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Abstract
The measured structures of electrostatic interchange modes in dipole-confined 
plasma cause global mixing when driven by energetic trapped electrons, sonic 
plasma, or warm electron pressure. Global circulation also appears in planetary 
magnetospheres driven by solar wind, but differences exist in underlying 
physics. Breaking azimuthal symmetry in magnetospheres caused currents to 
flow through the ionosphere, which regulate interchange motion [2]. In the 
laboratory, there are no field-aligned currents and perturbations induce ion-
inertial currents, which determine the global linear model structure. In this 
poster, the linear description of global interchange and entropy modes are 
presented for the CTX and LDX laboratory magnetospheres computed from the 
flux-tube averaged gyrofluid equations [3]. Additionally, the quasilinear 
particle and heat flux are calculated and show turbulent self-organization that 
drives profiles to become centrally-peaked [4]. 
!
1  NSF-DOE Plasma Sci Grants DE-FG02-00ER54585 and PHY-1201896.     

2  Lyon, Science, 288, 1987 (2000).   
3  Ricci, et al., Phys Plasmas, 13, 062102 (2006).   
4  Kesner, et al., Phys Plasmas, 18, 050703 (2011).  
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Two Laboratory Magnetospheres: 
Plasma Experiments without Field-Aligned Currents
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Flux-Tube Averaging Reveals Processes 
that Regulate Interchange Motion

Vasyliunas, “Mathematical Models of Magnetospheric Convection and Its Coupling to the Ionosphere,” in Particles 
and Fields in the Magnetosphere, edited by B.M. McCormac (D. Reidel, Norwell, MA, 1970), pp. 60–71.

Steady MHD Convection in Space Dynamic Drift-like Motion in Lab

Ionospheric Conductivity Integrated Plasma Dielectric

Ion Inertial Currents
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Planetary Magnetospheres

G. Haerendel, “Outstanding issues in understanding the dynamics of the inner plasma sheet and 
ring current during Storms and Substorms,” Advances in Space Research, 25, 2379 (2000).

Figure 4. High-latitude plasma circulation system at 
times of an active magnetospheric dynamo (e.g. 
during substorms).

Figure 3. Dynamo forces, auroral current system, 
and resulting convection under frictional control by 
the ionosphere, after Boström (1964).
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Measured Ionospheric Currents

Green, et al., “Comparison of large-scale Birkeland currents determined from Iridium and SuperDARN data,” 
Annales Geophysicae 24, 941 (2006).
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Measured Flute-Type Modes in CTX

0.128 0.130 0.132 0.134
 

-2

0

2

m
=

3

-5

0

5

m
=

2

Temporal Mode Functions

-5

0

5

m
=

1

  

Convective Structures are Dynamic
8 ms

m = 1

m = 2

m = 3

!60 !40 !20 0 20 40 60
!60

!40

!20

0

20

40

60
Measured m " 1 Mode

(ɸ ~ Stream function)

With Te >> Ti (CTX and LDX) modes (usually) propagate in electron drift direction
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Fast MHD Interchange in an Axisymmetric Magnetic Dipole

• Electrostatic, low β 

• V⊥ = E × B 

• Adiabatic  

➡ Flux-tube averaged 

• 2D: (φ, ψ) 

• Missing: Entropy and 
drift-interchange modes
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• Equatorial radius, L0 

• Flux, ψ0 = B0L02 (y ≡ ψ/ψ0) 

• Gyroradius, ρ* = Cs / ωciL0 << 1 

• Potential, MiCs2/e 

• Pressure, MiCs2 

• Time, 1/(ωci ρ*2)

Linearized dimensionless MHD dynamics 
Depends only upon ρ* and profiles, hn and hg
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Local MHD Interchange Modes

m = 4, γ = 0.34/ρ* m = 1, γ = 0.31/ρ* 

Example Eigenmodes: Unstable MHD Convection
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Adding magnetic drift physics uncovers 
Entropy and Drift-Interchange Modes 

• Near marginal stability, diamagnetic flows and magnetic drifts modify 
interchange dynamics in a significant and fundamental way… 

• Flute-type entropy modes become unstable unless η ~ 2/3 

• Density and pressure drift perturbations exist even for stationary profiles 
(i.e. hʹn ~ hʹg ~ 0) 

• Entropy and drift-interchange instabilities propagate toroidally 

• See… 

‣ Kesner, Phys Plasmas, 7, 3887 (2000) 

‣ Ricci, Rogers, Dorland, and Barnes, Phys Plasmas 13, 062102 (2006) 

‣ Kobayashi, Rogers, and Dorland, Phys Rev Lett, 105, 235004 (2010)
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Entropy & Drift-Interchange Modes
(For CTX and LDX with Te >> Ti)

ion-neutral  
damping

ωde flow

Collisionless heat flux due to 
Electron magnetic drift
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Local Entropy Drift-Interchange Modes

Interchange Stability (m⊥ = 1) Interchange Stability (m⊥ = 3)

ω ~ ωde

ω ~ -ωde

ω ~ ωde

ω ~ -ωde

m = 1 with ρ* = 1/25
Interchange ωp* > γωdInterchange ωp* > γωd

Entropy η > 2/3
Entropy η < 2/3

         “stationary”

stablestable
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Stationary Drift Waves in a Dipole with 
Warm Electrons

“Slow” and “fast” drift waves correspond to flux tubes with locally 
“cooler” or “warmer” electrons relative to average, N/Pe. 
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Profiles in CTX and LDX
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(ωr, γ) = (1.6, 2.5) 
ωr/2π = 3 kHz

(ωr, γ) = (6.5, 3.7) 
ωr/2π = 12 kHz

Example Drift-Interchange Eigenmodes
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η ~ 0.37 
(ωr, γ) = (0.01, 2.6) 
ωr/2π = 0.025 kHz

Example Entropy Mode Eigenmodes

η ~ 1.3 
(ωr, γ) = (5.1, 1.5) 
ωr/2π = 10 kHz

hgʹ = - 0.03
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η ~ 2, 4 
ρ* = 1/100

m ~ 40

Peak growth rates for entropy mode have short wavelengths
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Turbulent Intensity is Observed to Peak at Long 
Wavelengths (Inverse Mode-Mode Cascade)

Grierson, M. Worstell, and M. Mauel, Phys Plasmas 16, 055902 (2009). 
Boxer, et al., Nature Phys 6, 207 (2010).
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Gyrofluid Quasilinear Theory
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Figure 2: Plot of the quaslinear resonance functions in Eqs. 28 and 29, ={⌧(!
m

)}, for
weakly growing interchange modes as a function of the real mode frequency, !/!

d

. The
quasilinear di↵usion coe�cients are the summation, over all modes, of the product of the
mode intensity and the resonance functions. The blue curve is ⌧

n

; the red curve is ⌧
g

; and
the gold curve is the cross-di↵usion, ⌧

ng
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where G̃
m

= p̃
m

U� = p̃
m

when evaluated at y = 1.
The transport equations can be further simplified making a quaslinear approximation.

The fluctuating particle number, Ñ
m

, and pressure, p̃
m

, are expressed in terms of the
potential, �̃

m

, using Eqs. 21 and 22. The perturbed density and pressure are
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where ⌧
n

, ⌧
g

, and ⌧
ng

are frequency-dependent resonance functions with two resonances

for real !
m

, when !
m

= m!
d

⇣

� ±
q

�(� � 1)
⌘

, either slightly faster or slightly slower than
m!

d

. Fig. 2 shows the three resonances functions for weakly unstable interchange modes
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Quasilinear Theory Description of Particle and 
Pressure Pinches includes Cross-Gradient Flux
(=!

m

= 1) as a function of the mode’s real frequency. The lower resonance, !
m

⇠ 0.6m!
d

,
is more e↵ective at particle transport while the higher frequency resonance, !

m

⇠ 2.7m!
d

,
is more e↵ective at di↵usion of presseure.

Using these linear forms for the perturbed density and pressure, the quasilinear trans-
port equations are
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Interchange transport fluxes have cross-terms that depend upon the frequency spectrum
of the interchange turbulence. Peaked or hollow entropy density, @hGi/@y 6= 0, can drive
di↵usion in flux-tube particle number, and peaked or hallow density, @hNi/@y 6= 0, can
drive di↵usion in plasma pressure. The magnitude of the quasilinear fluxes depend upon
the frequency spectrum. For a uniform turbulence spectrum, extending beyond a few
times !

d

, the cross-di↵usion fluxes vanish.

9 Global Interchange Eigenmodes

Eqs. 18-20 define a normalized and linearized dynamical eiegnsytem with ! the eigenvalue
for each mode and with the global radial structures of the perturbed potentual, particle
number, and pressure, {�̃

m

(y), p̃
m

(y), Ñ
m

(y)}, the eigenvector.
Eqs. 18-20 are a generalized eigensystem, and, with x̃(y) ⌘ {�̃

m

(y), p̃
m

(y), Ñ
m

(y)},
we can form a set of linear simultaneous equations

!M · x = N · x ,

by using finite-di↵erence approximations to the radial derivatives. Since M is invertible,
this is a standard eigensystem with !x = M�1 · N · x.

Like previous models [17], we set boundary conditions on both the inner and outer
flux surfaces such that �̃

m

vanishes. The eigenmodes are determined by (i) the plasma
equilibrium profiles, h

n

(y) and h
g

(y), (ii) the plasma temperature and magnetic field
strength relative to the system size, ⇢⇤, and (iii) the radial size of the dipole-confined
plasma, y

min

 y  y
max

.
Fig. 3 shows example gobal eigenmodes representative of the CTX experiment when

the profiles, h
n

(y) and h
g

(y), are choosen to be stable with ⌘ ⇠ 2/3. In CTX, the electron
magnetic drift frequency at the peak of the temperature profile is approximately 7.8 kHz.
The finite-di↵erence form of Eqs. 18-20 are placed on a uniform grid of 100 grid-points
along the flux coordinate, y. The eigensystem has 300 numerical eigenmodes that are
orthogonal in x̃(y). In Fig. 3, the pressure profile is stable with !⇤

p

⇠ 1.6!
d

, or h0
g

⇠ �0.1.
Fig. 3 shows the plasma density and temperature profiles, and, also, the radial profile of
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Summary and Applications
• Global flux-tube averaged gryo-fluid description of flute-type instabilities describes drift-

interchange and entropy modes 

• Long wavelength eigenmodes and real frequencies resemble observations in CTX and 
LDX 

• Quasilinear theory describes up-gradient turbulent pinches 

• Linear theory can model local current-injection feedback (Roberts, Invited Talk, Wed 
morning) 

• Need to include gyro-kinetic drift-resonances, like Maslovsky, Levitt, and Mauel, Phys 
Rev Lett 90, 185001 (2003) and Beer and Hammett, Phys Plasmas 3, 4018 (1996)  

• Mode-mode and 2D interchange cascade may explain the discrepancy between 
observations dominated with low-m eigenmodes and linear high-m eigenmodes with 
large growth rates. 

• Flux-tube averaging makes possible “whole-plasma” nonlinear turbulence simulations.
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