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Measurement of the global structure of interchange modes driven
by energetic electrons trapped in a magnetic dipole

B. Levitt,a) D. Maslovsky, and M. E. Mauel
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027

~Received 14 February 2002; accepted 27 February 2002!

Measurements of the radial, azimuthal, and field-aligned mode structures of interchange instabilities
excited by energetic electrons confined by a magnetic dipole are presented. The mode structures are
determined using a correlation analysis of movable high-impedance floating potential probes located
at various positions within the plasma. The hot electron population, produced by electron cyclotron
resonance heating, becomes unstable to hot electron interchange~HEI! instabilities which saturate
nonlinearly with a complex and time-varying frequency spectrum. Although the mode frequencies
vary dramatically, it is found that the mode structures do not evolve significantly in time, being
determined by the azimuthal mode numbers. These measurements are compared to a self-consistent
nonlinear particle simulation of the HEI mode in dipole geometry. Upon appropriate adjustment of
the boundary conditions, the simulation reproduces the measured radial and azimuthal structures at
large amplitudes. ©2002 American Institute of Physics.@DOI: 10.1063/1.1475999#
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I. INTRODUCTION

Interchange, or ‘‘fluting,’’ instabilities in magnetize
plasma are among the best known in plasma physics.1–4 In-
terchange motion mixes plasma contained by magnetic
tubes while minimizing changes in the magnetic field. Ins
bility results when the mixing reduces the plasma’s poten
or kinetic energy. This occurs for various reasons in the la
ratory, the ionosphere, and in planetary magntospheres
laboratory plasmas, interchange instabilities are poss
when the pressure gradient has components parallel to
magnetic curvature. Experiments have shown them to be
bilized by reversing the direction of curvature,5,6 by creating
‘‘average good curvature’’ either on toroidal flux surfaces7 or
on the plasma-vacuum boundary,8 and by creating local re
gions with average magnetic shear.9 In the ionosphere, grav
ity drives interchange instability, and its nonlinear evoluti
plays an essential role in the intense wave dynamics of
night-time equatorialF region.10 Interchange motion of
plasma confined by the dipole-like field of planetary ma
netospheres can be driven or ‘‘spontaneous’’~i.e., unstable!,
and both have been extensively studied theoretically.11–13

Because the magnetic field strength of a dipole decre
rapidly with radius,B ;R23, interchange motion in a di
pole is associated with significant plasma compression. P
sure gradients can drive interchange instability in a dip
only when the equatorial plasma pressure profile varies m
rapidly than p;R24g ~where g '5/3 is the appropriate
MHD ratio of specific heat!. Observations show the Earth
magnetosphere to be interchange stable, but steady pla
circulation and impulsive radial-diffusion14 results from elec-
tric fields created by the solar wind, and these can be c
sidered examples of driven interchange motion. In Jupit
magnetosphere, interchange instability is influenced by p

a!Electronic mail: bl187@columbia.edu
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sure gradients and by centrifugal forces caused
co-rotation.15 Recently, the Galileo spacecraft measured
buoyant, inward-moving flux tube within Jupiter’s Io plasm
torus and also fluctuations in the bulk ion flow and dens
that provide evidence for unstable interchange motion
dipole-confined plasma in space.16–18

Although interchange instability is an important proce
for magnetized plasma, measurement of its global struc
has been possible in only a few cases. Probably, the m
detailed images of interchange instability have been m
from radio-wave scattering from theF layer and the iono-
sphere.~See Kelly’s monograph.10! These spectacular image
show towering ‘‘plumes’’ created by rising interchang
‘‘bubbles.’’ Nonlinear simulation of the gravitational inter
change has reproduced this plume structure.19 Laboratory ob-
servations of the nonlinear structures of interchange insta
ity have also been made using toroidal devices that h
regions without magnetic shear. The electrostatic poten
has been mapped using movable floating potential probe
a toroidal octopole9,20 and in current-free discharges creat
in a purely toroidal magnetic field.21,22 These electrostatic
potential structures sometimes form closed equipoten
contours that appear as slowly propagating and cohe
E3B vortices, or ‘‘convective cells.’’ They decay by viscou
forces if not continuously driven. For plasma formed with
a purely toroidal magnetic field, the electrostatic poten
evolves into a highly nonlinear state dominated by a rotat
dipole vortex superimposed on equilibrium poloidal flow
that have been reproduced by self-consistent, nonlin
simulation.23

When interchange instabilities are excited by magn
cally trapped energetic electrons, the modes have a real
quency proportional to the fast¹B drift of the hot electrons,
vd . When the rotation frequency is less than the io
cyclotron frequency, the instability is called the low
frequency hot electron interchange~HEI! instability.24
7 © 2002 American Institute of Physics
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Higher frequency modes have been described by Berk,25 and
both the low-frequency and high-frequency hot electron
terchange mode have been identified experimentally.26–28

Hot electron plasmas can remain stable even when pres
gradients exceed the usual MHD condition of flute instabi
because the real frequency of the mode generates stabil
ion polarization currents. Although the global mode struct
was not measured directly in these previous studies, Sp
and co-workers29 showed that when realistic profiles are us
during computation of the linear, radial eigenmode, then
predicted onset for instability was consistent with expe
mental observations.

In this paper, we present the first measurements of
mode structure of the electrostatic, low-frequency int
change instability driven by energetic electrons trapped in
axisymmetric dipole magnetic field. The modes rotate r
idly in the drift direction of the trapped electrons, and th
have a complex and time-varying frequency spectrum. S
eral modes co-exist. Experimentally, these modes are di
guished from each other using frequency-domain correla
between several movable probes and a fixed reference p
The measurements show the flute-modes have a radial s
ture that depends only on the azimuthal mode numberm,
extends across the entire dipole-confined plasma, and
not evolve in time with the frequency. In this paper, we a
compare these measurements to a fully self-consistent,
linear simulation that has been described elsewhere.30 The
simulation reproduces both the large-amplitude mode st
ture of the interchange modes and their complex, tim
varying frequency spectra.

In previous papers, we described the collisionless p
ticle transport induced by the hot electron interchan
instability.31–33 For charged particles deeply trapped by
strong dipole magnetic field, the frequencies of the th
characteristic periodic motions, cyclotrons,vc , bounce,vb ,
and magnetic drift,vd , are well-separated, and the corr
sponding actions, the magnetic moment,m, the longitudinal
adiabatic invariant,J, and the magnetic flux,c, are approxi-
mately constant. Low-frequency interchange fluctuatio
break the third adiabatic invariant,c, through resonant inter
action, v;mvd , with the rotating potential structures
Rapid global transport only occurs when the interchan
mode spectrum causes resonance overlap,35 and this has been
demonstrated in the laboratory.31–33 Since v!vb!vc , m
and J remain constant even when the radial transport
chaotic.34 In our simulations, invariance of~m, J! serves as
the ‘‘equation of state’’ for modeling adiabatic, collisionle
heating or cooling during the radial flute motion of the en
getic electrons induced by electrostatic fluctuations in
dipole.

The agreement between the measured mode struc
and the predictions from the self-consistent description of
growth of the interchange instability also adds support fo
nonlinear explanation for the observed rising frequency,
‘‘chirps,’’ of the electrostatic interchange instability in a d
pole. Berk and co-workers36,37 showed that nonlinear phase
space structures~called ‘‘clumps’’ and ‘‘holes’’! will form
spontaneously for a resonant wave-particle instability h
near marginal stability by nonresonant dissipation. At la
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amplitudes, nonlinear interactions overwhelm the dissipat
causing frequency sweeping and new modes to be exc
The strong resonant interactions between collisionl
dipole-confined energetic electrons and rotating intercha
modes are particularly easy to apply the formulation used
Berk.30 This is because the wave-particle dynamics is o
dimensional, and the two-dimensional phase-space is dire
observable.~The guiding-center Hamiltonian phase-spa
coordinates for drift motion in an axisymmetric dipole a
the angle of symmetry,w, and the magnetic flux,c}1/R.!
Berk’s explanation for the rising frequency of the inte
change instability seen in the experiment corresponds to
inward propagation of ‘‘holes’’ in the phase-space of the e
ergetic electrons. These holes are seen in the simulation
appear in the laboratory as deep modulations of energ
electron current collected with gridded probes.30 It is inter-
esting that these resonant phase-space holes are much
dynamic and radially complex than the global potent
structure of the interchange instability that creates the
When the electrostatic interchange mode is driven by en
getic electrons, it is the electron’s resonant phase-space
contains strongE3B vortices38—not the mass flow. Since
there is a distribution of electron energy and, consequen
of electron drift velocity,vd , the location and size of hole
~or vortices! are energy dependent. Furthermore, the en
getic electrons cause the instability to rotate quickly in t
ion’s frame of reference. The plasma mass density does
circulate fully around the equipotential contours~as seen, for
example, in the laboratory experiment with a purely toroid
field!. Instead, the ion density is radially ‘‘stirred’’ as th
interchange mode structure rotates by.

The outline of this paper is as follows. Section II d
scribes the Collisionless Terrella Experiment~CTX! used to
observe the hot electron interchange instability. Here,
also describe the floating potential probe measurements
the frequency-domain correlation method used to reconst
the radial, azimuthal, and field-aligned mode structure. S
tion III summarizes the observations of the hot electron
terchange mode at large amplitude. The lowest azimu
modes are most readily detected, and rotating modes
m51, 2, and 3 are described. In each case, the mode is fl
like and rotates rigidly. Section IV describes the se
consistent nonlinear simulation used to interpret the m
surements. Both the model equations and the numer
method are briefly described. The simulation reprodu
measurements of the radial mode structure, overall am
tude, and the observed frequency sweeping. Finally, we s
marize our results and describe some on-going efforts
will further investigate interchange motion in dipole ma
netic fields.

II. EXPERIMENTAL METHODS

The measurements reported here were made using
Collisionless Terrella Experiment, CTX.32 The CTX device
consists of an ultrahigh vacuum chamber, 140 cm in dia
eter, and a mechanically supported dipole electromagne
stainless steel enclosure electrically grounded to the cham
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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wall surrounds the magnet, which has a maximum magn
field strength at the face of the terrella of 15 kG and d
creases to 50 G at the vessel wall.

The electrostatic fluctuations are measured by five h
impedance floating potential probes located at various p
tions in the vacuum chamber. Each probe tip consists of
mm stainless steel wire connected to a 100 kV resistor and
50 V coaxial cable contained within a ceramic tube. T
fluctuating signals from the probe are amplified w
impedance-matched wide-bandwidth amplifiers and digiti
with high-speed, 8-bit digitizers. These probes can be re
sitioned radially to examine either potential fluctuations
different positions on the same field line or fluctuations
different field lines separated radially or separated azimu
ally by 90° or 180°. A schematic of the experiment showi
a representative probe arrangement is shown in Fig. 1.

Hot electron plasma is created by applying a microwa
heating pulse lasting from 0.5 to several seconds. The po
source is a continuous wave magnetron with a power ou
of 1.0 kW at a frequency of 2.45 GHz. The microwave pu
ionizes hydrogen from a short gas puff and heats magn
cally trapped electrons at the cyclotron resonance. The
damental microwave cyclotron resonance is a surface,
proximately spherical, that is defined byB0[875 G and that
intersects all of the field-lines of the dipole that cross
equator with radius,R>R0[27 cm. Electrons trapped o
any of these field lines can absorb power from the mic
waves, but those electrons located on field lines with
equatorial radiusR'R0 have a resonance at the field min
mum and are heated most strongly. A fraction of these
come deeply trapped and energetic~and with anisotropic ve-
locity, mB@vbJ), and we refer to these electrons as
‘‘artificial radiation belt.’’ Bremsstrahlung radiation chara
terizes the energetic electrons. As seen in other hot-elec
microwave discharges,26 the energetic electrons have a no
thermal, power-law, energy distribution with energies from
few keV and extending to more than 40 keV.32 The intensity
of the energetic electron population depends on the stre
of the hydrogen gas puff. We find the energetic electron d
sity and energy is maximized with a hydrogen pressure

FIG. 1. Schematic of the CTX vacuum chamber, depicting the five mov
floating potential probes used to measure the electrostatic fluctuations
Downloaded 23 May 2002 to 128.59.51.207. Redistribution subject to A
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;131026 Torr, and this is the value used for the expe
ments reported here. When the microwave power is switc
off, the trapped electrons persist while the density of col
electrons decays. This creates a so-called ‘‘afterglow’’ t
lasts for several tens of milliseconds.

Parameters characterizing the plasma studied here
summarized in Table I. An energy of 5 keV is used to ch
acterize the energetic electron distribution even though th
electrons have a non-Maxwellian distribution. The plas
and energetic electron densities are maximum at 27 cm,
the plasma density is estimated to be roughly 10% to 20%
the cutoff density, or approximately 131010 cm23. Within
the plasma, the neutral density is significantly reduced fr
the value outside the plasma; nevertheless, for these
density plasmas, collisions with neutrals dominate o
charged-particle collisions for the energetic electrons. Fo
keV trapped electrons, the magnetic drift frequency
vd/2p53.73105 s21, and we estimatevdtcol>100. Also,
for these particles, the normalized gyroradius isr/R0;0.01;
therefore, the trapped electrons are adiabatic and exh
well-separated cyclotron, bounce and drift frequenci
vd /vb;r/R0.

A. Observation of HEI instability

In the presence of an intense hot electron populati
drift-resonant (v;vd) fluctuations are observed, both du
ing and after the microwave heating pulse. Some charac
istics of the fluctuations in these two time periods are diff
ent. With the heating on, the fluctuations appear as repet
short bursts, 300–500ms, while during the afterglow they
may last as long as several ms. In addition, the afterg
fluctuations have a higher frequency, with coherent mo
rising in time up to 20 MHz. During the heating regime, th
fluctuations are generally observed to havef <5 MHz and
have a more dynamic, rapidly changing spectral content
both intervals, the frequency spectrum is complex and tim
varying, exhibiting rising tones in time.

Figure 2 shows the floating potential fluctuations
various relative time scales. The first figure shows a lo

TABLE I. Key parameters used to define the dimensions of the electros
dipole simulation.

Dimension Meaning Typical value

L0 Hot electron location 27 cm
B0 Equatorial field strength 875 G
c0 Magnetic flux,B0L0

2 63105 Maxwells
M0 Characteristic dipole

magnetic moment,B0L0
3

1.73107 G cm3

m0 Characteristic hot electron
magnetic moment

9310212 erg/G

m0B0 Hot electron energy 831029 erg ~5 keV!

vdh0 Precession frequency,
(3c/e)m0B0 /c0

2p30.4 Mrad/s

vdh0
21 Time ~angular! 0.4 ms/rad

n0 Plasma density 1.031010 cm23

N0 Particle number per unit flux,
n0dV050.91n0L0 /B0

2.83108 Maxwell21

L0
2/lD0

2 Normalized Debye length 2.63103

vci0 /vdh0 Normalized ion cyclotron frequency 3.5
g

IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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time scale, and instabilities are present both during hea
and during the afterglow. The mode amplitude typically sa
rates at a level between 100–200 V. On a faster time sc
the fluctuations are seen to be nonsinusoidal and slo
change in time. This change represents the presence of
tiple azimuthal modes with frequencies that evolve at diff
ent rates. When the same fluctuations are observed by
probes that are azimuthally separated by 90°, the phase
ference indicates a low-order mode structure that rotate
the direction of the electron¹B drift.

B. Correlation analysis

Five movable high impedance floating potential prob
~with 100 kV tips! are located at various positions in th
plasma. These probes are used to reconstruct the mode s
ture using cross-correlation analysis of combinations
probe pairs and a fixed ‘‘reference’’ probe. Although t
movable probes can access regions extending from the
pole magnet to the vacuum chamber wall, measurements
possible only when the probe’s location does not interf
with the bulk of the energetic trapped electrons. Referr
again to Fig. 1, four of the five probes are inserted at a630°
angle with respect to the dipole’s axis. These probes can
inserted very near the electron cyclotron resonance~R;27
cm! since the most deeply trapped electrons have insuffic

FIG. 2. Floating potential probe signals of the drift-resonant instability
different time scales.~a! A long time scale shows an instability burst durin
heating and a saturated mode during the afterglow. On a faster time s
~b! and~c!, show the nonsinusoidal wave forms from two spatially separa
high-impedance probes that illustrate the phase difference between pr
Downloaded 23 May 2002 to 128.59.51.207. Redistribution subject to A
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parallel velocity to strike the probe. In contrast, the pro
inserted at the equator can be inserted only to approxima
R>45 cm.

Since the magnetic field line geometry is known, t
probe positions can be expressed with a geometric labe
of the magnetic coordinates in analogy with McIlwian.39 The
radial coordinate for a field line is its equatorial distance,R.
Distance along a field line is labeled bys, and the azimuthal
coordinate isw. The measured probe position is mapped
its equivalent magnetic coordinate, (R,w,s), by numerical
computation. Because the plasma pressure is low and
cause most of the plasma volume is sufficiently far from
dipole electromagnet, the field lines follow approximate
the trajectories from a point dipole in vacuum. The CT
dipole moment isM05B0R0

351.73107 G cm3, and an ap-
proximate relation exists between (R,w,s) and the usual
magnetic coordinates for a point dipole,~c,w,x!, defined by
B5“w3“c5¹x, wherex is the magnetic scalar potentia
This relationship is simply (R,w,s)'(M0 /c,w,*dx/B).

Measurement of the mode structure is complicated
the simultaneous presence of several modes, but it is sim
fied because the phase of the potential is constant along
field line. The quantities to be measured are expresse
terms of a modal prescription for the voltage measured b
probe located at (R,w,s),

F~R,w,s,t ![(
n,m

R$Fn,m~R,t !

3exp@ i ~mw1kis1kRR2vnt !#%, ~1!

wheren is the mode index, andki , kR , andvn may be slow
functions of time. The amplitude,Fn,m changes slowly in
time, but we find it does not change in spatial structure.
also find theuFu does not change significantly withs over the
region accessible with the probes. These observations ju
the modal prescriptiona posteriori.

When the digitized signals from two probes are Four
transformed, the transform of the correlation between t
probes,C(1,2), is expressed as the product of one pro
signal with the complex conjugate of the second. In terms
the modal prescription, this correlation is

Cn,m~1,2!'Fn,m~R1!Fn,m* ~R2!

3exp@ i ~mDw1kiDs1kRDR!#. ~2!

SinceDs5s12s2 andDR5R12R2 are known, the phase o
the correlation can be used to determine,m, ki , and kR .
Our ability to use Eq.~2! for mode analysis improves as th
time rate of change of the mode frequency vanishes,]v/]t
[v̇n→0, or as the frequency separation between nea
modes becomes large. This is because we must Fourier tr
form the digitized wave forms with finite time windows. Be
cause the mode frequency is not constant, a simple fast F
rier transform cannot be used to transform the probe sign
Instead, the slow-time evolution of the mode spectrum
computed using short-time Fourier transforms with a co
tinuously moving triangular~or ‘‘Parzen’’! window, referred
to as a spectrogram or a time-frequency-domain~TFD! sig-
nal representation.32 The TFD of C~1,2! is computed from

le,
d
es.
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the product of the short-time fast-Fourier transforms of t
probes using identical, moving time windows. Because
mode frequency evolves more quickly during microwa
heating than during the afterglow, the time windows can
longer and the mode frequencies better identified during
afterglow.

III. MEASUREMENT OF GLOBAL MODE STRUCTURES

The overall procedure for measurement of the glo
mode structure can now be described. First, three probes
placed at the same azimuth,w, and adjusted radially to be
located on the same field line,R. The relative amplitude of
the Fourier transform of the correlation of any two of the
probes is used to determine the variation ofuFn,mu along the
field, and the variation of the phase is used to measurekiDs.
This measurement was important since it established
flute-like nature of the electrostatic fluctuations and simp
fied the analysis of the following measurements. We findki

'0 for all modes, and the amplitude varies by less than 1
between the three probes. The second part of the proce
uses three probes to determinekR andm from the phases o
the correlations of two separated probes with a fixed re
ence probe located atR549 cm. Since these probes are l
cated at differentR, the phase information is meaningful on
if the magnitudes of the correlations between all probes
large. Since the mode structures are broad, we find sig
cant correlation for all modes and for all probe separatio
The final step determines the radial variation of the mo
amplitude by correlation analysis of a probe that is moved
increments approximatelydR;2 cm for successive plasm
discharges. The ratio of~1! the correlation between this mov
ing probe and the fixed reference probe and~2! the self-
correlation of the reference probe results in the normali
radial mode structure for any given mode. This is defined
Fnm,(R2)/Fn,m(R1)[uC(1,2)u/uC(1,1)u, and the profile is
obtained as the position of the second probe,R2, is moved
relative to the fixed position of the first probe,R1.

In order to illustrate the complexity of the frequenc
spectrum, the time-frequency domain of the magnitude of
correlation between two probes separated only in azimu
angle is shown in Fig. 3. In this example,DR;Ds;0, and
Dw590°. The figure shows the slow evolution of the pote
tial oscillations during the afterglow,v̇n /vn

2;231024. The
modes with larger amplitudes are labeled by their azimu
mode numbers,m. Note several modes exist simultaneous
with the same azimuthal mode number but with differe
frequencies. For example, three modes withm51, m52, and
m53 are identified. The frequencies of harmonic mod
evolve in time at rates different from the fundamental, a
this corresponds to the time evolution of the nonsinuso
wave form of the potential. An example of this harmon
structure are the modes at approximately 2.4, 4.7, 7.0,
9.4 MHz. Many modes with differentm do not appear to be
harmonically related~i.e., the ratio of frequencies are no
rational numbers!. For example, severalm51 modes coexist
near 1 MHz. The low frequency,m51, modes usually have
the largest magnitude, but this is not always the case.
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amplitudes of harmonic modes usually decrease with
creasing frequency.

The relative amplitudes of the modes change apprecia
in time, as can be seen from the TFD of the correlat
magnitude. Often, the higherm modes begin to increase i
magnitude as the mode evolves while the amplitude of
prominent m51 mode gradually decays. Sometimes t
m51 andm52 modes have equal amplitude, and occasi
ally, the m52 dominates. This observation necessitates
measurement of the normalized structure for each azimu
mode using correlation analysis with the fixed referen
probe. The radial mode structure must be reconstructed f
many similarly prepared discharges, but the relative am
tudes of the modes as well as their frequencies at any ins
are never the same from discharge to discharge. Howe
we find the amplitude for any given mode at any given p
sition relative to the amplitude of the fixed reference probe
be essentially time invariant.

While two probes azimuthally separated were used
determinem, other probes positioned on the same field li
were used to determine the field-aligned mode variation.
example, Fig. 4 illustrates the phase difference between
probes withDR5Dw50, R549 cm, andDs535 cm. These
measurements were made for the same discharge as
trated in Fig. 3, and Fig. 4 shows the phase difference,kiDs,
for the largest amplitude,m51 mode as a function of time
Similar analyses were made for other modes, and all mo
show a constant phase structure along a field line. Since
equatorial probe was used for these measurements, only
lines havingR.45 cm could be accessed without perturbi

FIG. 3. TFD of the magnitude of the correlation function of two floatin
potential probes withDR5Ds50 andDw590° graphed with a linear gray
scale. Shown below is the short-time frequency spectrum of the correla
at an instant during fully developed and saturated oscillations. The
muthal mode numbers are shown.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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the energetic trapped particles. The probe positions were
proximatelys;0 ands5635 cm, and, for these positions
we find the relative mode amplitudes are comparable
within 610%. These measurements indicate the poten
fluctuations are flute-like.

The final step in mode measurement procedure is to a
lyze the relative phase and amplitude of the correlation
two probes with increasing radial separation. Probes loca
off the equatorial midplane were used~see Fig. 1! since these
probes could be inserted deep into the plasma and near t
dipole magnet without disturbing the energetic electrons
the potential fluctuations observed by the reference pro
By using multiple probes, correlation analysis of the TF
identified both the azimuthal mode and the radial variatio
Since ki;0 and sincem is known, probes located at an
position within the plasma can be used to compute the ra
correlations.

Figures 5 and 6 show the results of these measurem
In Fig. 5, the three lowestm numbers were examined at thre
different times in a single discharge but with each rad

FIG. 4. The field-line phase difference of the correlation function for t
probes positioned at two locations along the same field line,DR5Dw50
andDs'35 cm, showingki'0 for several modes during the afterglow.

FIG. 5. The phase of the correlation between two probes as the r
separation increased for the lowest three azimuthal modes. Results
kR'0 for all modes during the afterglow. Solid lines are the relative ph
difference of global modes computed from the nonlinear simulated~Sec.
IV C!.
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location representing averages of several shots having
movable probe at different positions. We observe no appa
time dependence in the phase, and there is no change in
phase with radius. SincekR;0, the mode structures rotat
rigidly. In Fig. 6, the radial profile of the normalized magn
tude of the two-probe correlation shows the radial struct
to be broad and to depend weakly on the azimuthal mo
Higher m modes are seen to be more localized toward
core, as might be expected. In all cases, the mode struc
extends from the edge to the inner hot electron region,
they are not localized to particular flux surfaces. In additio
no time dependence is observed in these normalized profi
although the relative amplitudes of one mode with the ot
are observed to vary in time. In making these observatio
we find it noteworthy that the global mode structures a
time-independent despite the complex and time variation
the fluctuation’s frequency spectrum.

Finally, equivalent measurements were made of the g
bal mode structure of the bursting interchange instabilit
observed during microwave heating. As described
Warren,32 clearly identified modes with well-separated fr
quencies are observed during the second half of every b
The rate of change of the mode frequencies are appr
mately v̇n /vn

2;0.2, considerably faster than during the a
terglow. Nevertheless, modes withm51 and m52 were
identified. We found the radial structure for these modes
be the same as shown in Fig. 6; however, averaging o
discharges showed a larger variance especially for the ra
variation of the phase,kRDR.

IV. MODELING THE NONLINEAR EVOLUTION OF THE
HEI INSTABILITY

This section describes the nonlinear, self-consist
simulation of the time evolution of the hot electron inte
change~HEI! instability used to interpret measurements
the global mode structure. Previously, Ref. 30 described
simulation together with the linear dispersion relation f
HEI instability in a dipole-confined plasma. For complet
ness, we review again the basic model equations and, t
describe more fully the numerical procedure used to comp
simulation with measurement.

The simulation solves finite-difference approximatio
to the coupled, nonlinear model equations for the evolut

ial
ow
e

FIG. 6. Radial profiles of normalized correlation amplitude
uCn,m(1,2)u/uCn,m(1,1)u, for the lowest three azimuthal modes.
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of the electrostatic potential and the field-line integra
number densities of ions and energetic electrons. The si
lation is similar to those described by Refs. 19 and 23. T
electrostatic potential is advanced by solving the equation
charge continuity subject to reasonable boundary conditio
However, unlike these other nonlinear simulations, multi
groups of particles must be evolved simultaneously in or
to capture the drift resonance between the energetic elec
and the azimuthal propagation of the interchange instabi
References 19 and 23 required only a single equation for
mass density; whereas, simulation of the HEI instability a
ditionally requires evolving the phase-space density of s
eral groups of energetic electrons, each having different
ues of the magnetic moment,m. Finite-difference
approximations to the model equations are integrated u
the numerical methods introduced by Zalesak40,41 and fol-
lowing an implementation demonstrated by Guzdar a
co-authors.42

A. Model equations

The model equations are described in the coordinate
an ideal, axisymmetric dipole magnetic field. The potent
F~c,w,t!, is assumed constant along a field line, consist
with measurements and our understanding of interchang
stability. The potential evolves in time due to the divergen
of net perpendicular current integrated over magnetic fl
tubes and subject to fixed boundary conditions. The div
gence of perpendicular current either charges or discha
flux tubes. Energetic electrons contribute to this curr
through the¹B drift, and ions contribute through the pola
ization or inertial drift. In order to simplify the computatio
of energetic electron dynamics, the energetic electrons
assumed to be deeply trapped with negligible motion alo
field lines,J;0. A neutralizing population of cold electron
exists that is more uniformly distributed along the field lin
Finally, to facilitate an efficient spectral solution for the p
tential, we define an axisymmetric dielectric,«̄(c,t), propor-
tional to the azimuthally averaged ion number per flux tu
N̄i(c,t)5*dw Ni /2p.

Using the notation in Ref. 30, the flux-tube average
defined aŝ A&[dV21*dx A/B2, wheredV(c)5*dx/B2 is
the volume of a flux tube of given flux,dc dw. The model
equations describe only the dynamics of the total particles
a tube of unit flux,N[^n&dV, but the particle densityn, can
vary along a field line. Since the magnetic field of the po
dipole is relatively simple to characterize, expressions for
field-line integrals can be computed after making reasona
assumptions for the field-line density profile.

Effectively, there are three coupled, nonlinear equati
to be solved in the simulation. These are the time evolut
of the potential,dV^¹•¹Ḟ&524pe(Ṅi2Ṅe)[24peDr,
the evolution of the ion number,Ṅi52dV^¹•niV i&, and the
evolution of several populations of energetic electro
having different magnetic moments, ^ṅe&dV[Ṅe

5(mḞm(c,w,t). To denote the time derivative, we useȦ
[]A/]t. The rate of change of net charge on a flux tube d
to the integrated divergence of the perpendicular curren
Dr. In the expression for the electrons,Fm is the number of
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electrons with a givenm on the given flux tube.Fm(c,w,t) is
a bounce-averaged phase-space density that evolves ac
ing to the guiding center drift Hamiltonian.32

The field-line integral of the ion current depends up
the density profile along the field line. We call this integr
the density-weighted average, defined asiAi[^An&/^n&
5N21*dx n(x)A/B2. In this notation, the ion continuity
equation is

]Ni

]t
1

]

]w
~Ni i¹w•V i i !1

]

]c
~Ni i¹c•V i i !50. ~3!

For cold ions and for low-frequency interchanges withv
!vci , V i is the sum of theE3B and polarization drifts. This
substitution gives

]Ni

]t
1

]

]w FcNi S 2
]F

]c
2 I u¹wu2

vciB
I ]Ḟ

]w
D G

1
]

]c FcNi S ]F

]w
2 I u¹cu2

vciB
I ]Ḟ

]c D G50. ~4!

The first term in parentheses is theE3B drift, and the sec-
ond term is the polarization drift. This second term rep
sents the plasma dielectric response, and the azimuthal a
age of this term will serve as the dielectric,«̄, when solving
for Ḟ.

Since the field-line profile of the plasma density
not known, we invoke an important simplification in ord
to compute the density-weighted integrals. The density p
file is assumed to be relatively broad and vary on all fie
lines asn}sinu, whereu is the polar angle from the dipole’
axis. For a point dipole, the magnetic coordinate,x, is related
to the polar angle asx5(c2/M0)cosu/sin4 u. With this
density profile, the density-weighted averages
iu¹wu2/vciBi'0.66M0

2B0 /c4vci0 and iu¹cu2/vciBi
'0.77M0

2B0/c2vci0, where vci0 is the ion cyclotron fre-
quency atB5B0.

The field-line integrals of the Laplacian in the equati
for the potential take a particularly simple form in dipo
magnetic coordinates. The linear Poisson’s equation beco

hw

]2F

]w2 1hc

]2F

]c2 524pe~Ni2Ne![24per, ~5!

wherer(c,w,t) is the net charge on a field line. Two geo
metric terms define the transformation of the Laplacian
erator into field-line averaged flux coordinates:hw

[*dx/u¹cu252M0/c2 andhc[*dx/u¹wu254M0.
The electrons are grouped by magnetic moment, or

fective energymB0, and separate evolution equations a
needed for each energetic electron group. The collision
guiding-center evolution of electrons with constant mom
m is governed by the following equation:

]Fm

]t
1

]

]w F S vd~m,c!2c
]F

]c DFmG1
]

]c Fc
]F

]w
FmG50.

~6!

Equations~4! and ~6! and the time derivative of Eq.~5!
can be combined to form the equation used to evolve
electrostatic potential. This requires proper treatment of
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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ion polarization currents. For our simulation, we desire
preserve the form of the Laplacian operator since this fo
can be inverted easily. We achieve this by defining an ‘‘a
symmetric’’ dielectric constant,«̄, in terms of the azimutha
average of the ion number,N̄i . The remaining nonaxisym
metric part is defined asÑi[Ni2N̄i . Using these defini-
tions, the equation for the evolution of the potential used
the numerical simulation is

hw«̄w~c,t !
]2Ḟ

]w2 1hc

]

]c
«̄c~c,t !

]Ḟ

]c
524peDr, ~7!

where divergence of the integrated perpendicular curren

Dr~c,w,t ![
]

]w S cr
]F

]c
1cÑi I u¹wu2

vciB
I ]Ḟ

]w

1(
m

vd~m,c!FmD 2
]

]c

3S cr
]F

]w
2cÑi I u¹cu2

vciB
I ]Ḟ

]c D , ~8!

and the time-dependent, axisymmetric dielectric functio
are

ēw~c,t !5114pec
N̄i

hw
I u¹wu2

vciB
I'0.3

^vpi
2 &

vci
2 , ~9!

ēw~c,t !5114pec
N̄i

hc
I u¹cu2

vciB
I'0.18

^vpi
2 &

vci
2 . ~10!

In CTX, ^vpi
2 &/vci

2 ;103 and scales with radius as}N̄i /c2.
Equation~7! requires the most computation to solve since
each time step, we iteratively invert the Laplacian opera
on the left-hand side~LHS! to arrive at improved approxi
mations to Ḟ which also appears on the right-hand si
~RHS!.

B. Numerical methods

The nonlinear evolution of the hot electron interchan
instability is simulated by computing solutions to Eqs.~4!,
~6!, and ~7! on uniform, rectangular grids, 64364, in the
~c,w! plane. We use the fourth-order flux-corrected transp
~FCT! method developed by Zalesak40,41 and a second-orde
trapezoidal leap-frog algorithm for the time integration.42 We
also add a constant and uniform dissipation to the equa
advancing the electrostatic potential. This term prevents
merical instability at short wavelengths and, additiona
represents a physically relevant nonresonant dissipatio
potential oscillations. As predicted by Berk,37 we find the
rate of frequency chirping to be proportional to this dissip
tion. Finally, we set the boundaries ofF(c,w,t) to be zero
both atc5cmax, corresponding to the surface of the terrel
and at cmin , corresponding to the surface of the vacuu
vessel. The precise definition ofcmax influences the globa
mode structure, and a good fit to the measured mode s
ture results for a reasonable value ofcmin .

To illustrate these numerical methods, note that the c
servation equations determining the evolution ofNi(t) and
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Fm(t) have the general formḟ 52¹•G( f (t),F(t),Ḟ(t)),
with f representing eitherNi or one of severalFm and withG
representing the field-line integrated particle flux. At the b
ginning of every time step,f (t), F(t), andḞ(t) are known
throughout the computational~c,w! domain and at a previou
step,t2Dt. For these equations, the second-order leap-f
and trapezoidal steps are taken as

f t2Dt/2* 5 1
2~ f t1 f t2Dt!, ~11!

f t1Dt/2* 5 f t2Dt/2* 2DtDG~ f ~ t !,F~ t !,Ḟ~ t !!, ~12!

ft1Dt5ft2DtDG~f * ~t1Dt/2!,F* ~t1Dt/2!,Ḟ* ~t1Dt/2!!. ~13!

The fourth-order, finite-difference expression for¹•G is writ-
ten plainly asDG~•••!, but this operator represents Zalesak
three step FCT process: compute the result of low-order c
vection, find the high-order, flux-limiting antidiffusive
fluxes, and compute the limited fourth-order convection su
that no new extrema are created nor existing extrema ac
tuated.

The electrostatic potential must be advanced withNi and
Fm, and this is done while preserving second-order accur
in time and fourth-order accuracy on the spatial grid. At ea
time step and at each half-step in Eq.~13!, Ḟ is determined
by Eq.~7!. The Laplacian is inverted with fast-Fourier tran
forms alongw, the fixed boundariesḞ50 at cmax andcmin ,
and the known values ofNi , Fm , andF. We choose to trea
the appearance ofḞ on the RHS of Eq.~7! using iteration.
Successively more accurate solutions to Eq.~7! are found by
inverting the LHS until the difference betweenḞ on the LHS
and the RHS effectively vanishes.~We find this convergence
to be rapid, requiring less than ten iterations.!

With Ḟ determined,F is also time advanced with trap
ezoidal leap-frog steps. In order to prevent short-wavelen
numerical instability and to introduce nonresonant dissi
tion ~which controls frequency sweeping!, dissipation is
added as the potential is advanced in time. Since the fl
corrected transport of the electrons and ions introduces v
little numerical dissipation, this explicit dissipation, eve
when very small, dominates over any artificial, numeric
damping. With Ḟ(t) determined fromNi(t), Fm(t), and
F(t) and Ḟ* (t1Dt/2) determined from Ni* (t
1Dt/2), Fm* (t1Dt/2), and F* (t1Dt/2), the potential is
advanced according to the rule

F t2Dt/2* 5 1
2~F t1F t2Dt!, ~14!

F t1Dt/2* 5F t2Dt/2* 1DtḞ t2~21!kDtn¹2kF t, ~15!

F t1Dt5F t1DtḞt1Dt/2* 2~21!kDtn¹2kF t1Dt/2* . ~16!

The term proportional to the constantn weakly damps po-
tential oscillations. The integerk50,1,2,... sets the scal
length for dissipation. Although we have examined solutio
with k ranging from 0 to 4, for the results discussed here,
set k52, andn ranged from 0.003 to 0.01 times the grid
scale normalization,;(1/64)2vd0.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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C. Global mode structure comparison

The numerical solutions exhibit many characteristics
served in the experiment.30 For example, the HEI instability
is destabilized only for a sufficiently large fraction of ene
getic electrons. The simulation also shows frequency ch
ing, multiple azimuthal modes, and strong modulation of
ergetic electron flux during nonlinear saturation. Figure
illustrates the time evolution of the electrostatic potential
computed by the simulation from initial conditions consiste
with the experiment. The instability grows quickly to larg
amplitude,euFu;0.1m0B0, and develops a relatively com
plex, time-evolving frequency spectrum withv̇/v2'0.09.
Azimuthal modes withm51, 2, and 3 can be detected easi
and the global structure of these modes can be ‘‘measu
by computing the Fourier transforms of the simulated pot
tial. In this section, the initial conditions for this solution a
described, and the computed global mode structure is c
pared with measurements.

The initial potential fluctuations are set to random
phased, low-amplitude oscillations that vary sinusoidally
both thec and w directions. The initial profiles of the ion
and the energetic electrons are axisymmetric with an in
radial variation of the form f (c,t50)}(cmax2c)b(c
2cmin)

c, where the parameterb is chosen to insure] f /]c

FIG. 7. Self-consistent time evolution of the electrostatic potential co
puted using the nonlinear simulation. The TFD of the potential oscillati
computed by the simulation show multiple modes and frequencies risin
time that resembles Figs. 2 and 3. Time is normalized tovdh0

21 , and the
potential is normalized tom0B0 /e.
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50 atc5c0 andc is adjusted to change the steepness of
profile. For the energetic electrons,c54 andb52.46. For the
ion number density, the initial profile was the sum of tw
equal parts: a constant and a gradual radial variation w
c51 and b50.62. At the density peak,R5R0, half of the
electrons were energetic and half were cold.

The distribution of energetic electrons are modeled w
five energy groups,F(m,c,w)5a(c)( i 51

5 b(m5m i), with
m i /m050.5, 0.75, 1.0, 1.25, and 1.5. The initial radial pr
file, a~c! has the form described above, and the initial profi
for each electron group is identical. The functionb(m)
}(2m/m0)exp(22m/mu0) determines the relative numbe
density of each of the five groups of energetic electrons.
the instability develops, resonant electrons are stron
mixed in radius; however, the total number of electrons w
each value of magnetic moment is constant.

In Fig. 7, the normalized dissipation rate wasn50.005.
For global modes, this causes a nonresonant damping o
order,] logF/]t;1025vd0!v. For broad, long-wavelength
modes, this is a very small dissipation rate, but it nevert
less influences the solution significantly. Ifn is decreased to
0.003, the frequency changes more slowly in time,v̇/v2

'0.07. If n is increased to 0.01, the frequency ‘‘chirps
more rapidly,v̇/v2'0.2.

The global structures of the modes simulated num
cally are viewed by performing Fourier transforms of t
computed potential,F~c,w!. The relative radial variations o
the amplitude and phase of an azimuthal mode,Fm(c), can
be compared directly with experimental measurements.

When this comparison was first made, we noticed a s
sitivity to the location of the outer boundary,c5cmin , where
F is forced to vanish. Whencmin was set to correspond t
the inner radius of the vacuum vessel,R567 cm and
cmin /c050.4, the computed mode structures were m
peaked than seen experimentally. As the outer boundary
moved to larger radii, the global modes in the simulati
broadened. Several simulations were computed as the o
boundary gradually increased toR598 cm, or cmin /c0

50.27. From these we were able to identify the outer lo
tion that minimized the magnitude of the difference betwe
the simulated and measured mode structures for the low
three modes,m51, 2, and 3. This occurred whenRmax577
cm, or cmin /c050.35. If only one mode~instead of three!
was compared, the optimal location for the outer bound
was different. Them51 mode optimized at largerRmax while
m53 optimized at slightly smallerRmax.

While we are not certain of the reason why a larg
diameter of the outer boundary is required for the simulat
to match the experiment’s mode structures, we believe it
sults from the large geometric difference between the cy
drical vacuum vessel and the dipole’s field lines. As shown
Fig. 1, the field lines are tangent to the vacuum vesse
R567 cm. This limits the extent of energetic electrons, b
not the colder plasma. As a Langmuir probe is moved
ward, beyond the last flux tube not obstructed by the ves
the plasma density drops abruptly by more than a factor o
but this does not eliminate HEI potential fluctuations. Ob
ously, the experimental boundaries are much more comp

-
s
in
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than simulated, and it is perhaps not surprising that so
adjustment is required to match these conditions.

The computed nonlinear global mode structures
shown in Figs. 5 and 8 when the outer boundary was se
Rmax577 cm. Radial profiles of the radial phase differen
kRDR, generated from the simulation form51, 2, and 3 are
shown as solid lines in Fig. 5~and superimposed onto th
experimental data!. The computed phase difference with r
dius is small. As in the experiment, the modes rotate rigi
with kR;0. Figure 8 compares the radial variation of t
mode amplitudes with the observed normalized correla
amplitudes~which are also shown in Fig. 6!. As seen experi-
mentally, the ratios of the mode amplitudes evolve in tim
but the form of radial structures are essentially constant o
the amplitude saturates. In Fig. 8, the computed mode
plitudes were normalized to minimize the least square dif
ence between simulation and experiment. The profiles
peaked near the peak of the energetic electron densit
R0527 cm. Modes with higherm are more centrally peake
than modes with lowerm.

The model equations give insight into the electrosta
potential structures of different azimuthal modes. If the
oscillating charge on the flux tubes,r, were nonzero only
near the peak density of the energetic electrons~e.g.,R'27
cm!, then Eq.~7! can be used to solve for the radial mo

FIG. 8. Comparison of radial mode structure computed from the nonlin
simulation~solid lines! with the observed profiles of the normalized corr
lation amplitudes form51, 2, and 3.
Downloaded 23 May 2002 to 128.59.51.207. Redistribution subject to A
e

e
to
,

y

n

,
ce

-
r-
re
at

c
t

structure by separation of variables. LetDr→0 except for a
narrow region nearc'c0, and let the potential have th
form F(c,w,t)5g(c)exp@2i(vt2mw)#. If we further take
N̄i to be a constant in order to simplify the form of th
plasma dielectric@Eqs.~9! and~10!#, then the radial structure
function,g(c), must satisfy the equation

c4
]

]c S 1

c2

]gm

]c D20.83m2gm50. ~17!

With the vacuum vessel wall at infinity, the outer solutio
have a simple form gm;ca;1/Ra where a53/2
1A9/410.833m2. The lowest three azimuthal modes a
g1;1/R3.3, g2;1/R3.9, and g3;1/R4.6. These expression
are reasonably close to the radial dependencies show
Figs. 6 and 8, although the actual mode structures are
peaked. Equation~17! also offers a simple and perhaps ge
eral explanation of our key results. Indeed, during the sim
lation, r(c,w,t) is monitored, and, the largest oscillations
r do not occur near the peak of the energetic electrons.

The inner structures of the global modes could not
measured. As probes moved inward, the intensity of the
tificial radiation belt was significantly perturbed. For this re
son, we are unable to make any conclusions pertaining to
inner boundary condition at the surface of the dipole m
netic nor the mode structures near and within the radius
peak energetic electron density.

V. SUMMARY

The global mode structure of low frequency interchan
instabilities driven by energetic electrons was measured
ing time-frequency-domain analysis of the correlations
tween multiple high-impedance probes. A modal prescript
was used to simplify the correlation analysis of movable h
impedance floating potential probes. By positioning t
probes appropriately, the HEI instability was seen to be flu
like with ki;0 with multiple azimuthal modes peaked
amplitude near the peak density of energetic electrons.
modes have a time-evolving frequency spectrum, but
form of the global mode structure does not change sign
cantly in time. The radial mode structures are relative
broad, and they rotate rigidly withkRDR'0.

A nonlinear, self-consistent numerical simulation of t
growth and saturation of the HEI instability reproduces ma
observations from the experiment including the radial str
tures of the lowest azimuthal modes. The agreement betw
the modes computed by the simulation and the experime
measurements supports the underlying assumptions of
model equations and the resonant phase-space dynamic
ported previously.30

Although general characteristics of the numerical so
tions to the model equation resemble experimental meas
ments, several observations of the HEI instability in the e
periment are not modeled nor do we fully understand how
do so. During microwave heating, the quasiperiodic bursts
instability have a more complex frequency spectrum th
seen computationally. Experimentally, a period of rising c
herent modes occurs after a short period when the freque
spectrum is relatively broad-band and turbulent. Broad-b

ar
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fluctuations have not been seen computationally. Perh
most significantly, the mode structure of the HEI is sensit
to the experimental boundary conditions, and observation
the fluctuations near and within the region of energetic e
trons has been so far impossible.

New experiments are underway that may provide ad
tional insight into the structure, causes, and evolution
electrostatic interchange modes in dipole-confined plasma
the CTX device, an array of 96 energetic particle detect
will be able to measure and to image the rapid electron
namics during interchange mixing. In addition, thermion
filaments will be installed at the inner equator in order
inject electrons onto inner field lines. This will allow con
trolled charging of field lines and generate radial elec
fields and strong azimuthal plasma rotation. In these fut
experiments, it is hoped to determine the similarities a
differences between interchange motion driven by centr
gal drifts and by the magnetic drifts of energetic electron
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