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Measurements of the radial, azimuthal, and field-aligned mode structures of interchange instabilities
excited by energetic electrons confined by a magnetic dipole are presented. The mode structures are
determined using a correlation analysis of movable high-impedance floating potential probes located
at various positions within the plasma. The hot electron population, produced by electron cyclotron
resonance heating, becomes unstable to hot electron intercttdBgeinstabilities which saturate
nonlinearly with a complex and time-varying frequency spectrum. Although the mode frequencies
vary dramatically, it is found that the mode structures do not evolve significantly in time, being
determined by the azimuthal mode numbers. These measurements are compared to a self-consistent
nonlinear particle simulation of the HEI mode in dipole geometry. Upon appropriate adjustment of
the boundary conditions, the simulation reproduces the measured radial and azimuthal structures at
large amplitudes. €2002 American Institute of Physic§DOI: 10.1063/1.1475999

I. INTRODUCTION sure gradients and by centrifugal forces caused by
co-rotation'®> Recently, the Galileo spacecraft measured a
Interchange, or *“fluting,” instabilities in magnetized buoyant, inward-moving flux tube within Jupiter’s lo plasma
plasma are among the best known in plasma physitk)-  torus and also fluctuations in the bulk ion flow and density
terchange motion mixes plasma contained by magnetic flughat provide evidence for unstable interchange motion of
tubes while minimizing changes in the magnetic field. Instadipole-confined plasma in spat®&:®
bility results when the mixing reduces the plasma’s potential  Although interchange instability is an important process
or kinetic energy. This occurs for various reasons in the labofor magnetized plasma, measurement of its global structure
ratory, the ionosphere, and in planetary magntospheres. Ifas been possible in only a few cases. Probably, the most
laboratory plasmas, interchange instabilities are possiblgetailed images of interchange instability have been made
when the pressure gradient has components parallel to theom radio-wave scattering from thie layer and the iono-
magnetic curvature. Experiments have shown them to be staphere(See Kelly's monograpif) These spectacular images
bilized by reversing the direction of Curvatlﬁ'gby Creating show towering “p|umes" created by rising interchange
“average good curvature” either on toroidal flux surfates  “pubbles.” Nonlinear simulation of the gravitational inter-
on the plasma-vacuum boundérgnd by creating local re- change has reproduced this plume structiteaboratory ob-
gions with average magnetic shéan the ionosphere, grav- - servations of the nonlinear structures of interchange instabil-
Ity drives interchange instability, and its nonlinear eVO'Utionity have also been made using toroidal devices that have
plays an essential role in the intense wave dynamics of theegions without magnetic shear. The electrostatic potential
night-time equatorialF region!® Interchange motion of has been mapped using movable floating potential probes in
plasma confined by the dipole-like field of planetary mag-a toroidal octopol®?® and in current-free discharges created
netospheres can be driven or “spontaneo(i’., unstablg  in a purely toroidal magnetic fiefth:?> These electrostatic
and both have been extensively studied theoreticallf.  potential structures sometimes form closed equipotential
Because the magnetic field Strength of a d|p0|e decreas%ntours that appear as SlOle propagating and coherent
rapidly with radius,B ~R™°, interchange motion in a di- ExB vortices, or “convective cells.” They decay by viscous
pole is associated with significant plasma compression. Preggrces if not continuously driven. For plasma formed within
sure gradients can drive interchange instability in a dipoley purely toroidal magnetic field, the electrostatic potential
only when the equatorial plasma pressure profile varies morgyglves into a highly nonlinear state dominated by a rotating
rapidly than p~R™*” (where y~5/3 is the appropriate dipole vortex superimposed on equilibrium poloidal flows
MHD ratio of specific heat Observations show the Earth’s ihat have been reproduced by self-consistent, nonlinear
magnetosphere to be interchange stable, but steady plasgg,ylation2®
circulation and impulsive radial-diffusidfiresults from elec- When interchange instabilities are excited by magneti-
tric fields created by the solar wind, and these can be coneyly trapped energetic electrons, the modes have a real fre-
sidered examples of driven interchange motion. In Jupiter'ﬁuency proportional to the fa8tB drift of the hot electrons,
magnetosphere, interchange instability is influenced by Preés;,. When the rotation frequency is less than the ion-

cyclotron frequency, the instability is called the low-
dElectronic mail: bl187@columbia.edu frequency hot electron interchangéHEI) instability*
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Higher frequency modes have been described by Beskd ~ amplitudes, nonlinear interactions overwhelm the dissipation
both the low-frequency and high-frequency hot electron incausing frequency sweeping and new modes to be excited.
terchange mode have been identified experimerf@if? The strong resonant interactions between collisionless
Hot electron plasmas can remain stable even when pressudgole-confined energetic electrons and rotating interchange
gradients exceed the usual MHD condition of flute instabilitymodes are particularly easy to apply the formulation used by
because the real frequency of the mode generates stabiliziferk>° This is because the wave-particle dynamics is one-
ion polarization currents. Although the global mode structuredimensional, and the two-dimensional phase-space is directly
was not measured directly in these previous studies, Spongpservable.(The guiding-center Hamiltonian phase-space
and co-worker® showed that when realistic profiles are usedcoordinates for drift motion in an axisymmetric dipole are
during computation of the linear, radial eigenmode, then théhe angle of symmetryp, and the magnetic fluxy<1/R.)
predicted onset for instability was consistent with experi-Berk’s explanation for the rising frequency of the inter-
mental observations. change instability seen in the experiment corresponds to the

In this paper, we present the first measurements of thinward propagation of “holes” in the phase-space of the en-
mode structure of the electrostatic, low-frequency inter-ergetic electrons. These holes are seen in the simulation and
change instability driven by energetic electrons trapped in aappear in the laboratory as deep modulations of energetic
axisymmetric dipole magnetic field. The modes rotate rapelectron current collected with gridded proB3@dt is inter-
idly in the drift direction of the trapped electrons, and theyesting that these resonant phase-space holes are much more
have a complex and time-varying frequency spectrum. Sevdynamic and radially complex than the global potential
eral modes co-exist. Experimentally, these modes are distirstructure of the interchange instability that creates them.
guished from each other using frequency-domain correlatiohVhen the electrostatic interchange mode is driven by ener-
between several movable probes and a fixed reference protgetic electrons, it is the electron’s resonant phase-space that
The measurements show the flute-modes have a radial strueentains strongE xB vortices®—not the mass flow. Since
ture that depends only on the azimuthal mode numiver, there is a distribution of electron energy and, consequently,
extends across the entire dipole-confined plasma, and do@$ electron drift velocity,wy, the location and size of holes
not evolve in time with the frequency. In this paper, we also(or vorticeg are energy dependent. Furthermore, the ener-
compare these measurements to a fully self-consistent, nogetic electrons cause the instability to rotate quickly in the
linear simulation that has been described elsewffefine  ion’s frame of reference. The plasma mass density does not
simulation reproduces both the large-amplitude mode strucsirculate fully around the equipotential contouias seen, for
ture of the interchange modes and their complex, timeexample, in the laboratory experiment with a purely toroidal
varying frequency spectra. field). Instead, the ion density is radially “stirred” as the

In previous papers, we described the collisionless parinterchange mode structure rotates by.
ticle transport induced by the hot electron interchange The outline of this paper is as follows. Section Il de-
instability>*~3® For charged particles deeply trapped by ascribes the Collisionless Terrella Experimé@frX) used to
strong dipole magnetic field, the frequencies of the thre@bserve the hot electron interchange instability. Here, we
characteristic periodic motions, cyclotrons,, bouncew,, also describe the floating potential probe measurements and
and magnetic driftwy, are well-separated, and the corre- the frequency-domain correlation method used to reconstruct
sponding actions, the magnetic momeat,the longitudinal  the radial, azimuthal, and field-aligned mode structure. Sec-
adiabatic invariant), and the magnetic fluxj, are approxi- tion Ill summarizes the observations of the hot electron in-
mately constant. Low-frequency interchange fluctuationgerchange mode at large amplitude. The lowest azimuthal
break the third adiabatic invariant, through resonant inter- modes are most readily detected, and rotating modes with
action, o~mwy, with the rotating potential structures. m=1, 2, and 3 are described. In each case, the mode is flute-
Rapid global transport only occurs when the interchangdike and rotates rigidly. Section IV describes the self-
mode spectrum causes resonance ovérapd this has been consistent nonlinear simulation used to interpret the mea-
demonstrated in the laboratoty*® Since w<w,<w,, ©  surements. Both the model equations and the numerical
and J remain constant even when the radial transport ignethod are briefly described. The simulation reproduces
chaotic®* In our simulations, invariance dfu, J) serves as measurements of the radial mode structure, overall ampli-
the “equation of state” for modeling adiabatic, collisionless tude, and the observed frequency sweeping. Finally, we sum-
heating or cooling during the radial flute motion of the ener-marize our results and describe some on-going efforts that
getic electrons induced by electrostatic fluctuations in awill further investigate interchange motion in dipole mag-
dipole. netic fields.

The agreement between the measured mode structure
and the predictions from the self-consistent description of the
growth of the interchange instability also adds support for 3, expERIMENTAL METHODS
nonlinear explanation for the observed rising frequency, or
“chirps,” of the electrostatic interchange instability in a di- The measurements reported here were made using the
pole. Berk and co-worke?$®’ showed that nonlinear phase- Collisionless Terrella Experiment, CT¥.The CTX device
space structuregcalled “clumps” and “holes”) will form consists of an ultrahigh vacuum chamber, 140 cm in diam-
spontaneously for a resonant wave-particle instability helceter, and a mechanically supported dipole electromagnet. A
near marginal stability by nonresonant dissipation. At largestainless steel enclosure electrically grounded to the chamber
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Multiple TABLE |. Key parameters used to define the dimensions of the electrostatic
Probes dipole simulation.

Dimension Meaning Typical value
Lo Hot electron location 27 cm
Bg Equatorial field strength 875 G
o Magnetic flux,BoL2 6x 10° Maxwells
Wave Power Mo Characteristic dipole 1.7x10" Gecen?
magnetic momeniBoL3
Lo Characteristic hot electron 9x 10 12 erg/G
Cyclotron magnetic moment
Resonance 0By Hot electron energy 810 ° erg (5 keV)
®dho Precession frequency, 27X 0.4 Mrad/s
(3c/e)moBo /1o
il g Time (angulay 0.4 pusirad
No Plasma density 1010° cm3
- 1m - No Particle number per unit flux, 2.8x10° Maxwell*
NodVo=0.91neLo /Bo
FIG. 1. Schematic of the CTX vacuum chamber, depicting the five movingLa/A3o Normalized Debye length 2:610°

floating potential probes used to measure the electrostatic fluctuations.  wcjo/wgne  Normalized ion cyclotron frequency 3.5

wall surrounds the magnet, which has a maximum magnetic
field strength at the face of the terrella of 15 kG and de-~1x10"° Torr, and this is the value used for the experi-
creases to 50 G at the vessel wall. ments reported here. When the microwave power is switched
The electrostatic fluctuations are measured by five highff, the trapped electrons persist while the density of colder
impedance floating potential probes located at various posklectrons decays. This creates a so-called “afterglow” that
tions in the vacuum chamber. Each probe tip consists of a lasts for several tens of milliseconds.
mm stainless steel wire connected to a 10D rlesistor and Parameters characterizing the plasma studied here are
50 ) coaxial cable contained within a ceramic tube. Thesummarized in Table I. An energy of 5 keV is used to char-
fluctuating signals from the probe are amplified with acterize the energetic electron distribution even though these
impedance-matched wide-bandwidth amplifiers and digitize@lectrons have a non-Maxwellian distribution. The plasma
with high-speed, 8-bit digitizers. These probes can be repoand energetic electron densities are maximum at 27 cm, and
sitioned radially to examine either potential fluctuations atthe plasma density is estimated to be roughly 10% to 20% of
different positions on the same field line or fluctuations onthe cutoff density, or approximatelyx110'® cm™3. Within
different field lines separated radially or separated azimuththe plasma, the neutral density is significantly reduced from
ally by 90° or 180°. A schematic of the experiment showingthe value outside the plasma; nevertheless, for these low-
a representative probe arrangement is shown in Fig. 1. density plasmas, collisions with neutrals dominate over
Hot electron plasma is created by applying a microwavecharged-particle collisions for the energetic electrons. For 5
heating pulse lasting from 0.5 to several seconds. The poweeV trapped electrons, the magnetic drift frequency is
source is a continuous wave magnetron with a power outpub,/27=3.7x10° s %, and we estimatey7.,=100. Also,
of 1.0 kW at a frequency of 2.45 GHz. The microwave pulsefor these particles, the normalized gyroradiugp/iR,~0.01;
ionizes hydrogen from a short gas puff and heats magnetiherefore, the trapped electrons are adiabatic and exhibit
cally trapped electrons at the cyclotron resonance. The funwell-separated cyclotron, bounce and drift frequencies,
damental microwave cyclotron resonance is a surface, apoy/w,~ p/Ry.
proximately spherical, that is defined By=875 G and that _ _ .
intersects all of the field-lines of theBgipoIe that cross theA' Observation of HEI instability
equator with radiusR=R,=27 cm. Electrons trapped on In the presence of an intense hot electron population,
any of these field lines can absorb power from the micro-drift-resonant @~ wq) fluctuations are observed, both dur-
waves, but those electrons located on field lines with anng and after the microwave heating pulse. Some character-
equatorial radiufR~R, have a resonance at the field mini- istics of the fluctuations in these two time periods are differ-
mum and are heated most strongly. A fraction of these beent. With the heating on, the fluctuations appear as repetitive
come deeply trapped and energdgaad with anisotropic ve- short bursts, 300-50@s, while during the afterglow they
locity, uB>wyJ), and we refer to these electrons as anmay last as long as several ms. In addition, the afterglow
“artificial radiation belt.” Bremsstrahlung radiation charac- fluctuations have a higher frequency, with coherent modes
terizes the energetic electrons. As seen in other hot-electraising in time up to 20 MHz. During the heating regime, the
microwave discharge®,the energetic electrons have a non- fluctuations are generally observed to h&we5 MHz and
thermal, power-law, energy distribution with energies from ahave a more dynamic, rapidly changing spectral content. In
few keV and extending to more than 40 k&\The intensity  both intervals, the frequency spectrum is complex and time-
of the energetic electron population depends on the strengtrarying, exhibiting rising tones in time.
of the hydrogen gas puff. We find the energetic electron den-  Figure 2 shows the floating potential fluctuations on
sity and energy is maximized with a hydrogen pressure ofarious relative time scales. The first figure shows a long
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parallel velocity to strike the probe. In contrast, the probe
inserted at the equator can be inserted only to approximately
R=45 cm.

Since the magnetic field line geometry is known, the
probe positions can be expressed with a geometric labeling
of the magnetic coordinates in analogy with Mcllwi&The
radial coordinate for a field line is its equatorial distanRe,
Distance along a field line is labeled Byand the azimuthal
coordinate isp. The measured probe position is mapped to

Heating————

Floating Potential (AU)
(]

0 Relatizve Timea(msec) 4 s its equivalent magnetic coordinateR,(p,s), by numerical
(b) computation. Because the plasma pressure is low and be-
& cause most of the plasma volume is sufficiently far from the
gJ\/\/\/\/\/\/\/\/\/\/ dipole electromagnet, the field lines follow approximately

the trajectories from a point dipole in vacuum. The CTX
\/\/\/\/\/\/\/\/\/\/\ dipole moment isMo=B,R3=1.7x10’ Gcn?, and an ap-
proximate relation exists betweerR,(p,s) and the usual

magnetic coordinates for a point dipole&;,¢,x), defined by

Probe 1

° 2 4Time (psesc) ® " B=V X Vy=Vy, wherey is the magnetic scalar potential.
(©) —> [ AD This relationship is simplyR, ¢,s)~(Mq/#,¢,[dx/B).
~ Measurement of the mode structure is complicated by
3 \/\/\/\L/\/\/\/\ the simultaneous presence of several modes, but it is simpli-
o

fied because the phase of the potential is constant along the
field line. The quantities to be measured are expressed in
\/\/\/\/\/\/\/ terms of a modal prescription for the voltage measured by a

probe located atR, ¢,S),

Probe 1

0 2 4 6 8 10
Time (usec)

D(R,p,5)=2 R{®, (R

FIG. 2. Floating potential probe signals of the drift-resonant instability on
different time scaleqa) A long time scale shows an instability burst during
heating and a saturated mode during the afterglow. On a faster time scale, xexgi(me+kjs+kgR— o)}, (1)
(b) and(c), show the nonsinusoidal wave forms from two spatially separated

high-impedance probes that illustrate the phase difference between probegyheren is the mode index, ankh , kR’ andwn may be slow
functions of time. The amplitudep, , changes slowly in
time, but we find it does not change in spatial structure. We

time scale, and instabilities are present both during heatingliso find thd®| does not change significantly wigover the

and during the afterglow. The mode amplitude typically saturegion accessible with the probes. These observations justify

rates at a level between 100-200 V. On a faster time scaléhe modal prescriptioa posteriori

the fluctuations are seen to be nonsinusoidal and slowly \When the digitized signals from two probes are Fourier

change in time. This change represents the presence of mutansformed, the transform of the correlation between two

tiple azimuthal modes with frequencies that evolve at differ-probes,C(1,2), is expressed as the product of one probe

ent rates. When the same fluctuations are observed by twsignal with the complex conjugate of the second. In terms of

probes that are azimuthally separated by 90°, the phase difne modal prescription, this correlation is

ference indicates a low-order mode structure that rotates in

the direction of the electroRB drift. Crm(1, =P, (R P (R2)

Xexgi(mAe+kAs+KkgAR)]. 2

B. Correlation analysis SinceAs=s;—s, andAR=R;—R, are known, the phase of

Five movable high impedance floating potential probeghe correlation can be used to determing, k;, andkg.
(with 100 K tips) are located at various positions in the Our ability to use Eq(2) for mode analysis improves as the
plasma. These probes are used to reconstruct the mode struiche rate of change of the mode frequency vanishies gt
ture using cross-correlation analysis of combinations of=w,—0, or as the frequency separation between nearby
probe pairs and a fixed “reference” probe. Although the modes becomes large. This is because we must Fourier trans-
movable probes can access regions extending from the dierm the digitized wave forms with finite time windows. Be-
pole magnet to the vacuum chamber wall, measurements acause the mode frequency is not constant, a simple fast Fou-
possible only when the probe’s location does not interfergier transform cannot be used to transform the probe signals.
with the bulk of the energetic trapped electrons. Referringnstead, the slow-time evolution of the mode spectrum is
again to Fig. 1, four of the five probes are inserted at3°  computed using short-time Fourier transforms with a con-
angle with respect to the dipole’s axis. These probes can bEnuously moving triangulaftor “Parzen”) window, referred
inserted very near the electron cyclotron resonaiite27  to as a spectrogram or a time-frequency-domaiRD) sig-
cm) since the most deeply trapped electrons have insufficiemal representatiott. The TFD of C(1,2) is computed from
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the product of the short-time fast-Fourier transforms of two @,
probes using identical, moving time windows. Because the

— m=5

mode frequency evolves more quickly during microwave :_
heating than during the afterglow, the time windows can be mes
longer and the mode frequencies better identified during the 77 -
afterglow. = ”

% * m=2

3 4

@
IIl. MEASUREMENT OF GLOBAL MODE STRUCTURES * e

The overall procedure for measurement of the global
mode structure can now be described. First, three probes are
placed at the same azimutl, and adjusted radially to be
located on the same field [in® The relative amplitude of

. 3 4

the Fourier transform of the correlation of any two of these 5
probes is used to determine the variatiof®f, ;| along the 5 4 =t m=t
field, and the variation of the phase is used to mealjxs. % o
This measurement was important since it established the 3 m=2
flute-like nature of the electrostatic fluctuations and simpli- R o
<<

—_
g

fied the analysis of the following measurements. We #nd by /U m=2 n ﬂlmﬂ i3 J\:m: . "
~0 for all modes, and the amplitude varies by less than 10% 0 ‘A. bt loth Aty ST A
between the three probes. The second part of the procedure ° 2 ! ° ’ 1
uses three probes to determikg andm from the phases of
the correlations of two separated probes with a fixed referFIG. 3. TFD of the magnitude of the correlation function of two floating
ence probe located &=49 cm. Since these probes are |o- potential probes WitIA_R=As=O andA<p=90° graphed with a linear gray
. . . . . scale. Shown below is the short-time frequency spectrum of the correlation

cated at dlﬁerenR' the phase 'nfor_matlon is meaningful Only_at an instant during fully developed and saturated oscillations. The azi-
if the magnitudes of the correlations between all probes isnuthal mode numbers are shown.
large. Since the mode structures are broad, we find signifi-
cant correlation for all modes and for all probe separations.
The final step determines the radial variation of the modeamplitudes of harmonic modes usually decrease with in-
amplitude by correlation analysis of a probe that is moved ircreasing frequency.
increments approximatelyR~2 cm for successive plasma The relative amplitudes of the modes change appreciably
discharges. The ratio @1) the correlation between this mov- in time, as can be seen from the TFD of the correlation
ing probe and the fixed reference probe &@il the self- magnitude. Often, the highen modes begin to increase in
correlation of the reference probe results in the normalizednagnitude as the mode evolves while the amplitude of the
radial mode structure for any given mode. This is defined aprominent m=1 mode gradually decays. Sometimes the
D (R)/ P m(Ry)=|C(1,2)|/|C(1,1)|, and the profile is m=1 andm=2 modes have equal amplitude, and occasion-
obtained as the position of the second proReg, is moved ally, the m=2 dominates. This observation necessitates our
relative to the fixed position of the first probe;. measurement of the normalized structure for each azimuthal

In order to illustrate the complexity of the frequency mode using correlation analysis with the fixed reference
spectrum, the time-frequency domain of the magnitude of th@robe. The radial mode structure must be reconstructed from
correlation between two probes separated only in azimuthahany similarly prepared discharges, but the relative ampli-
angle is shown in Fig. 3. In this exampl&dR~As~0, and tudes of the modes as well as their frequencies at any instant
A@=90°. The figure shows the slow evolution of the poten-are never the same from discharge to discharge. However,
tial oscillations during the afterglovvi)n/wﬁ~2><10*4. The  we find the amplitude for any given mode at any given po-
modes with larger amplitudes are labeled by their azimuthasition relative to the amplitude of the fixed reference probe to
mode numbersn. Note several modes exist simultaneouslybe essentially time invariant.
with the same azimuthal mode number but with different ~ While two probes azimuthally separated were used to
frequencies. For example, three modes withl, m=2, and  determinem, other probes positioned on the same field line
m=3 are identified. The frequencies of harmonic modeswere used to determine the field-aligned mode variation. For
evolve in time at rates different from the fundamental, andexample, Fig. 4 illustrates the phase difference between two
this corresponds to the time evolution of the nonsinusoidaprobes withAR=A ¢=0, R=49 cm, andAs=35 cm. These
wave form of the potential. An example of this harmonic measurements were made for the same discharge as illus-
structure are the modes at approximately 2.4, 4.7, 7.0, anglated in Fig. 3, and Fig. 4 shows the phase differekgks,
9.4 MHz. Many modes with differer do not appear to be for the largest amplituden=1 mode as a function of time.
harmonically relatedi.e., the ratio of frequencies are not Similar analyses were made for other modes, and all modes
rational numbens For example, severah=1 modes coexist show a constant phase structure along a field line. Since the
near 1 MHz. The low frequencyn=1, modes usually have equatorial probe was used for these measurements, only field
the largest magnitude, but this is not always the case. Thénes havingR>45 cm could be accessed without perturbing

Frequency (MHz)
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FIG. 4. The field-line phase difference of the correlation function for two R (cm)
probes positioned at two locations along the same field kiR=A¢=0
andAs~35 cm, showingk~0 for several modes during the afterglow.  FiG. 6. Radial profiles of normalized correlation amplitudes,

|Chm(1,2)//|Cphm(1,1)], for the lowest three azimuthal modes.

the energetic trapped particles. The probe positions were a;IJ— ) , ¢ | sh havi h
proximatelys~0 ands=+35 cm, and, for these positions, ocation representing averages of several shots having the

we find the relative mode amplitudes are comparable t&novable probe at different positions. We observe no apparent

within =10%. These measurements indicate the potentidiMe dependence in the phase, and there is no change in the
fluctuations are flute-like phase with radius. Sinckz~0, the mode structures rotate

The final step in mode measurement procedure is to andigidly. In Fig. 6, the radial profile of the normalizgd magni-
lyze the relative phase and amplitude of the correlation Ofude of the two-probe correlation shows the rqdlal structure
two probes with increasing radial separation. Probes locatelf P& broad and to depend weakly on the azimuthal mode.
off the equatorial midplane were uséke Fig. 1since these Higher m modes are seen to be more localized toward the
probes could be inserted deep into the plasma and near to th@'®: 85 fmlghthbe expectedr; In all c?]ses,lthe mode structure
dipole magnet without disturbing the energetic electrons ofXt€nds from the edge to the inner hot electron region, and

the potential fluctuations observed by the reference probd!1®Y aré not localized to particular flux surfaces. In addition,
By using multiple probes, correlation analysis of the TEpNO time dependence is observed in these normalized profiles,

identified both the azimuthal mode and the radial variations‘filthowh the relative amplitudes of one mode with the other

Sincek;~0 and sincem is known, probes located at any are observed to vary in time. In making these observations,

position within the plasma can be used to compute the radid’® fmd it noteworthy t.hat the global mode. structures are
correlations. time-independent despite the complex and time variation of
Figures 5 and 6 show the results of these measurementi® fluctuation’s frequency spectrum.

In Fig. 5, the three lowesh numbers were examined at three T inally, équivalent measurements were made of the glo-
different times in a single discharge but with each radialbal mode structure of the bursting interchange instabilities
observed during microwave heating. As described by

Warren® clearly identified modes with well-separated fre-
quencies are observed during the second half of every burst.

" m=1 The rate of change of the mode frequencies are approxi-
% o WWM matelyrbn/wﬁ~0.2,considerably faster than during the af-
< o 1=325 terglow. Nevertheless, modes with=1 and m=2 were
° =i identified. We found the radial structure for these modes to
s — —- be the same as shown in Fig. 6; however, averaging over
discharges showed a larger variance especially for the radial
%E o variation of the phasegAR.
-
IV. MODELING THE NONLINEAR EVOLUTION OF THE
;’22 — HEI INSTABILITY
o« This section describes the nonlinear, self-consistent
‘1 0 =LE ) ge °°g simulation of the time evolution of the hot electron inter-
= change(HEI) instability used to interpret measurements of
o the global mode structure. Previously, Ref. 30 described this
30 40 50 60 simulation together with the linear dispersion relation for
R (cm) HEI instability in a dipole-confined plasma. For complete-

ness, we review again the basic model equations and, then,

FIG. 5. The phase of the correlation between two probes as the radigiescribe more fu”y the numerical procedure used to compare
separation increased for the lowest three azimuthal modes. Results Sh°§‘fmulation with measurement

kg=~0 for all modes during the afterglow. Solid lines are the relative phase . . . . . .
difference of global modes computed from the nonlinear simuléSst. The simulation solves finite-difference approximations

IV C). to the coupled, nonlinear model equations for the evolution
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of the electrostatic potential and the field-line integratedelectrons with a givem on the given flux tubef , (¢, ¢,t) is
number densities of ions and energetic electrons. The simwa bounce-averaged phase-space density that evolves accord-
lation is similar to those described by Refs. 19 and 23. Theng to the guiding center drift Hamiltonials.
electrostatic potential is advanced by solving the equation for  The field-line integral of the ion current depends upon
charge continuity subject to reasonable boundary conditionghe density profile along the field line. We call this integral
However, unlike these other nonlinear simulations, multiplethe density-weighted average, defined |g|=(An)/{(n)
groups of particles must be evolved simultaneously in ordee=N"1fdy n(x)A/B2. In this notation, the ion continuity
to capture the drift resonance between the energetic electromsjuation is
and the azimuthal propagation of the interchange instability.
References 19 and 23 required only a single equation for the Q i . RV2 i . ViD=

. quirec only a singie equation 2o (NIVe-Vil)+ o (N[Vy-vi)=0. (3
mass density; whereas, simulation of the HEI instability ad- 9t d¢ I
ditionally requires evolving the phase-space density of seVeq, cold ions and for low-frequency interchanges wih

eral groups of energetic electrons, each having different val<wCi , V; is the sum of th& x B and polarization drifts. This
ues of the magnetic momentu. Finite-difference gy pstitution gives

approximations to the model equations are integrated using

the numerical methods introduced by Zal¢84k and fol-  dN; 4 ad ||Ve|?] o
lowing an implementation demonstrated by Guzdar andIJF@ cNi 0 | 0B de
co-authorg? _
L2 N ob  ||Vy? aq)) 0 @
—|cNi| —— —|[=0.
A. Model equations oyl N de | ocB | dy

The model equations are described in the coordinates dfhe first term in parentheses is tke<B drift, and the sec-
an ideal, axisymmetric dipole magnetic field. The potential,ond term is the polarization drift. This second term repre-
d(,e,t), is assumed constant along a field line, consistensents the plasma dielectric response, and the azimuthal aver-
with measurements and our understanding of interchange irage of this term will serve as the dielectrig,when solving
stability. The potential evolves in time due to the divergenceor ®.
of net perpendicular current integrated over magnetic flux  Since the field-line profile of the plasma density is
tubes and subject to fixed boundary conditions. The divernot known, we invoke an important simplification in order
gence of perpendicular current either charges or dischargée compute the density-weighted integrals. The density pro-
flux tubes. Energetic electrons contribute to this currenfile is assumed to be relatively broad and vary on all field
through theVB drift, and ions contribute through the polar- lines asn=sin 6, whered is the polar angle from the dipole’s
ization or inertial drift. In order to simplify the computation axis. For a point dipole, the magnetic coordinateis related
of energetic electron dynamics, the energetic electrons ar® the polar angle asy= (4% Mg)cosd/sin® 6. With this
assumed to be deeply trapped with negligible motion alonglensity profile, the density-weighted averages are
field lines,J~0. A neutralizing population of cold electrons |||V ¢|?/ wB||~0.68M3By/#*wcio  and  ||Vi|% weB||
exists that is more uniformly distributed along the field line. %0.77!\/I§Bolz//2wcio, where w¢q is the ion cyclotron fre-
Finally, to facilitate an efficient spectral solution for the po- quency aB=B,.
tential, we define an axisymmetric dielectrig,,t), propor- The field-line integrals of the Laplacian in the equation
tional to the azimuthally averaged ion number per flux tubefor the potential take a particularly simple form in dipole
N;(¢,t)=Jde N;/27. magnetic coordinates. The linear Poisson’s equation becomes
Using the notation in Ref. 30, the flux-tube average is 2D 2D
defined agA)= 6V~ 1fdy A/B?, wheresV()=[dx/B? is hy=—+hy, ==
the volume of a flux tube of given fluxdyde. The model g 24
equations describe only the dynamics of the total particles OWhere p(#, ¢,t) is the net charge on a field line. Two geo-
a tube of unit fluxN=(n) sV, but the particle densitg, can  metric terms define the transformation of the Laplacian op-
vary along a field line. Since the magnetic field of the pointerator into field-line averaged flux coordinates,
d_|pole_ is r_elatlvely simple to characterize, expressions for the= Jdx/|V¥|2=2M/4? and h./,Ede/|V<P|2=4Mo-
field-line integrals can be computed after making reasonable  The electrons are grouped by magnetic moment, or ef-
assumptions for the field-line density profile. fective energyuB,, and separate evolution equations are
Effectively, there are three coupled, nonlinear equationsieeded for each energetic electron group. The collisionless
to be solved in the simulation. These are the time evolutionyyiding-center evolution of electrons with constant moment
of the potential,6V(V-V®)=—4me(N;—Ng)=—4meAp,  uis governed by the following equation:
the evolution of the ion numbel; = — 5V{V-n;V;), and the
evolution of several populations of energetic electrons (9':_/‘_,_ i (wd(,u z,/;)—c@
having ~different magnetic moments, (he) V=N, g de , i
=X ,F.(¢,¢,1). To denote the time derivative, we uge
=¢gA/at. The rate of change of net charge on a flux tube due  Equations(4) and (6) and the time derivative of Ed5)
to the integrated divergence of the perpendicular current isan be combined to form the equation used to evolve the
Ap. In the expression for the electrorfs, is the number of  electrostatic potential. This requires proper treatment of the

—4m7e(N;—Ng)=—4mep, 5)

d

+ —
F. o

=0.

c—F
do *
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ion polarization currents. For our simulation, we desire to,:#(t) have the general forniz—V-F(f(t),(b(t),(i)(t)),
preserve the form of the Laplacian operator since this “for_mwith f representing eithel; or one of severaF , and withT"
ga;giggz,?giee ?eizisc'lio\:]v;::g?xiérﬁsbgf(:relzn;;?mi':h;x"representing the field-line integrated particle flux. At the be-
y . — o ) ginning of every time stef,(t), ®(t), andd(t) are known
average of the ion numbeN; . The remaining nonaxisym- throughout the computation@},¢) domain and at a previous

metric part is defined adli=N;—N;. Using these defini- step t—At. For these equations, the second-order leap-frog
tions, the equation for the evolution of the potential used inyng trapezoidal steps are taken as

the numerical simulation is

— P J_ ob = 2(fitfioa0), (11
hoe (,t) = +h,—e (4,t) —=—4meAp, (7)

A J by ¥ J .
¢ v v travz= fioave = ALAT(F(1), D (1), (1)), (12)
where divergence of the integrated perpendicular current is

froar=fi— AtADL(f * (t+AV/2),D* (t+At/2),d>* (t+A12)). (13

A d ab  ~ [|Vel?| 0P
Pl e )= de cp P e w:iB | do The fourth-order, finite-difference expression o is writ-
ten plainly asAI'(---), but this operator represents Zalesak’s
+2 oyl th)F ) -~ i three step FCT process: compute the result of low-order con-
m ' ) ag vection, find the high-order, flux-limiting antidiffusive
o fluxes, and compute the limited fourth-order convection such
v Cp@_ N Vy| @) ®) that no new extrema are created nor existing extrema accen-
e " weiB | o)’ tuated.
. . L . . The electrostatic potential must be advanced Wittand
and the time-dependent, axisymmetric dielectric functlonﬁz and this is done while preserving second-order accuracy
are N . :
in time and fourth-order accuracy on the spatial grid. At each
- 1V |2 <w_'2)i> time step and at each ha!f—;tep in Em:_%), dis detefmined
e¢(¢,t)=1+4wech— 5 ~0.3——, (9) by Eq.(7). The Laplacian is inverted with fast-Fourier trans-
ol @ei @i forms alonge, the fixed boundarie®=0 at ¢/;,,5 and Yin»
N W (?} and the known values &;, F,, and®. We choos_e to _treat
e¢(¢,t)=1+4wech—' = ~0.18—~. (100 the appearance cb on the RHS qf Eq(7) using iteration.
wll @ei @cj Successively more accurate solutions to &gare found by

inverting the LHS until the difference betwednon the LHS

2/ 92 ~103 i ius asN. / /2
n CT).(' <wp'>/w9' 10% and scales W|th.rad|us '/fp ) and the RHS effectively vanishedVe find this convergence
Equation(7) requires the most computation to solve since, att ) - . .
0 be rapid, requiring less than ten iterations.

each time step, we iteratively invert the Laplacian operator With ® determined is also time advanced with trap-

on the left-hand sidéLHS) to arrive at improved approxi- .
mations to® which also appears on the right-hand Sidee20|dal leap-frog steps. In order to prevent short-wavelength
(RHS PP 9 numerical instability and to introduce nonresonant dissipa-
' tion (which controls frequency sweepingdissipation is
B. Numerical methods added as the potential is advanced in time. Since the flux-
The nonlinear evolution of the hot electron interchangecorreCted transport of the electrons and ions introduces very

instability is simulated by computing solutions to E@4), litle numerical dissipa_tion, this explicit di.s.si.pation, even
(6), and (7) on uniform, rectangular grids, 6464, in the when very small, dominates over any artificial, numerical
(,¢) plane. We use the fourth-order flux-corrected transporf@mping. With &(t) determined fromN;(t), F,(t), and
(FCT) method developed by Zaledd¥'and a second-order ®(t) and ®*(t+At/2) determined from N(t
trapezoidal leap-frog algorithm for the time integratBwe ~ TAt/2), Fy(t+At/2), and *(t+At/2), the potential is
also add a constant and uniform dissipation to the equatiodvanced according to the rule

advancing the electrostatic potential. This term prevents nu-

merical instability at short wavelengths and, additionally,q)tfmlzz (Pt Oy, (14)
represents a physically relevant nonresonant dissipation of i

potential oscillations. As predicted by Betkwe find the  @f ayo=PF syt At —(— 1) AtrVZd,, (15
rate of frequency chirping to be proportional to this dissipa- .

tion. Finally, we set the boundaries 8f(i/,¢,t) to be zero @, =0+ AtdF, o~ (— DKAtLVEDE, . (16)

both ati= i,ax, COrresponding to the surface of the terrella,

and at¢min, corresponding to the surface of the vacuumThe term proportional to the constantweakly damps po-

vessel. The precise definition @f,,, influences the global tential oscillations. The integek=0,1,2,... sets the scale

mode structure, and a good fit to the measured mode strutength for dissipation. Although we have examined solutions

ture results for a reasonable value gy, . with k ranging from O to 4, for the results discussed here, we
To illustrate these numerical methods, note that the conset k=2, and v ranged from 0.003 to 0.01 times the grid-

servation equations determining the evolutionNy{t) and  scale normalization;- (1/64YF wqo.
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Normalized Potential Q)

~

=0 at= ¢y andc is adjusted to change the steepness of the
profile. For the energetic electrortss4 andb=2.46. For the

ion number density, the initial profile was the sum of two
equal parts: a constant and a gradual radial variation with
c=1 andb=0.62. At the density peakkR=R,, half of the

: : : : electrons were energetic and half were cold.

ed0 0 820 The distribution of energetic electrons are modeled with
five energy groupsF (u,v,¢)=a(¥)=7-,18(n= ), with

mil no=0.5, 0.75, 1.0, 1.25, and 1.5. The initial radial pro-
file, a(y) has the form described above, and the initial profile
for each electron group is identical. The functigd{u)

o (2ul po)exp(=2u/my) determines the relative number
density of each of the five groups of energetic electrons. As
the instability develops, resonant electrons are strongly
mixed in radius; however, the total number of electrons with
‘ , each value of magnetic moment is constant.

Zo,i',o,ma,ized Tim‘so o In Fig. 7, the normalized dissipation rate wes0.005.

For global modes, this causes a nonresonant damping of the
order, d log ®/dt~10 *wyo<w. For broad, long-wavelength

i modes, this is a very small dissipation rate, but it neverthe-
less influences the solution significantly.ifis decreased to
0.003, the frequency changes more slowly in timgw?
~0.07. If v is increased to 0.01, the frequency “chirps”
more rapidly,/ ®?~0.2.

000 The global structures of the modes simulated numeri-
' . ‘ cally are viewed by performing Fourier transforms of the
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FIG. 7. Self-consistent time evolution of the electrostatic potential com-pa Compared directly with experimental measurements.
puted using the nonlinear simulation. The TFD of the potential oscillations . . . .
computed by the simulation show multiple modes and frequencies rising in When this comparison was first made, we noticed a sen-

time that resembles Figs. 2 and 3. Time is normalizedofg,, and the  Sitivity to the location of the outer boundawy= i,;,, where
potential is normalized tg.oBy /€. @ is forced to vanish. Whegy,,;,, was set to correspond to
the inner radius of the vacuum vess&=67 cm and
Yminl ¥o=0.4, the computed mode structures were more
C. Global mode structure comparison peaked than seen experimentally. As the outer boundary was
The numerical solutions exhibit many characteristics ob/moved to larger radii, the global modes in the simulation
served in the experimeft.For example, the HEI instability broadened. Several simulations were computed as the outer
is destabilized only for a sufficiently large fraction of ener- boundary gradually increased =98 cm, or ¢min/to

getic electrons. The simulation also shows frequency chirp=0.27. From these we were able to identify the outer loca-
ing, multiple azimuthal modes, and strong modulation of ention that minimized the magnitude of the difference between

ergetic electron flux during nonlinear saturation. Figure 7the simulated and measured mode structures for the lowest
illustrates the time evolution of the electrostatic potential aghree modesm=1, 2, and 3. This occurred wheRy,,,=77
computed by the simulation from initial conditions consistentCm, or ¢min/¢%=0.35. If only one moddinstead of threg
with the experiment. The instability grows quickly to large was compared, the optimal location for the outer boundary
amplitude,e|®|~0.1uyB,y, and develops a relatively com- was different. Then=1 mode optimized at largd®,,, while
plex, time-evolving frequency spectrum with/ w?~0.09. m=3 optimized at slightly smalleR ;.
Azimuthal modes withm=1, 2, and 3 can be detected easily, =~ While we are not certain of the reason why a larger
and the global structure of these modes can be “measureddiameter of the outer boundary is required for the simulation
by computing the Fourier transforms of the simulated potento match the experiment’'s mode structures, we believe it re-
tial. In this section, the initial conditions for this solution are sults from the large geometric difference between the cylin-
described, and the computed global mode structure is congrical vacuum vessel and the dipole’s field lines. As shown in
pared with measurements. Fig. 1, the field lines are tangent to the vacuum vessel at
The initial potential fluctuations are set to randomly R=67 cm. This limits the extent of energetic electrons, but
phased, low-amplitude oscillations that vary sinusoidally innot the colder plasma. As a Langmuir probe is moved out
both they and ¢ directions. The initial profiles of the ions ward, beyond the last flux tube not obstructed by the vessel,
and the energetic electrons are axisymmetric with an initiathe plasma density drops abruptly by more than a factor of 2,
radial variation of the form f(y,t=0)(¥max—¥)?(¥  but this does not eliminate HEI potential fluctuations. Obvi-
—min)%, Where the parametds is chosen to insur@f/dys ously, the experimental boundaries are much more complex
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1.2 @ i structure by separation of variables. Leep— 0 except for a
o - narrow region neary~ iy, and let the potential have the
form ® (¢, ¢,t)=g(¥)exd —i(wt—me)]. If we further take
0.8 N; to be a constant in order to simplify the form of the
I
plasma dielectri¢Egs.(9) and(10)], then the radial structure
8 04 function, g(¢), must satisfy the equation
= A ]
= (114@(?&%“) —0.83n%g,,=0. 17
g 93 T , o .
< (b) m=2 With the vacuum vessel wall at infinity, the outer solutions
c % have a simple form g,~¢®~1/R* where a=3/2
-2 08 +/9/4+0.833n%. The lowest three azimuthal modes are
A2 9.~ 1/R33 g,~1/R3% and g;~1/R*% These expressions
[0} : . .
= 2 are reasonably close to the radial dependencies shown in
8 04 X Figs. 6 and 8, although the actual mode structures are less
st peaked. Equatiofl7) also offers a simple and perhaps gen-
0] eral explanation of our key results. Indeed, during the simu-
Es ?;‘2’ lation, p(#, ¢,t) is monitored, and, the largest oscillations or
g © m=3 p do not occur near the peak of the energetic electrons.
5 The inner structures of the global modes could not be
= 08 measured. As probes moved inward, the intensity of the ar-
tificial radiation belt was significantly perturbed. For this rea-
6 son, we are unable to make any conclusions pertaining to the
' inner boundary condition at the surface of the dipole mag-
netic nor the mode structures near and within the radius of
0.0 peak energetic electron density.
10 20 30 40 50 60 70

r (Cm) V. SUMMARY

FIG. 8. Comparison of radial mode structure computed from the nonlinear The global mode structure of low frequency interchange
simulation(solid lineg with the observed profiles of the normalized corre- instabilities driven by energetic electrons was measured us-
lation amplitudes fom=1, 2, and 3. ing time-frequency-domain analysis of the correlations be-
tween multiple high-impedance probes. A modal prescription
was used to simplify the correlation analysis of movable high
than simulated, and it is perhaps not surprising that somanpedance floating potential probes. By positioning the
adjustment is required to match these conditions. probes appropriately, the HEI instability was seen to be flute-
The computed nonlinear global mode structures ardike with k,~0 with multiple azimuthal modes peaked in
shown in Figs. 5 and 8 when the outer boundary was set tamplitude near the peak density of energetic electrons. The
Rmax=77 cm. Radial profiles of the radial phase difference,modes have a time-evolving frequency spectrum, but the
krAR, generated from the simulation for=1, 2, and 3 are form of the global mode structure does not change signifi-
shown as solid lines in Fig. fand superimposed onto the cantly in time. The radial mode structures are relatively
experimental daja The computed phase difference with ra- broad, and they rotate rigidly witkgAR~0.
dius is small. As in the experiment, the modes rotate rigidly A nonlinear, self-consistent numerical simulation of the
with kg~0. Figure 8 compares the radial variation of the growth and saturation of the HEI instability reproduces many
mode amplitudes with the observed normalized correlatiorobservations from the experiment including the radial struc-
amplitudegwhich are also shown in Fig,)6As seen experi- tures of the lowest azimuthal modes. The agreement between
mentally, the ratios of the mode amplitudes evolve in timethe modes computed by the simulation and the experimental
but the form of radial structures are essentially constant onceeasurements supports the underlying assumptions of the
the amplitude saturates. In Fig. 8, the computed mode anmodel equations and the resonant phase-space dynamics re-
plitudes were normalized to minimize the least square differported previously°
ence between simulation and experiment. The profiles are Although general characteristics of the numerical solu-
peaked near the peak of the energetic electron density #éibns to the model equation resemble experimental measure-
Ro=27 cm. Modes with highem are more centrally peaked ments, several observations of the HEI instability in the ex-
than modes with lowem. periment are not modeled nor do we fully understand how to
The model equations give insight into the electrostaticdo so. During microwave heating, the quasiperiodic bursts of
potential structures of different azimuthal modes. If the netinstability have a more complex frequency spectrum than
oscillating charge on the flux tubep, were nonzero only seen computationally. Experimentally, a period of rising co-
near the peak density of the energetic electr@g.,R~27  herent modes occurs after a short period when the frequency
cm), then Eq.(7) can be used to solve for the radial mode spectrum is relatively broad-band and turbulent. Broad-band
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