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Abstract
In a laboratory magnetosphere, plasma is confined by a strong dipole magnet, 
and complex nonlinear processes can be studied and controlled in near steady-
state conditions. Because a dipole’s magnetic field resemble the inner regions 
of planetary magnetospheres, these laboratory observations are linked to space 
plasma physics. Unlike many other other toroidal configurations, interchange 
and entropy modes dominate plasma dynamics, and turbulence causes self-
organization and centrally-peaked profiles as the plasma approaches a state of 
minimum entropy production. 

We report progress in understanding and controlling turbulent mixing through a 
combination of laboratory investigation, modeling, and simulation.  Topics 
discussed:  

(i) Extending the global extent of local regulation of the interchange and 
entropy mode turbulence through current injection,  

(ii) Measurement and interpretation of the statistical properties of 
stationary turbulence, and  

(iii) Advancements in the nonlinear simulation of turbulence control in a 
dipole plasma torus.
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Two Laboratory Magnetospheres: 
Plasma Experiments without Field-Aligned Currents
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Bergmann
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Roberts
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High Beta Levitation & Turbulent Pinch

CTX: 
Polar Imaging, 

Current Injection. 
Rotation

Ryan

Max
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Toroidal Confinement with Closed-Field Lines: 
Interchange and Entropy Modes

• Axisymmetric magnetically dipole guarantees omnigeneous particle drifts. 

• The only high-β toroidal magnetic configuration that satisfies the Palumbo 
condition: the divergence of the perpendicular plasma current vanishes.  

• Absence of parallel currents in a dipole-confined plasma is significant: many 
tokamak instabilities are not found in a dipole plasma torus, e.g. kink, 
tearing, ballooning, and drift modes. 

• Instead, interchange and entropy modes dominate plasma dynamics, and 
particle and power source profiles determine the level of turbulence. 

• Turbulent transport causes centrally-peaked profiles and self-organization, 
as the plasma approaches a state of minimum entropy production.  

• Axisymmetric interchange/entropy mode turbulence exhibit 2D inverse 
cascade at long wavelengths. 
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Closed Field-Line Plasma Dynamics
• How do we know dynamics is “interchange” dominated? 

➡ Direct laboratory measurement of δΦ, in all cases, but 
when ωbe >> ωd 

• What are the consequences of “interchange” dynamics? 
➡ 2D inverse cascade couples fluctuations to largest scales 
➡ “Weak gradients” with ω* ~ ωd 
➡ Profile consistency, turbulent pinch, … 
➡ Self-organization toward state of minimum entropy 

production, η ~ 2/3
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Turbulent Intensity is Observed to Peak at Long 
Wavelengths (Inverse Mode-Mode Cascade)

Grierson, M. Worstell, and M. Mauel, Phys Plasmas 16, 055902 (2009). 
Boxer, et al., Nature Phys 6, 207 (2010).
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Measured Interchange Modes in Dipole Torus
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Induced Field-Aligned Currents in 
Magnetospheres

G. Haerendel, “Outstanding issues in understanding the dynamics of the inner plasma sheet …,” Advances in Space Research, 25, 2379 (2000). 
Green, et al., “Comparison of large-scale Birkeland currents determined from Iridium and SuperDARN data,” Annales Geophysicae 24, 941 (2006).

Figure 3. Dynamo forces, auroral current system, 
and resulting convection under frictional control by 
the ionosphere, after Boström (1964).
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Probe-Injected Currents in Laboratory

Roberts, et al., “Local regulation of interchange turbulence in a dipole-confined plasma torus using current-
collection,” Physics of Plasmas, 22, 055702 (2015).
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Interchange Motion is Regulated by 
Ionosphere, or External Circuits, or …

Vasyliunas, “Mathematical Models of Magnetospheric Convection and Its Coupling to the Ionosphere,” in Particles 
and Fields in the Magnetosphere, edited by B.M. McCormac (D. Reidel, Norwell, MA, 1970), pp. 60–71.

Steady MHD Convection in Space Dynamic Drift-like Motion in Lab

Ionospheric Conductivity Integrated Plasma Dielectric

Ion Inertial Currents
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Entropy & Drift-Interchange Modes
(For CTX and LDX with Te >> Ti)

ion-neutral  
damping

ωde flow

Collisionless heat flux due to 
Electron magnetic drift

Linear Braginskii interchange motion 
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Gradient Drive for Turbulent Transport: Comparing to the Familiar Tokamak…
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(a) Dipole Interchange-Entropy Modes (b) Tokamak ITG-TEM Modes
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X. Garbet, Comptes Rendus Physique 7, 573 (2006)
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Quasilinear Flux using 2D Bounce-Averaged Fluid Equations with 
Drift-Kinetic Closure

Kobayashi, Rogers, and Dorland, Phys Rev Lett 105, 235004 (2010)

(a) Particle Flux (b) Temperature Flux (c) Entropy (PδVγ) Flux
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Interchange-Entropy Mode Dispersion 
Agrees with Observations
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Turbulence During Pellet Injection
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where p = n0Te

is the equilibrium electron pressure and @�̃/@' is proportional to the radial599

component of the fluctuating Ẽ ⇥ B velocity. Eq. 1 is derived by taking the flux-tube600

averaged of the gyrofluid equations in (A4) and (A5) of Ref. 37, or Eq. 21 of Ref. 50, for601

dipole magnetic geometry and when the electrons within any flux-tube can be assumed to602

be Maxwellian and isotropic. Eq. 1 shows that pressure perturbations for flute-type modes603

are driven by two terms: the compressibility term from ideal MHD and the perturbed604

collisionless curvature heat flux due to the magnetic drift of electrons. Both of these terms605

depend on magnetic flux-tube geometry.606
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Turbulence During Pellet Injection

than the surrounding plasma. These perturbations will rotate toroidally faster or slower659

than the unperturbed plasma, leading to entropy modes. For the case when h0
p

and h0
n

are660

both zero, then ⌘ = 2/3, and stable entropy waves exists with ! = �±
p
� (� � 1), analogous661

to the entropy waves discussed by Ware30 but specialized to plasma with T
e

� T
i

.662

The last example describes the dispersion relation for the flute-type entropy modes rele-663

vant to the experiments reported here: when h0
p

= 0 and h0
n

= (� � 1 � ⌘)/(1 + ⌘). MHD664

interchange modes are stable while entropy modes are unstable whenever ⌘ 6= (��1) = 2/3.665

In the limit ⇢⇤
s

m? ! 0 and ⌘ ⇠ 2/3, Eqs. 4-6 describe unstable entropy modes with complex666

frequency given by667
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(9)668

Eq. 9 shows the linear growth rates of entropy modes are slower than hydrodynamic inter-669

change modes by about 3
p
⇢⇤
s

, and the magnitude of the rate of toroidal rotation is about670

0.57 times the rate of linear growth.671

Fig. 10(a) shows the linear dispersion characteristics for these entropy modes for a dipole-672

confined plasma torus having a pressure profile marginally stable to MHD interchange,673

h0
p

= 0. When ⌘ > 2/3, entropy modes rotate in the electron drift direction. When ⌘ < 2/3,674

the toroidal phase velocity reverses. When Eqs. 4-6 are solved for larger (h0
p

> 0) or smaller675

(h0
p

< 0) pressure gradients, the electron’s curvature heat flux also imparts a toroidal phase676

velocity to unstable interchange modes.677

Fig. 10 also presents a cartoon illustrating the cause for the toroidal phase-velocity re-678

versal in terms of the curvature heat flux. When ⌘ > 2/3, shown in Fig. 10(b), the core679

plasma is warmer and less dense than would be the case when h0
p

and h0
n

are both zero.680

When the perturbed electrostatic potential causes radial flux-tube mixing, the perturbed681

pressure is small because h0
p

= 0. However, even in the absence of the Ẽ⇥B compressibility682

term, the electron’s curvature heat flux always causes heat to flow toroidally in the electron683

drift direction from regions of high temperature to lower temperature. When ⌘ > 2/3, the684

perturbed pressure creates perturbed fields that cause an outward motion of warm core685

plasma. Instability thus results only when the entropy mode rotates in the electron drift686

direction. When ⌘ < 2/3, shown in Fig. 10(c), the core plasma is cooler and more dense, and687

outward flux-tube convection causes this plasma to further cool and expand. In this case,688

the inward moving plasma is heated and compressed, and the toroidal phase of the pressure689

31

15



Entropy Modes Reverse with η (Pellet Injection)
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Entropy Modes Reverse with Pellet Injection
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Global Entropy Eigenmodes
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Global Entropy Eigenmodes
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Summary and Applications
• Global flux-tube averaged gryo-fluid description of flute-type instabilities describes drift-

interchange and entropy modes 

• Long wavelength eigenmodes and real frequencies like observations in CTX and LDX 

• Quasilinear theory describes up-gradient turbulent pinches 

• Linear theory can model local current-injection feedback (Roberts, PoP 2015) 

• Li pellet injection reduces η → 0 and reverses toroidal propagation of fluctuations 

• Need to include bounce-averaged drift-resonances, like Maslovsky, Levitt, and Mauel, 
Phys Rev Lett 90, 185001 (2003) Beer and Hammett, Phys Plasmas 3, 4018 (1996)  

• Mode-mode and 2D interchange cascade may explain the discrepancy between 
observations dominated with low-m eigenmodes and linear high-m eigenmodes with 
large growth rates. 

• Flux-tube averaging makes possible “whole-plasma” nonlinear turbulence simulations.
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Single-Point Regulation of Interchange 
Turbulence with Current-Collection Feedback

Roberts, et al., “Local regulation of interchange turbulence in a dipole-confined plasma torus using current-
collection,” Physics of Plasmas, 22, 055702 (2015).
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Local Regulation of Interchange Turbulence with 
Current-Collection Feedback 

(Roberts, Phys. Plasmas, 2015)

Measurement 

Linear Theory
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(a) Conventional Fusion Experiment (Gain = 10)  (b) Dipole Fusion Experiment (Gain = 10) 
Pfus = 39 MW   Wp = 0.06 GJ   Wb = 1.6 GJ   Id = 25 MA Pfus = 410 MW   Wp = 1.1 GJ   Wb = 51 GJ   It = 164 MA 

Toroidal and Poloidal Magnets

Small Levitated Magnet

Plasma Volume = 837 m3 Plasma Volume = 42,000 m3

Application: Toroidal Confinement without Bt may Speed Fusion 
Development using much smaller Superconducting Coils 

(QDT ~ 10 Magnet Systems Compared at Same Scale) 
Kesner, et al., Nuclear Fusion 44, 193 (2004)

30-fold size/energy reduction (!)
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