Fusion Turbulence without a Toroidal Field

Mike Mauel and Jay Kesner Columbia University and PSFC, MIT

Mixing in Fusion Plasmas 55th Annual Meeting of the APS Division of Plasma Physics Denver, November 2013

Toroidal Confinement without Toroidal Magnetic Field is a New Paradigm for the Laboratory Study of Steady-State and High-Beta Transport

 Magnetospheric plasmas do not have toroidal field and nevertheless confine plasma at high beta.

When a dipole is magnetically levitated, very high plasma pressure, $\beta > 50\%$, is achieved in the laboratory *showing key connection between laboratory and space*

- By eliminating the toroidal field, a strong, but small, dipole magnet inside a very large vacuum chamber *making possible very large plasma experiments at relatively low cost*
- Without a toroidal field, the rotational transform → ∞; there is no average good curvature; and no magnetic shear.

Stability stability results from plasma compressibility,

 $\omega^* \sim \gamma \omega_{\kappa}$; and the absence of streaming particles leads to flute-interchange modes.

Toroidal Confinement without Toroidal Magnetic Field is a New Paradigm for the Laboratory Study of Steady-State and High-Beta Transport

- Isentropic profiles, with $\delta(PV^{\gamma}) \sim 0$, have nearly equal diamagnetic and magnetic drifts, $\omega^* \sim \gamma \omega_{\kappa}$
- Passing and trapped particle dynamics are nearly equivalent
- Turbulence dominated by low-frequency interchange mixing, $k_{\parallel} \sim 0$
- Very high beta in steady-state can be reached in levitated dipole
- Turbulent mixing is 2D with inverse cascade and self-organization
- Strong turbulent pinch drives stationary profiles towards $\eta \sim 2/3$

Outline

- What are the differences and similarities between the turbulent pinch in
 - Tokamak L-mode (with ω^{*} ~ (R/a) ω_κ >> γω_κ and unequal trapped-passing dynamics)
 - Magnetic dipole in laboratory and space (near isentropic, $\delta(PV^{\gamma}) \sim 0$, with $\omega^* \sim \gamma \omega_{\kappa}$ and *similar* trapped-passing dynamics)
- What are the differences and similarities between the spatial structure and spectrum of low-frequency fluctuations?

Turbulent Pinch is a Fundamental Process found in Toroidal Magnetic Systems Including Tokamaks and Planetary Magnetospheres

Levitated Dipole Experiment (LDX)

1.2 MA Superconducting Ring Steady-State 25 kW ECRH 1 MW ICRF (unused) **Princeton Large Torus (PLT)**

17 MA Copper Toroid 1 sec pulses 750 kW Ohmic 75 kW LHCD 2.5 MW NBI & 5 MW ICRF

A (Historic) Density Rise Experiment on PLT

Inward Turbulent Pinch "*is necessary to model the experimental results*" of peaked density from edge gas source

A (Historic) Density Rise Experiment on PLT

Strachan, et al., Nuc. Fusion (1982)

but gas puff intensifies turbulence and Outward Ion Energy Flux accompanies Inward Turbulent Particle Pinch

Low Frequency Gyrokinetic Theory provide a Framework for Understanding Turbulent Transport

- Low frequency fluctuations in strongly magnetized plasma, $\omega \ll \omega_{\rm b} \ll \omega_{\rm c}$, conserve constants of motion.
- Turbulent equipartition across flux tube volumes possible provided a sufficiently broad turbulent spectrum resonates with particles
- Magnetic geometry relates turbulent diffusion in magnetic-flux-space to diffusive and pinch terms in coordinate-space.
- Dipole geometry:
 - Birmingham, J. Geophysical Res., 1969
 - Kobayashi, Rogers, and Dorland, *Phys. Rev. Lett.*, 2010
 - Kesner, et al., Plasma Phys. Control. Fusion, 2010; Kesner, et al., Phys. Plasmas, 2011
- Tokamak geometry:
 - Coppi, Comments Plasma Phys. Controll. Fus., 1980
 - > Yankov, JETP Lett., 1994
 - ▶ Isichenko, et al., Phys. Rev. Lett., 1995
 - Baker and Rosenbluth, Phys. Plasmas, 1998; Baker, Phys. Plasmas, 2002

Convection Electric Fields and the Diffusion of Trapped Magnetospheric Radiation

THOMAS J. BIRMINGHAM

EXB {
$$\dot{\psi} = \nabla \psi \cdot \mathbf{V} = \frac{\partial \Phi}{\partial \varphi} = -RE_{\varphi}$$

$$\begin{array}{l} \begin{array}{l} \mbox{Diffusion}\\ \mbox{Coefficient} \end{array} & \left\{ \begin{array}{l} D_{\psi} = \lim_{t \to \infty} \int_{0}^{t} dt \, \langle \dot{\psi}(t) \dot{\psi}(0) \rangle \equiv \langle \dot{\psi}^{2} \rangle \tau_{c} \\ \\ = R^{2} \langle E_{\varphi}^{2} \rangle \tau_{c} \end{array} \right. \end{array}$$

$$\begin{array}{ll} \mbox{Adiabatic Radial}\\ \mbox{Transport} \end{array} & \left. \left\{ \left. \frac{\partial F}{\partial t} = S + \left. \frac{\partial}{\partial \psi} \right|_{\mu,J} D_{\psi}(\mu, J) \left. \frac{\partial F}{\partial \psi} \right|_{\mu,J} \right. \right. \end{array} \right.$$

NORAD OV3-4 (1966) validated physics of inward pinch and adiabatic heating of drift-resonant radiation belt particles. Farley, *et al.*, *Phys. Rev. Lett.*, 1970

Turbulent Pinch in Toroidal Laboratory Plasmas

When the turbulent spectrum is sufficiently broad to interact with (nearly) all particles, *independent of energy and pitch-angle*, then ...

Dipole Tokamak (for Trapped Particles) $D_{\psi} = R^2 \langle E_{\varphi}^2 \rangle \tau_c$ $D_{\psi} = R^2 \langle E_{\theta}^2 \rangle (B_p^2/B^2) \tau_c$

Flux-Tube Particle Number Transport:

$$\begin{split} \frac{\partial(\bar{n}\delta V)}{\partial t} &= \langle S \rangle + \frac{\partial}{\partial \psi} D_{\psi} \frac{\partial(\bar{n}\delta V)}{\partial \psi} \\ &= \langle S \rangle + \frac{\partial}{\partial \psi} \left[\underbrace{D_{\psi}\delta V}_{} \frac{\partial\bar{n}}{\partial \psi} + \bar{n} \underbrace{D_{\psi} \frac{\partial\delta V}{\partial \psi}}_{} \right] \\ & \text{Diffusion} \end{split}$$

Geometry of Magnetic Flux Tubes, δV, Determines Pinch

Dipole

$$D_{\psi} = R^2 \langle E_{\varphi}^2 \rangle \tau_c$$

Tokamak (Trapped Particles)

$$D_{\psi} = R^2 \langle E_{\theta}^2 \rangle (B_p^2 / B^2) \tau_c$$

Flux-Tube Number Transport:

$$\frac{\partial (\bar{n}\delta V)}{\partial t} = \langle X \rangle + \frac{\partial}{\partial \psi} D_{\psi} \frac{\partial (\bar{n}\delta V)}{\partial \psi} = 0$$

Steady-state *without* internal source, zero net flux condition:

$$ar{n} \propto rac{1}{\delta V} \sim \left\{ egin{array}{c} 1/R^4 & {
m Dipole} \ 1/q & {
m Tokamak} \ {
m (Trapped Particles)} \end{array}
ight.$$

... and particles can move inward against a density gradient.

Quantitative Verification of Inward Turbulent Convection

Using only measured electric field fluctuations, Thomas Birmingham's diffusion model is verified with levitated dipole

Edge Probe Array:
$$D = \lim_{t \to \infty} \int_0^t dt \langle \dot{\psi}(t) \dot{\psi}(0) \rangle \equiv \langle \dot{\psi}^2 \rangle \tau_c$$

Quantitative Verification of Inward Turbulent Convection

Using only measured electric field fluctuations, Thomas Birmingham's diffusion model is verified with levitated dipole

Alex Boxer, et al., "Turbulent inward pinch of plasma confined by a levitated dipole magnet," Nature Phys 6, 207 (2010).

Heating modulation demonstrates robust inward pinch towards invariant profile

- Density increases with power ($T \sim \text{constant}$). Density **profile shape is unchanged** near $n\delta V \sim \text{constant}$.
- Gas source moves radially outward. Inward pinch required to increase central density.

Turbulent Pinch in Toroidal Laboratory Plasmas

When the turbulent spectrum is sufficiently broad to interact with (nearly) all particles, *independent of energy and pitch-angle*, then ...

Dipole

Tokamak (for Trapped Particles)

 $D_{\psi} = R^2 \langle E_{\theta}^2 \rangle (B_p^2 / B^2) \tau_c$

$$D_{\psi} = R^2 \langle E_{\varphi}^2 \rangle \tau_c$$

Flux-Tube Particle Number Transport:

$$\frac{\partial(\bar{n}\delta V)}{\partial t} = \langle S \rangle + \frac{\partial}{\partial \psi} D_{\psi} \frac{\partial(\bar{n}\delta V)}{\partial \psi}$$

Flux-Tube Plasma Energy/Entropy Transport:

$$\frac{\partial(\bar{P}\delta V^{\gamma})}{\partial t} = \langle H \rangle + \frac{\partial}{\partial \psi} D_{\psi} \frac{\partial(\bar{P}\delta V^{\gamma})}{\partial \psi}$$

Geometry of Magnetic Flux Tubes, δV, Determines Stability

Dipole Tokamak (Trapped Particles)

$$D_{\psi} = R^2 \langle E_{\varphi}^2 \rangle \tau_c$$
 $D_{\psi} = R^2 \langle E_{\theta}^2 \rangle (B_p^2/B^2) \tau_c$

Flux-Tube Plasma Energy/Entropy Transport:

$$\begin{split} \frac{\partial(\bar{P}\delta V^{\gamma})}{\partial t} &= \langle H \rangle + \frac{\partial}{\partial \psi} D_{\psi} \frac{\partial(\bar{P}\delta V^{\gamma})}{\partial \psi} \\ \frac{\partial(\bar{P}\delta V^{\gamma})}{\partial \psi} &= e\bar{n}\,\delta V^{\gamma} \big(\langle \omega^{*} \rangle - \gamma \langle \omega_{\kappa} \rangle \big) \\ &\approx \begin{cases} 0 & \text{Dipole (marginally stable)} \\ e\bar{n}\delta V^{\gamma} \langle \omega^{*} \rangle & \text{Tokamak (avg good curvature)} \end{cases} \end{split}$$

While energy/entropy flux is **always outward in a tokamak**, depending upon the location of the heating source *(H)*, Energy flux **in a dipole can be inward (magnetosphere) or outward**.

Low frequency fluctuations dominate plasma dynamics: MHD interchange & Entropy modes

- Interchange modes set pressure and density gradient limits in dipole-plasma (*not* ballooning-drift)
- Entropy mode (Kesner, Hastie, POP, 2002) changed our thinking: not just pressure and density gradients, but also η = d(lnT)/d(lnn)
- Entropy modes generate zonal flows and selfregulate transport levels (Ricci, Rogers, Dorland, *PRL*, 2006)
- Fluctuations disappear with flat density profiles (Garnier, JPP, 2008; Kobayashi, et al., PRL, 2009)
- *Measurements show fluctuations throughout plasma* (*Nature-Physics*, 2010); inverse energy cascade (*POP*, 2009); intermittency (*PRL*, 2010)

 $k_{\perp} \gg k_{\parallel}$

Turbulence drives plasma to steep profiles and creates Turbulent Self-Organization in Dipole Geometry

Gyrokinetic (GS2) simulations show turbulence drives particles or heat to maintain uniform entropy density

Profile Parameter, $\eta = d \ln T / d \ln n$ Profile Parameter, $\eta = d \ln T / d \ln n$

Kobayashi, Rogers, Dorland, PRL (2010)

Turbulent Pinch Maintains Centrally-Peaked Temperature

- Thermal plasma energy about 100 J with 11 kW of ECRH.
- Measured edge temperature (14 eV), density profile, and stored energy, ... central T_e ~ 0.5 keV
- Outward thermal flux sustains inward particle flux, η ~ 1.2

Boxer, et al., Nature Phys. (2010)

Low-Frequency Convection Motions in Dipoles are Global

Exploring the physics of low-frequency turbulent convection

Gurnett, et al., Science 316, 442 (2007)

CASSINI: Observations of Circulating interchange mixing of Saturn's Magnetosphere

Streamfunction during Mach ~ 1 rotation showing plasma mixing from centrifugal mode

Levitt, et al., Phys Rev Lett 94, 175002 (2005).

Dipole Observations Show Global Low-Frequency Turbulence Structure, 2D Inverse Cascade, and Self-Organization

- Broad spectrum
- ω ~ ω^{*} (a/ρ_i)
- λ ~ ρ_i
- Ballooning-Drift

- Broad spectrum
- $\omega \sim 0$ (in plasma frame)
- λ ~ R >> ρ_i
- Interchange, $k_{\parallel} = 0$

Summary

Fusion Turbulence without a Toroidal Field

- Toroidal confinement without toroidal field is a new paradigm for the study of steady-state and high-beta transport
 - Very high pressure connecting space and laboratory plasma dynamics
 - Very large plasma experiments at relatively low cost
 - Whole plasma access for imaging and experimental control
- Strong inward turbulent particle pinch verified by satellite and laboratory observations
- Observations show global low-frequency turbulence structure, 2D inverse cascade, and self-organization

Presentations at DPP 55th (Last Monday)

- CP8.00025 Controlled Space Physics Experiments using Laboratory Magnetospheres (Mike Mauel, *et al.*)
- CP8.00026 Flux Tube Dynamics Following Pellet Release Experiments in Laboratory Magnetospheres (Darien Garnier, *et al.*)
- CP8.00027 Active Feedback Control of Global Turbulence with Multiple Localized Controllers (Max Roberts, *et al.*)
- CP8.00028 Profile Consistency and Turbulent Particle Pinch in Dense Plasma (Jay Kesner, et al.)
- CP8.00029 Symmetry Breaking and the Inverse Energy Cascade in a Plasma (Matt Worstell, *et al.*)
- CP8.00030 Interchange turbulence in a dipole-confined plasma (Bo Li, et al.)