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Abstract

In a laboratory magnetosphere, plasma 1s confined by a strong dipole magnet,
and complex nonlinear processes can be studied and controlled in near steady-
state conditions. Because a dipole’s magnetic field resemble the inner regions
of planetary magnetospheres, these laboratory observations are linked to space
plasma physics. Unlike many other other toroidal configurations, interchange
and entropy modes dominate plasma dynamics, and turbulence causes self-
organization and centrally-peaked profiles as the plasma approaches a state of
minimum entropy production.

We report progress in understanding and controlling turbulent mixing through a
combination of laboratory investigation, modeling, and simulation. Topics
discussed:

(1) Extending the global extent of local regulation of the interchange and
entropy mode turbulence through current injection,

(11) Measurement and interpretation of the statistical properties of
stationary turbulence, and

(111) Advancements in the nonlinear simulation of turbulence control in a
dipole plasma torus.



Two Laboratory Magnetospheres:
Plasma Experiments without Field-Aligned Currents

CTX:
Polar Imaging,
s \ Current Injection.
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Toroidal Confinement with Closed-Field Lines:
Interchange and Entropy Modes

o Axisymmetric magnetically dipole guarantees omnigeneous particle drifts.

e The only high-f toroidal magnetic configuration that satisfies the Palumbo
condition: the divergence of the perpendicular plasma current vanishes.

o Absence of parallel currents in a dipole-confined plasma is significant. many
tokamak instabilities are not found in a dipole plasma torus, e.g. kink,
tearing, ballooning, and drift modes.

¢ |Instead, interchange and entropy modes dominate plasma dynamics, and
particle and power source profiles determine the level of turbulence.

o Turbulent transport causes centrally-peaked profiles and self-organization,
as the plasma approaches a state of minimum entropy production.

* Axisymmetric interchange/entropy mode turbulence exhibit 2D inverse
cascade at long wavelengths.



Closed Field-Line Plasma Dynamics

* How do we know dynamics is “interchange” dominated?

= Direct laboratory measurement of 0@, in all cases, but
when Wee>> Wq

e What are the consequences of “interchange” dynamics?
= 2D inverse cascade couples fluctuations to largest scales
= “Weak gradients” with w*~ wq
= Profile consistency, turbulent pinch, ...

= Self-organization toward state of minimum entropy
production, n ~ 2/3



Turbulent Intensity is Observed to Peak at Long
Wavelengths (Inverse Mode-Mode Cascade)

(a) Edge Floating Potential Fluctuations (b) Inner Interferometer Fluctuations
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Grierson, M. Worstell, and M. Mauel, Phys Plasmas 16, 055902 (2009).
Boxer, et al., Nature Phys 6, 207 (2010).
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Measured Interchange Modes in Dipole Torus
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With Te >> T; (CTX and LDX) modes (usually) propagate in electron drift direction
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Induced Field-Aligned Currents in
Magnetospheres
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G. Haerendel, “Outstanding issues in understanding the dynamics of the inner plasma sheet ...,” Advances in Space Research, 25, 2379 (2000).
Green, et al., “Comparison of large-scale Birkeland currents determined from Iridium and SuperDARN data,” Annales Geophysicae 24, 941 (2006).
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Probe-Injected Currents in Laboratory

Radially Adjustable Probes

Electrode A

Polar Imaging Array

Dipole Magnet Housing

Roberts, et al., “Local regulation of interchange turbulence in a dipole-confined plasma torus using current-
collection,” Physics of Plasmas, 22, 055702 (2015).
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Interchange Motion is Regulated by
lonosphere, or External Circuits, or ...
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Vasyliunas, “Mathematical Models of Magnetospheric Convection and Its Coupling to the lonosphere,” in Particles
and Fields in the Magnetosphere, edited by B.M. McCormac (D. Reidel, Norwell, MA, 1970), pp. 60-71.
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Entropy & Drift-Interchange Modes

(For CTX and LDX with Te >> T))
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Gradient Drive for Turbulent Transport: Comparing to the Familiar Tokamak...

(a) Dipole Interchange-Entropy Modes
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Quasilinear Flux using 2D Bounce-Averaged Fluid Equations with
Drift-Kinetic Closure

(a) Particle Flux (b) Temperature Flux (c) Entropy (PoVY) Flux
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Kobayashi, Rogers, and Dorland, Phys Rev Lett 105, 235004 (2010)
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Interchange-Entropy Mode Dispersion
Agrees with Observations

(a) Entropy Mode Dispersion: AW, ~ A(PV5?) ~0  (b) “Warm Core” with Electron Drift (c) “Cool Core” Reversed Rotation
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Entropy Modes Reverse with n (Pellet Injection)

(a) Line Density and Photodiode Array
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Entropy Modes Reverse with Pellet Injection

(a) Cross Phase Before Pellet

Frequency (Hz)

10000 —

4000

200021

8000

6000

w/21 ~ m 700 Hz |

Ol(sat) Cross-Phase

o® Cross-Phase

0 50 100 150 200 250
Cross Phase <a> (Degree)

n>2/3
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Global Entropy Eigenmodes
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Mode Toroidal Rotation (t/mwg)
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Mode Growth Rate (y/mwq)
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Summary and Applications

Global flux-tube averaged gryo-fluid description of flute-type instabilities describes drift-
interchange and entropy modes

Long wavelength eigenmodes and real frequencies like observations in CTX and LDX
¢ Quasilinear theory describes up-gradient turbulent pinches

o Linear theory can model local current-injection feedback (Roberts, PoP 2015)

o Lipelletinjection reduces n — 0 and reverses toroidal propagation of fluctuations

Need to include bounce-averaged drift-resonances, like Maslovsky, Levitt, and Mauel,
Phys Rev Lett 90, 185001 (2003) Beer and Hammett, Phys Plasmas 3, 4018 (1996)

Mode-mode and 2D interchange cascade may explain the discrepancy between
observations dominated with low-m eigenmodes and linear high-m eigenmodes with
large growth rates.

Flux-tube averaging makes possible “whole-plasma” nonlinear turbulence simulations.
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Single-Point Regulation of Interchange
Turbulence with Current-Collection Feedback
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Roberts, et al., “Local regulation of interchange turbulence in a dipole-confined plasma torus using current-
collection,” Physics of Plasmas, 22, 055702 (2015).
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Local Regulation of Interchange Turbulence with

Current-Collection Feedback
(Roberts, Phys. Plasmas, 2015)
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Application: Toroidal Confinement without Bt may Speed Fusion

Development using much smaller Superconducting Coils
(Qot ~ 10 Magnet Systems Compared at Same Scale)

Kesner, et al., Nuclear Fusion 44, 193 (2004)

Toroidal and Poloidal Magnets

Small Levitated Magnet

Plasma Volume = 837 m3 Plasma Volume = 42,000 m3
Pus=410 MW Wp=11GJ Wp=51GJ k=164 MA Pius=39MW W, =0.06GJ Wp=16GJ lg=25MA
(a) Conventional Fusion Experiment (Gain = 10) (b) Dipole Fusion Experiment (Gain = 10)

30-fold size/energy reduction (!)
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