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Abstract

The measured structures of electrostatic interchange modes in dipole-confined
plasma cause global mixing when driven by energetic trapped electrons, sonic
plasma, or warm electron pressure. Global circulation also appears in planetary
magnetospheres driven by solar wind, but differences exist in underlying
physics. Breaking azimuthal symmetry in magnetospheres caused currents to
flow through the 1onosphere, which regulate interchange motion [2]. In the
laboratory, there are no field-aligned currents and perturbations induce 1on-
inertial currents, which determine the global linear model structure. In this
poster, the linear description of global interchange and entropy modes are
presented for the CTX and LDX laboratory magnetospheres computed from the
flux-tube averaged gyrofluid equations [3]. Additionally, the quasilinear
particle and heat flux are calculated and show turbulent self-organization that
drives profiles to become centrally-peaked [4].

I NSF-DOE Plasma Sci Grants DE-FG02-00ER54585 and PHY-1201896.
2 Lyon, Science, 288, 1987 (2000).

3 Ricci, et al., Phys Plasmas, 13, 062102 (2006).

4 Kesner, et al., Phys Plasmas, 18, 050703 (2011).
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Two Laboratory Magnetospheres:
Plasma Experiments without Field-Aligned Currents
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Flux-Tube Averaging Reveals Processes
that Regulate Interchange Motion
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Vasyliunas, “Mathematical Models of Magnetospheric Convection and Its Coupling to the lonosphere,” in Particles
and Fields in the Magnetosphere, edited by B.M. McCormac (D. Reidel, Norwell, MA, 1970), pp. 60-71.
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Planetary Magnetospheres

Figure 3. Dynamo forces, auroral current system,  Figure 4. High-latitude plasma circulation system at
and resulting convection under frictional control by ~ times of an active magnetospheric dynamo (e.g.
the ionosphere, after Bostrom (1964). during substorms).

G. Haerendel, “Outstanding issues in understanding the dynamics of the inner plasma sheet and
ring current during Storms and Substorms,” Advances in Space Research, 25, 2379 (2000).
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Measured lonospheric Currents
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Fig. 7. Electric field vectors (rotated 90° counter clockwise) cal-
culated from SuperDARN data averaged over 03:30-04:30 UT, 1

Fig. 6. Birkeland currents, J, derived from the data in Fig. 4 November, 2001. The electric potential contours, DMSP and Oer-
according to Eq. (12) for 03:30-04:30 UT, 1 November, 2001. The sted tracks and the sunlight terminator are overlayed. The extremes
DMSP and Oersted tracks are reproduced while the thicker, grey in potential are located at the blue (-ve) and red (+ve) dots. The
solid line from 06:00 to 18:00 MLT indicates the sunlight terminator electric field vectors are bold at locations where radar returns were
boundary in the ionosphere. received.

Green, et al., “Comparison of large-scale Birkeland currents determined from Iridium and SuperDARN data,”
Annales Geophysicae 24, 941 (2006).
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Measured Flute-Type Modes in CTX
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With T, >> T; (CTX and LDX) modes (usually) propagate in electron drift direction



Fast MHD Interchange in an Axisymmetric Magnetic Dipole
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Linearized dimensionless MHD dynamics
Depends only upon p” and profiles, h, and hg
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Local MHD Interchange Modes
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Adding magnetic drift physics uncovers
Entropy and Drift-Interchange Modes

e Near marginal stability, diamagnetic flows and magnetic drifts modify
interchange dynamics in a significant and fundamental way...

o Flute-type entropy modes become unstable unless n ~ 2/3

o Density and pressure drift perturbations exist even for stationary profiles
(ie. h'n~hg~0)

¢ Entropy and drift-interchange instabilities propagate toroidally

* See...
» Kesner, Phys Plasmas, 7, 3887 (2000)
» Ricci, Rogers, Dorland, and Barnes, Phys Plasmas 13, 062102 (20006)
» Kobayashi, Rogers, and Dorland, Phys Rev Lett, 105, 235004 (2010)
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Entropy & Drift-Interchange Modes

(For CTX and LDX with Te >> T))
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Local Entropy Drift-Interchange Modes
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Stationary Drift Waves in a Dipole with
Warm Electrons

When h] ~ h’g ~ 0, then two stable drift waves and a damped convective cell.

Wy, = 1V with N ~ P, ~ 0
Wi = mwq (v + /(v = 1)) “fast” drift wave
Wi = mwg (v — /(v = 1)) “slow” drift wave

“Slow” and “fast” drift waves correspond to flux tubes with locally
“‘cooler” or “warmer” electrons relative to average, N/P.

When h’g ~ 0, then the “fast” drift mode becomes an unstable entropy mode
when b/, > 0.54m? p2 (i.e. n > 2/3) and the “slow” drift mode becomes unstable
whenever h! < —4.8m4 p? (i.e. n < 2/3) .
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Profiles in CTX and LDX
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CTX and LDX have similar low-frequency flute-type dynamics
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Particle Pinch in Gyrokinetic Simulations of Closed Field-Line Systems
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Growth Rate vs kpg
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Peak growth rates for entropy mode have short wavelengths
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Turbulent Intensity is Observed to Peak at Long
Wavelengths (Inverse Mode-Mode Cascade)

(a) Edge Floating Potential Fluctuations (b) Inner Interferometer Fluctuations
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Grierson, M. Worstell, and M. Mauel, Phys Plasmas 16, 055902 (2009).
Boxer, et al., Nature Phys 6, 207 (2010).
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Gyrofluid Quasilinear Theory

Quasilinear Resonance Functions for Interchange Transport

1.5+
10 r
T L
EO'Sf
T S T S
-4 -2 0 2 4 6 8 10
Re{w}

Figure 2: Plot of the quaslinear resonance functions in Eqs. 28 and 29, S{7(wy,)}, for
weakly growing interchange modes as a function of the real mode frequency, w/wy. The
quasilinear diffusion coefficients are the summation, over all modes, of the product of the
mode intensity and the resonance functions. The blue curve is 7,; the red curve is 7,; and
the gold curve is the cross-diffusion, 7,,.

Nm - m(i)m <Tn(wm)%];7> + Tng(wm)%?)
G = (7am) B = 70 2L )
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Quasilinear Theory Description of Particle and
Pressure Pinches includes Cross-Gradient Flux

Using these linear forms for the perturbed density and pressure, the quasilinear trans-
port equations are

X a% 2|, (%{Tn(wm>}%+%{fng(wm) %?) (28)
9G) D afag s PG o)
G DU CYCN) & S TEON) Lty PR

Interchange transport fluxes have cross-terms that depend upon the frequency spectrum
of the interchange turbulence. Peaked or hollow entropy density, 0(G)/dy # 0, can drive
diffusion in flux-tube particle number, and peaked or hallow density, 0(N)/dy # 0, can
drive diffusion in plasma pressure. The magnitude of the quasilinear fluxes depend upon
the frequency spectrum. For a uniform turbulence spectrum, extending beyond a few
times wy, the cross-diffusion fluxes vanish.

G = PU”
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Summary and Applications

Global flux-tube averaged gryo-fluid description of flute-type instabilities describes drift-
interchange and entropy modes

Long wavelength eigenmodes and real frequencies resemble observations in CTX and
LDX

Quasilinear theory describes up-gradient turbulent pinches

Linear theory can model local current-injection feedback (Roberts, Invited Talk, Wed
morning)

Need to include gyro-kinetic drift-resonances, like Maslovsky, Levitt, and Mauel, Phys
Rev Lett 90, 185001 (2003) and Beer and Hammett, Phys Plasmas 3, 4018 (1996)

Mode-mode and 2D interchange cascade may explain the discrepancy between
observations dominated with low-m eigenmodes and linear high-m eigenmodes with
large growth rates.

Flux-tube averaging makes possible “whole-plasma” nonlinear turbulence simulations.
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