Laboratory Observations of

Wave-Induced Radial Transport within an
“Artificial Radiation Belt”

Michael E. Mauel
Department of Applied Physics
Columbia University

New York, NY 10027 USA

<mailto:mauel@columbia.edu>
Ph: (212) 854-4455
Fx: (212) 854-8257

July 17, 1997

Presented at the
XXIIIrd International Conference on
Phenomena in Ionized Gases
July 17-22, 1997
Toulouse, France

and appearing in Journal de Physique, IV (Colloque), 7, no.C4, p. 307-18, (1997).



LABORATORY OBSERVATIONS OF WAVE-INDUCED RADIAL
TRANSPORT WITHIN AN “ARTIFICIAL RADIATION BELT”

M. E. Mauel
Department of Applied Physics
Columbia University

New York, NY 10027 USA

Abstract. Wave-induced radial transport of energetic electrons has been observed in a laboratory terrella.
In the experiment, electron-cyclotron-resonance heating (ECRH) is used to create a localized population of
trapped energetic electrons (1 keV < Ej, < 50 keV) within a low-density discharge which we refer to as
an “artificial radiation belt.” As the intensity of the radiation belt increases, quasiperiodic bursts of drift-
resonant fluctuations, w ~ wgy,, are excited. The frequency spectrum of this instability is time-varying and
complex, and global chaotic radial transport is induced whenever the frequency spectrum is both intense
and compact. High-speed measurements of the energetic electron transport are made with particle detectors,
and these measurements can be directly compared with nonlinear and self-consistent simulations. We find
quasilinear transport simulations do not reproduce the experimental measurements. In contrast, simulations
which retain the electron’s guiding-center Hamiltonian dynamics and which preserve the first, i, and second,
J, adiabatic invariants reproduce key temporal characteristics of the experimental measurements. The
resemblance between simulation and experiment suggests that persistent phase-space structures strongly
modulate the energetic electron transport and contribute to the growth and saturation of the instability.

1 INTRODUCTION

Since the early years of space exploration, models of fluctuation-induced radial transport of
energetic particles trapped in dipolar magnetic fields have been used to describe the evolution
of the planetary radiation belts [1]. When nonaxisymmetric fluctuations of geomagnetic [2]
or electric [3] fields resonant with the magnetic drifts of trapped particles, the third adiabatic
invariant, 1, can become time-varying. Drift-resonant fluctuations mix the inner and outer
regions of resonant particle distributions. In certain instances, the time-variation of 1 may
become stochastic [4]. Drift-resonant transport has been used to explain the profiles of the inner
radiation belt [5], the injection of energetic particles during magnetic storms and substorms [6],
and the radial transport coefficients of the magnetospheric ring current [7]. When combined with
other, higher-frequency wave-particle interactions in the Earth’s magnetosphere, the inward and
outward radial transport of energetic electrons , or adiabatic “recirculation” [8], may explain
the flux intensification of very energetic electrons (F > 1MeV) at geosynchronous orbit thought
to result in the failure of electronic components on spacecraft [9].



For strongly-magnetized particles within a dipole, the radial transport induced by low fre-
quency fluctuations also provides an opportunity for detailed study of wave-particle interactions
within a plasma. When the ratio of the gyroradius, p, to the equatorial radius of the particle’s
field line, L, is small, p/L < 0.1, the particle’s three characteristic frequencies of motion, the
cyclotron, w., the bounce, wy, and the drift, wy frequency, separate [10]. Wave-particle inter-
actions with low-frequency drift-resonant waves, w ~ wy € wp <€ w., preserve the first two
adiabatic invariants [11] even when combinations of these waves create chaotic evolution of the
third adiabatic invariant [12]. When collisionless energetic particles interact with low-frequency
waves which preserve p and J, their time-evolution can be described by a one-dimensional Vlasov
fluid. Furthermore, when the particles are confined by a magnetic dipole, the relevant Hamil-
tonian phase-space is directly and easily observable. The canonical action is the magnetic flux,
1 ~ 1/L, and the conjugate coordinate is the azimuthal angle, ¢.

Previously, we reported the first observations of wave-induced chaotic radial transport in a
laboratory terrella, the Collisionless Terrella Experiment (CTX) [13, 14]. The primary goal of
CTX is to provide a laboratory test of guiding-center Hamiltonian methods used to predict and
understand collisionless radial transport induced by low-frequency fluctuations in dipole-confined
plasmas. By investigating the correlations between the observed transport and fluctuation spec-
trum and by comparing these correlations with guiding-center simulations, we see that strong
radial transport only occurs when the amplitude, frequency, and azimuthal mode number of the
fluctuations meet the conditions for global chaos [14]. Greatly diminished transport is observed
when the fluctuations lead to thin, radially-localized bands of chaos.

Although the presence or absence of strong radial transport can be determined by evaluating
global conditions for phase-space chaos, the temporal features of the observed flux can not.
We find the flux to be strongly modulated in time (= 100%) near the drift frequency of the
energetic electrons, wq,. These modulations are related (but not equivalent) to the “drift-
echoes” observed by satellites following magnetic storms and substorms [15, 16]. In CTX, the
temporal modulations of the energetic electron flux can be reproduced by computing the induced
Hamiltonian phase-space flows as a function of time beginning with an initially axisymmetric
electron distribution. The simulations show the modulations are due to circulating phase-space
structures generated by resonant wave-particle interactions which are detected at a fixed location
in the laboratory frame of reference.

In this paper, we present a more detailed interpretation of both the nonlinear growth and sat-
uration of the low-frequency drift-resonant instabilities observed in CTX and the self-consistent
dynamics of the energetic electrons. This description is both complete and relatively simple be-
cause (1) the low-frequency, electrostatic instabilities are flute-like, (2) the geometry of a dipole
magnetic field is relatively simple to characterize, and (3) the dynamics of the energetic electrons
are one-dimensional. We introduce a fully self-consistent, nonlinear model for the evolution of a
quasineutral plasma consisting of cold ions and a mixture of hot and cold electrons confined by
a dipole magnetic field. Representative numerical solutions are presented and compared with
experimental observations.

We believe it highly significant that the nonlinear model reproduces the frequency sweeping
observed experimentally. Examination of the Hamiltonian phase-space flows of the energetic
electrons during the nonlinear saturation of the instability suggests that the rising tones seen
experimentally are due to the inward propagation of “phase-space holes.” The creation and
dynamical evolution of phase-space structures including “holes” may be essential to the nonlin-



ear saturation of certain instabilities [17, 18] and of drift-turbulence [19]. For the experiments
described in this paper, both the observations and the numerical simulations appear to be ex-
plained by a generalized nonlinear theory recently developed by Berk and co-workers [20, 21].
In this theory, the growth and nonlinear saturation of collisionless resonant particle instabilities
are dominated by three competing processes: (1) linear growth of the instability due to resonant
particle effects, v, (2) linear dissipation due to nonresonant effects, v4, and (3) nonlinear ef-
fects represented by the wave-particle trapping frequency, wy,. o< v/®, where ® is the fluctuating
potential of the instability. For strongly unstable plasmas, vy, > 74, instabilities grow rapidly
and saturate when the linear growth rate is balanced by nonlinear trapping, wy ~ ~vr [22].
On the other hand, for weakly unstable plasmas, ~; ~ 74, nonlinear effects quickly overcome
linear effects, and waves with both rising and falling frequencies are generated as the instability
grows rapidly and nonlinearly to a large collective amplitude, wy,. ~ vr. At saturation, the wave
frequencies continue to change as energy nonlinearly extracted from the resonant particles is
balanced by nonresonant dissipation. Berk and co-workers suggest frequency sweeping to be a
general nonlinear wave-particle effect. They note frequency sweeping has been observed experi-
mentally during the saturated stages of several instabilities found in magnetized plasmas driven
by energetic resonant particles. “Fishbone” instabilities [23] and toroidal Alfvén eigenmodes [24]
excited by energetic ions in tokamaks are examples of drift-resonant magnetostatic instabilities
where frequency sweeping occurs.

This paper is organized into five additional sections. Section 2 presents a brief description of
the experimental device, diagnostics, and method used to produce an “artificial radiation belt”
using microwave heating. Observations of the drift-resonant fluctuations using multiple electro-
static probes are summarized in Section 3. In Section 4, we introduce a self-consistent nonlinear
model of the hot electron interchange instability (or HEI) [25] in the magnetic coordinates ap-
propriate to an idealized dipole field. In Section 5, example solutions to the linearized and fully
nonlinear descriptions of the HEI are presented. The nonlinear simulations illustrate frequency
sweeping, and the computed phase-space flows of the energetic electrons clearly illustrate the
inward propagation of “holes.” At a prescribed nonresonant dissipation, these phase-space holes
extract energetic electron energy (by causing an outward expansion of energetic electrons) while
maintaining nearly constant wave amplitude. The temporal features of the energetic particle
flux computed by the simulation resemble those observed experimentally. Finally, in Section 6,
we summarize key conclusions and suggest new opportunities for further investigations of the
nonlinear evolution of resonant particle instabilities both in the laboratory and in space.

2 PRODUCTION OF AN “ARTIFICIAL RADIATION BELT”

The goal and purpose of the Collisionless Terrella Experiment (CTX) is to study the basic
dynamical plasma processes which lead to collisionless radial transport of energetic particles.
This is accomplished by creating an “artificial radiation belt” consisting of a population of
energetic, deeply-trapped electrons as a result of cyclotron resonance absorption of microwaves
within a low-density discharge.

The collisionless plasma dynamics within CTX differ from those observed in axisymmetric
terrella built by Birkeland [26, 27] and II'in and II'ina [28]. Birkeland’s terrella were used to
study untrapped charged-particle orbits such as those followed by cosmic rays near Earth. For
untrapped, very high energy particles, the normalized gyroradius satisfies the condition p/L >
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Figure 1: The magnetic field geometry of CTX. Solid lines represent magnetic field lines, and the
dotted lines correspond to surfaces of constant magnetic field strength. The location of the fundamental
microwave cyclotron resonance, the “artificial radiation belt”, and some key diagnostics are shown.

0.3. I'in and Il'ina demonstrated the Dragt condition for adiabaticity (i.e. the conservation of
@) [29], and, in their device, p/L < 0.1. In CTX, p/L ~ 0.01. At this normalized energy, the
energetic particles in CTX are strongly trapped, adiabatic, and characterized by well-separated
cyclotron, bounce, and drift frequencies.

Although the energetic electrons produced in CTX are referred to as a “radiation belt,”
the plasmas created within CTX do not simulate planetary magnetospheres. This is because
the effects of electron-plasma and electron-neutral collisions have been minimized by decreasing
the plasma density and increasing the magnetic field. Although electrons are energetic, 1 keV
< Fj, < 20 keV, the total plasma beta is low, 3 ~ 1%. The low plasma density allows the
energetic electrons to execute thousands of drift-orbits within a collision time, wyj 7.0 ~ 10%, but
the first Alfvén field line resonance occurs at high-frequency, near V4 /L ~ 50 MHz > wy, ~ 1
MHz. In the laboratory, low-frequency drift-resonant fluctuations are electrostatic; whereas, in
the Earth’s magnetosphere they are Alfvénic.

Plasma is created in CTX using a 2.45 GHz 1 kW microwave power source illuminating
a high-field water-cooled electromagnet suspended mechanically in an axisymmetric vacuum
chamber approximately 140 ¢cm in diameter. The magnet is surrounded by a stainless steel
enclosure electrically grounded to the vacuum chamber. The magnetic field strength reaches 15
kG at the pole faces and falls to 50 G at the outer vacuum vessel wall. As shown in Figure
1, the fundamental microwave cyclotron resonance, By = B ~ 875 G, intersects nearly all flux
surfaces of the dipole magnet, but only electrons which mirror near Ly = L ~ 30 cm absorb
microwave energy continuously and reach high energy. Although the CTX device is capable of
long pulse discharges, the microwave discharges are usually pulsed for periods slightly less than
one second which corresponds to peak x-ray emission.

The energetic electrons are measured with a krypton proportional counter viewing the equa-
torial midplane of the terrella and several XUV diodes and photodiodes viewing cords parallel



to the dipole axis but at different radial positions. At one of the poles, arrays of biased Faraday
cups, localized net current detectors, and gridded particle analyzers are used to monitor the
azimuthal and radial evolution of plasma and electron profiles [30]. Langmuir probes are able
to measure the density and temperature of the cooler plasma at all locations except at those
occupied by the most intense energetic electrons.

The intensity of the energetic electron population is characterized by the hard x-ray emission
produced by electron-ion and electron-neutral bremsstrahlung. Pulse-height analysis of the
x-rays detected with the proportional counter show the distribution of energetic electrons to
be non-Maxwellian, a characteristic of microwave-heated mirror-trapped electrons [31]. The
electrons with energies between 1-10 keV are often referred to as the “warm” population and
those electrons with energies above 10 keV are called “hot”. When the microwave power is
switched off, the “hot” population persists for 5-20 ms, defining a relatively long “afterglow.”
By inserting probes into the region occupied by the “artificial radiation belt,” the x-ray intensity
decreases rapidly, and this information is used to estimate the belt’s spatial extent. Additional
information describing the plasma and the energetic electrons has appeared elsewhere [13, 14, 30].

3 OBSERVATION OF DRIFT-RESONANT FLUCTUATIONS

When intense energetic electrons are produced, drift-resonant fluctuations (w ~ wgp) are ob-
served both while the ECR heating is on and in the afterglow. During microwave heating,
the fluctuations appear in quasiperiodic bursts lasting approximately 300-500 ps. During the
afterglow, the drift-resonant oscillations persist for several milliseconds. These electrostatic fluc-
tuations are simultaneously measured with four movable probes with high-impedance tips and
matched, low-noise, wide-band preamplifiers. The observed frequencies correspond to the drift-
frequencies of both the “warm” and the “hot” energetic electrons, 0.1 MHz < f < 20 MHz. The
saturated wave amplitudes typically range from 100-200 V.

Correlations between multiple probes show that the waves (1) propagate azimuthally in
the direction of the electron VB drift, (2) are flute-like with constant phase along a field line,
and (3) have a broad radial structure extending throughout the plasma [32]. Fourier analysis
shows the fluctuations have a time-varying and complex frequency spectrum consisting of several
coherent and sometimes incoherent modes. Figure 2 shows a spectrogram of the electrostatic
fluctuations during microwave heating (showing several quasiperiodic instability bursts) and
during the initial period of the hot electron afterglow. Multiple waves with rising frequencies are
present. Comparing the phase differences measured between probes separated azimuthally show
that the azimuthal mode number of the most intense modes is m = 1, although large amplitude
instability bursts also have waves with m = 2, and waves observed during the afterglow have
been detected with m < 6. It is observed that (1) multiple modes with different frequencies
often have the same azimuthal mode structure, and (2) modes present at the same time but
with different m often appear to be independent since the ratio of their frequencies are not
harmonically related and change in time.

Coincident with the drift-resonant fluctuations is an outward expansion of the energetic elec-
trons. This is shown in Figure 2, where the electron flux to the movable gridded particle analyzer
shows a rapid increase during the instability bursts. Measurements using the photodiode and
polar detector arrays, reported elsewhere [30], support this interpretation.

Analysis of the electron transport induced by the fluctuation’s time-evolving frequency spec-
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Figure 2: The measured electrostatic fluctuations and the flux of energetic electrons to the movable
gridded particle detector. A spectrogram showing the time-evolving spectral amplitude of the fluctuations
is also shown.

trum results in two significant conclusions. First, the presence or absence of the induced radial
flux of energetic electrons depends on the spectral characteristics of the fluctuations and not
simply on the amplitude [13, 14]. Intense radial transport is observed only when the frequency
spectrum of the fluctuations induced global chaotic drift-motion of the resonant energetic elec-
trons. When the frequency spectrum of the fluctuations consists of isolated coherent modes,
bands of chaotic motion are predicted to occur only in thin radial bands and greatly diminished
transport is observed. Secondly, the flux of electrons impacting a small movable gridded particle
detector is strongly modulated. A simple quasilinear picture of phase-space diffusion averages
over phase-space correlations and fails to reproduce the modulated flux seen by the detector.
However, a transport simulation based on the Hamiltonian motion of energetic electrons follow-
ing the drift-motion induced by the measured fluctuation spectrum reproduces the frequency
and modulation depth of the observations [14, 30].

4 HOT ELECTRON INTERCHANGE INSTABILITY

The analyses of collisionless transport in CTX referred to in Section 3 were based on computed
particle dynamics in the presence of a collection of electrostatic waves with fixed frequencies. The
wave frequencies were measured within a relatively short time interval during an instability burst
when the time-variation of the spectrum could reasonably be ignored. Although the energetic



electron response to these fluctuations could be understood, we did not explain why the frequency
of the drift-resonant instability increases on longer time periods nor did we identify the source
or describe the evolution of the phase-space structures detected by the gridded particle detector.
Possible answers to these questions are addressed in this section. A fully self-consistent model for
the growth and saturation of the unstable waves is introduced which includes the Hamiltonian
motion of the energetic electrons to drift-resonant electrostatic fluctuations.

In the following, the basic equations used to describe flute-like electrostatic fluctuations
within a dipole magnetic field are described. Since p and J are preserved, the electron dynamics
are described by a two-dimensional canonical phase-space, and the colder ions and electrons are
described by field-line averaged particle continuity equations. When linearized, these equations
describe the hot electron interchange instability (HEI) in a dipole confined plasma. Fully non-
linear solutions are computed numerically. The nonlinear solutions illustrate frequency sweeping
for saturated instabilities and strong modulation of local energetic particle flux due to the trans-
port of “phase-space holes.” A more detailed description of the models presented in this section
will be published elsewhere [33].

4.1 Basic Equations

In the following, we summarize a self-consistent, nonlinear model for the flute-like electrostatic
hot electron interchange instability in dipole magnetic flux coordinates.

4.1.1  The Dipole Magnetic Field

A curl-free, axisymmetric dipole magnetic field can be represented in magnetic coordinates
B = V¢ x Vip = Vy, where (¢, ¢) defines a field line and x relates to a position along a field
line. In spherical coordinates, ©» = Msin?8/r, and y = M cosf/r%, where M = BgLj} is the
moment of the dipole magnet defined in terms of the field strength at an equatorial (6 = 7/2)
reference radius, Lg.

Restricting our model to flute-like interchange instabilities, integrals along a field line incor-
porate the geometry of the dipole magnetic field. For example, the volume of a tube per unit flux
is 8V (¢) = [dx/B? with the magnetic field strength expressible as B = (M/r®)v/1 + 3 cos? 6.
Integrals of this type are performed by first transforming the variable of integration from y to
¢ = sin? 6 using the relations:

r:%g X:¢_2 1-¢ andd—X :¢—273€_4
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For a ideal dipole field, we find

(1)

M3 1 dffS M3
:F/o 1_€z0.91ﬁ. (2)

The flux-tube average, (A), and the density-weighted average, || A||, are defined as

(Ay= 1 / dg;‘, and [|A]| = <<f;’;> _ %/%m, 3)

where n is the plasma density, and N = (n)dV is the total particles on a tube per unit flux.
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4.1.2  Electron Dynamics

We model the electrons as consisting of anisotropic energetic electrons (p; > pH) equatorially
trapped near the microwave cyclotron resonance (i.e. as shown in Figure 1) and cold electrons
more uniformly distributed along the field lines. Since the instability of interest is flute-like with
a frequency much higher than the cold electron drift frequency, the essential dynamics of the
electrons is represented by assigning J = 0 to the energetic electrons while preserving their total
electron number density on a given flux tube. The energetic electrons form a “disk” encircling
the terrella and immersed within the larger quasineutral cold plasma [14].

The interaction of nonrelativistic energetic electrons with the drift-resonant electrostatic
waves are described by the guiding center drift Hamiltonian [34], H = ucB/e — ¢®, where € is
the magnitude of its charge, ¢ is the speed of light, B is the local strength of the dipole magnetic
field, 4 = m.v? /2B is the magnetic moment, m, is the electron mass, and ® is the electrostatic
potential. Particle motion is confined to trajectories in a two-dimensional phase-plane, (1, ¢),
and the equations of motion take a particularly simple form:

OH c 8_B oo
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For these equatorial particles, the magnetic precessional drift frequency is wy, = 3cuB/et), which
scales as wy, = 3uBo/Meweeo L2 using weeo = €Bo/mec and L = M/+ to label a flux surface
and a particle’s equatorial radial position. Cold electrons execute radial and azimuthal E x B
motion; whereas, the energetic electron drifts are Doppler-shifted according by the magnetic
drift, wgp. When @ consists of azimuthally propagating waves, the wave-particle resonance
condition, w = muwyy, relates a particle’s energy, u, to a resonant flux surface, L o \/mp/w. As
w increases, the wave-particle drift-resonance moves inward.

When describing the complete dynamics of a population of trapped electrons, we use the
bounce-averaged distribution, F(u,.J, ¥, ¢,t), with adiabatic constants, (i,J = 0). The colli-
sionless evolution of I is described with the following equation

or 0 a -

— + —(¢pF) + —(¥F) = 0. 6
o+ 3oPE) + oD ()
When the particle distribution is expressed in terms of the adiabatic invariants, the number
of electrons on a tube of given flux d¢dp is N. = [dudJF, and the volume-averaged electron

density is (n.) = N./oV(¥).

4.1.8  FElectrostatic Fluctuations

The potential fluctuations are modeled as constant along a field line and purely electrostatic. In
flux coordinates, the flux-tube-averaged form of Poisson’s equation becomes

which determines the electrostatic potential, ®(1), ¢, t), in terms of the difference of electron and
ion numbers within a flux-tube. Two geometric terms define the transformation of the Laplacian



operator into field-line averaged flux-coordinates:

dx

h, = P —=— = 4M. (8)

M
= QE, and hy =

4.1.4  Cold Ion Dynamics

The plasma ions are modeled as a cold, neutralizing ion-fluid convected by ExB and polarization
drifts. This description assumes that the fluctuation frequency is much smaller than the ion
cyclotron frequency, w ~ wyp /2 € we; = eB/M;c where M; is the ion mass. For drift-resonant
fluctuations, this condition is equivalent to p/L < \/m./M;.

The field-line averaged continuity equation is

ON; 0 J B
ot T ag Wil Ve Vil 4 57 (N[ Ve - V) = 0. (9)
Using E = =V &, the particle-conserving cold ion flow can be written as
ON; 0 0P |Vl?|| 0%® J 0P V|| 0%
= |eNi | =5 — [N | = — = 1
at'*a¢[c ( g0 | ot || ap0r) | T aw [N\ | s || aver)| =0 1O

which neglects the parallel flow of plasma lost to the poles. The first term in parentheses is the
E x B drift, and the second term is the polarization drift.

The field-line averaged ion polarization drift terms require knowledge of the density profile
along a field line. This profile has not yet been measured in CTX; however, these density-
weighted field-line integrals are only weakly profile dependent for a reasonable range of possible
profiles. For the examples reported here, the density profile is assumed to be moderately broad
along a field line, n ~ /€ = sinb, and |||Ve|?/weB|| = 0.66M2By/¢ weo, |||V]?/weB| =
0.77]\42B0/¢2wd07 where w;g is the ion cyclotron frequency at B = By.

4.2 Linear Dispersion Relation

The linear dispersion relation for low-frequency, flute-like modes in a hot-electron, dipole plasma
can be derived from the equations presented in the previous section. We use several simplifi-
cations. First, the electron distribution is assumed to be separable with a(1) defined as the
fractional density of energetic electrons. Secondly, solutions to Poisson’s equation are restricted
to be traveling waves localized on a flux surface where 0®/0v =~ 0. With these assumptions,
the unperturbed electron distribution function, Fjy, takes the form

Fo(ps J, ) = Nio(9)[1 = a(¥)]6 (1) () + Nio(¢)e(4) G (1) (J) (11)

where [ duG(p) =1, and the linear potential fluctuations are:

1_(¢;f32+”17 (12)

with m the azimuthal mode number, ¢,, an arbitrary phase, and ¥* = B*L? is the flux surface
of peak mode amplitude (i.e. where d®/01 = 0). Only two significant terms of an expansion of

(I)(¢7 s t) ~ q)m (Qb*) Cos(mcp —wt+ @m)




the radial mode structure are retained. We refer to the radial mode width as Ay = 2¢*/k L,
and we define the total perpendicular mode number as m? = m? + 0.58(krL)? .
The Fourier-Laplace transform of the linearized ﬂuctuatlng electron number, N., is equal to

- 1 8N20 2004
N, = em®,, D, du 13
nm 0 +em? / (w— mwd) (13)
The linearized ion fluctuation number is
- 1 0Ny 9 9%, 2
N;=em®d,, —— — D, N; ——1| Nyo. 14
mEm o o we B ot 0v? || wuB 0 (14)
On the same surface, the field-line averaged Poisson’s equation becomes
Arep*? ~
2 2 — .
[m* + (kpL)?] @, = o (Vi Vo), (15)

which defines the local dispersion relation in terms of the radial gradients of the hot and cold
plasma and the distribution of energetic drift frequencies, wqp, ().

The hot electron interchange mode is usually described [25] in the high-density limit where
(wli)/wif = 4mecNiph* /0.91M > 1. For CTX, (w2;)/wi? ~ 10°. When we further note that the
observed instabilities have m ~ 1 and a broad radial structure, the local dispersion is determined
by the zeros of

D(wmmj_)~1—|—15m v 2004 /d Weitwd G

Nzo (w— mwd)

(16)

This dispersion relation is easily examined using two relatively simple forms for G'(x). When
G(p) = 6(p — po), the energetic electrons are mono-energetic. D is a simple quadratic function
of w, , ,

~14 F—h. (17)

m?% w(w — mwqo)

In Eq. 17, wgo is the hot electron drift frequency, and '} = 1.5w wao(¥*/Nio) (ON0c/I) is
the hot electron interchange drive. This reproduces the form of the HEI dispersion relation
derived by Krall [25]. Instability results whenever '} > m? w3, corresponding to unstable
coupling of the negative energy precessional mode with the positive energy drift mode. The
hot electron density gradient must exceed an stability threshold due to the competition between
the stabilizing azimuthal ion polarization flows and the destabilizing net radial electron flows.
For unstable modes, the real frequency is mwgo/2. Low values of m and broad radial mode
structures (m?% < 1) are more unstable than higher values of m or m . For mono-energetic
electrons, local, linear theory does not produce a wave-particle resonance, and Eq. 17 is purely
reactive.

The linear stability of energetic electrons having a distribution of energies can be investigated

using a model such as
-1 ll

I
G(p) = exp(—pl/ o), (18)

poT (1)
where [ is a positive integer. When [ = 1, Eq. 18 represents a Maxwellian distribution of energetic
electrons. When [ — oo, G becomes mono-energetic. For all I, [ dupuG = po. Using Eq. 18, D

10
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Figure 3: The evolution of the electrostatic potential during the growth and saturation of the HEI. Large
amplitude waves dominated by m = 1 grow from the initially random fluctuations when the energetic
electrons are sufficiently intense. Stable and unstable hot electron densities are shown.

can be expressed in terms of the exponential integral combined with the usual Landau prescrip-
tion for evaluating the energy exchanged by the wave-particle drift-resonance, w = mwq (1t).
The existence of the wave-particle resonance destabilizes the HEI (and eliminates the instability
threshold) for a plasma with any unstable gradient, da/dy > 0. Numerical solution of the
finite-temperature dispersion relation shows the growth rate is small until the Krall instability
threshold is approached; however, it is significant that distinct intervals of stability are observed
in CTX even with a radially-localized population of electrons having a broad energy distribution.
These stable periods implies the presence of nonresonant wave dissipation not included within
Eq. 17.

4.3 Self-Consistent Nonlinear Evolution of the HEI

The nonlinear evolution of the hot electron interchange instability has been simulated by com-
puting simultaneously solutions to Eqs. 5, 7 and 10. These solutions exhibit frequency chirping
and strong modulation of energetic electron flux as observed in the experiment. The simulation
indicates a correspondence between the rising frequency of the instability and the inward motion
of phase-space “holes.”

Since the self-consistent dynamics of the HEI can be described on the (¢, ¢) phase-plane,
the two-dimensional time evolution of N;, ®, and F'(x) can be solved using relatively standard
numerical techniques on a desktop computer workstation. We incorporate an important simplifi-
cation. Since p is a constant of the motion, the electron distribution can be considered to consist
of a continuum of two-dimensional phase-planes which interact only through their mutual and
collective effects on the fluctuating potential. However, the computation of the entire Vlasov
time evolution of F'(yu,t) would be time-consuming and unnecessary. In the simulations reported
here, we represent the hot electrons as a finite number of hot-electron phase-planes distributed
at various values of u, F(u, ¢, ¥,t) = >, gi(¢, ¥, t)0(p — py). Since our potential fluctuations
extend from the terrella to the outer vacuum chamber wall, each hot electron phase-plane res-
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onates with the potential fluctuations at some radial location. This simplification, therefore,
retains a complete description of the nonlinear wave-particle resonance without the need for
excessive computation. Furthermore, the same numerical algorithm used for the evolution of
the ion fluid flow can be used to compute the hot-electron phase-space flow for each value of p.

For a given electrostatic potential, ®, and its first time derivative, ®' = d®/9t, the ion and
electron density is advanced using a flux-corrected transport algorithm [35] modified by Zalesak
[36, 37]. Zalesak demonstrated the effectiveness of this numerical technique by computing the
growth of electrostatic drift instability in a plasma following a magnetospheric release of barium.

The potential fluctuations are computed by recasting Poisson’s equation using an equation
for the conservation of charge derived from the ion and electron dynamical equations. The ion
polarization currents are used to define a field-line averaged dielectric, €, (1), ¢y (%) proportional
to the axisymmetric part of the ion number density, N; = [dp N;/2r. This gives an elliptic
equation for the time derivative of the potential, ®', in terms of the divergence of the nonax-
isymmetric ion polarization currents, the E x B convection of the fluctuating charge density,
and the magnetic precession of the hot electrons [33]. Since ¢, and ¢, depend only upon ¥, the
equation for ®' is solved efficiently using fast Fourier transforms of the azimuthal variations of
potential and charge.

Nonresonant dissipation of the electrostatic fluctuations is required both for numerical stabil-
ity and to produce frequency sweeping. Since the flux-corrected transport of electrons and ions
introduces very little numerical dissipation, an explicit damping of the potential fluctuations is
needed. After computing a solution for ® as described above, the potential is advanced in time,
from t to t + At, according to the rule:

Bt + At) = 0(t) + Atd — ()" Atv Ve (1), (19)

where v is a specified constant, and k = 0,1,2, ... sets the scale-length for dissipation.

Figure 3 shows the time evolution of the electrostatic potential from a representative sim-
ulation. Initially, the potential fluctuations are small and random. If the density of energetic
electrons is below a threshold set by dissipation, the fluctuations decay. As the intensity of the
energetic electrons increase, rapidly growing fluctuations appear dominated by a broad, m = 1
structure. The frequency of potential fluctuations increase as the instability saturates. The peak
amplitude of the instability corresponds to a trapping frequency having wy,. ~ v, = wqp, /4.

Figure 4 shows the evolution of the energetic electron phase-space distributed over five values
of pr and weighted according to Eq. 18 with [ = 2. Since the initial frequency of the HEI is low, the
low-energy electrons are the first to experience strong resonant diffusion. As the amplitude of the
instability saturates, the frequency increases and electrons with higher energies begin to resonate
with the waves. Since the location of the resonance changes with frequency, ¢ o« 1/L < \/w/mpu,
the drift resonance moves inward. Trapped within the resonances are low phase-space densities
originating in the outer regions of the plasma. As these phase-space “holes” move inward, they
displace hot and denser electrons at lower L and cause transport. For the low-energy electrons,
phase-space structures exist at the outer regions of the plasma which circulate at low frequency.
The location of the phase-space holes within each phase-plane (i. e. for each value of i) are
separated in radius but not in azimuth. As the frequency spectrum of the instability evolves,
the dynamics of lower energy electrons appear chaotic. By summing the electron flux from all
five phase-planes, the simulated signal from a stationary detector is strongly modulated.
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5 CONCLUSIONS AND OPPORTUNITIES

An “artificial radiation belt” consisting of energetic electrons deeply trapped by a strong dipole
electromagnet has been produced in the laboratory using microwave heating. As the intensity
of the radiation belt increases, quasiperiodic bursts of hot electron interchange instability are
excited which resonate with the magnetic drifts of the energetic electrons, w ~ wyy. High-speed
measurements of the induced energetic electron transport are made with particle detectors, and
these measurements show strong temporal modulations indicating the presence of circulating
phase-space structures. The frequency spectrum of the nonlinear phase of the HEI is complex
with slowly rising tones. We have introduced a self-consistent nonlinear simulation of the flute-
like electrostatic response to a steep radial gradient of energetic electrons confined in an ideal
dipole magnetic field. The simulation reproduces the temporal features of the energetic electron
flux and the increasing frequency of the saturated instability. The simulation shows that a
wave with rising frequency traps outer regions of low-density phase-space, called “holes,” and
transports these regions inward. The inner regions of high-density phase-space are displaced to
lower B leading to energetic electron transport. The energy released during the frequency rise
does not lead to significant wave growth due to nonresonant dissipation [21].

The comparison between measurements and simulation lead to interesting questions for fur-
ther investigation in the laboratory and in the Earth’s magnetosphere. In the laboratory, two
experiments are in progress to better measure and understand the phase-space structures cre-
ated by the HEL. First, a 72-element particle analyzer is being installed at one magnetic pole in
CTX in order to detect the circulation of phase-space “holes.” Secondly, at the opposite pole, a
high-frequency and high-power antenna has been installed in order to launch both low-frequency
(electrostatic and Alfvénic) and high-frequency (whistler and electron cyclotron) waves into the
plasma. These waves will provide a tool for direct interaction with the electron phase-space. For
example, excitation of bounce-resonances may result in wave-induced velocity scattering and the
destruction of the phase-space “holes.” Finally, we can not avoid asking the questions: “Are low-
frequency waves within the Earth’s magnetosphere driven unstable by energetic particles? And,
if so, is frequency sweeping associated with the saturation of these instabilities?” Although most
magnetospheric waves which resonate with energetic particles are externally driven by solar wind
variability and plasma flows near the magnetosphere [38], theory and observation have indicated
the possibility of drift-bounce resonant excitation of Pc 4-5 pulsations by energetic ring-current
ions [39]. If low-frequency Alfvén waves are excited by drift-bounce resonances, they will have a
relatively short perpendicular wavelength, and the detection of frequency sweeping will require
multiple satellites. Unlike the HEI, localized Alfvén pulsations in space would propagate radially
if their frequency were to be changed by resonant particle phase-space structures.
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Figure 4: The evolution energetic electrons showing the modulations of the local electron flux (bottom)
and the time-evolution of five hot electron “phase-planes” clearly illustrating the inward propagation of
“holes” (top).
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