V be the eigenvectors of the “reduced” Fitzpatrick-Aydemir Equations.

Vi = {ψa, ψw} for the ith eigenvector (i.e. either the RWM or the kink).

Then, withC = {−cfγ2
MHF/νd, [1− ccf/(1− c)]γW}, the control vector

(for the single-mode, or “rotor”) is

Un = 2δt [m · Vi]
[
(VT )−1 · C

]
× ψc[n]

where (in this simple model) ψc is proportional to the “measured” control

coil current.

HBT-EP: Kalman Filter
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Coupling to kink (?)...

Very effective for kink control...



DIII-D: Kalman Filter

Very effective for RWM control...
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> 2-fold control coil 
power reduction as 
compared to digital 

low-pass filter!

Summary
• Kink mode/Wall system is characterized by para-

meters and coupling coefficients. (See Maurer.)

• When these change slowly in time, then a simple set 
of coupled ODEs can be used to simulate feedback 
control and allow rapid prototyping of control 
algorithms. 

• When noise is reduced (low-latency and Kalman 
filtering), then  derivative gain can be used for kink/
RWM control.


