Exploring Plasma Dynamics with Laboratory Magnetospheres

Mike Mauel and LDX and CTX Experimental Teams Columbia University and PSFC, MIT

Culham Science Centre, Abingdon, OX14 3DB, UK February 2014

Motivation

- Can space weather physics be applied to the laboratory?
 - Very high plasma pressure, $\beta > 100\%$, steady-state, without toroidal field
 - Collisionless and semi-collisional dynamics well-represented by bounce-averaged transport (*i.e.* particle number per unit flux with constant energy invariants)
 - Fluctuations drive plasma to "canonical" profiles: stationary, marginally stable states, having minimum entropy generation
- Can laboratory studies facilitate the study of space physics and technology?
 - Controlled experiments in relevant magnetic geometry
 - Very strong, but small, dipole magnet inside a very large vacuum chamber making possible very large plasma experiments at relatively low cost
 - "Whole plasma" access for unparalleled imaging and diagnostic measurement
 - Injection of waves (ECH, "chorus", Alfvén, and ion-cyclotron waves), current, and particle/plasmoid gives unprecedented control over plasma properties and behaviors

Laboratory Magnetospheres: Facilities for Controlled Space Physics Experiments

LDX: High Beta Levitation & Turbulent Pinch

CTX: Polar Imaging, Current Injection. Rotation

Outline

- How does a laboratory magnetosphere work?
- Interchange disturbances and magnetic drift resonances
 - Low frequency interchange turbulence: steady "canonical" profiles and bounce-averaged (flux-tube averaged) gyrokinetics
 - Three interchange instabilities: Fast drift-kinetic, centrifugal interchange, semi-collisional entropy modes
- **Examples:** exploring plasma dynamics by injection of heat, particles, current, and magnetic perturbations by decreasing ion inertial lengths

LDX and CTX Team

R. Bergmann, A. Boxer, D. Boyle, D. Brennan, M. Davis, G. Driscoll, R. Ellis, *J. Ellsworth*, S. Egorov, D. Garnier, *B. Grierson*, O. Grulke, C. Gung, A. Hansen,
K.P. Hwang, V. Ivkin, *J. Kahn, B. Kardon, I. Karim*, J. Kesner, S. Kochan, *V. Korsunsky*,
R. Lations, *B. Levitt*, *S. Mahar*, *D. Maslovsky*, M. Mauel, P. Michael, *E. Mimoun*,
J. Minervini, M. Morgan, R. Myatt, G. Naumovich, S. Nogami, *E. Ortiz*, M. Porkolab,
S. Pourrahami, T. Pedersen, A. Radovinsky, *A. Roach, M. Roberts, A. Rodin*,
G. Snitchler, D. Strahan, J. Schmidt, J. Schultz, B. Smith, P. Thomas, P. Wang, *H. Warren*, B. Wilson, *M. Worstell*, P. Woskov, *B. Youngblood*, A. Zhukovsky, S. Zweben

Jay Kesner

Darren Garnier

Laboratory Dipole Experiments Around the World

Lifting, Launching, Levitation, Experiments, Catching

First Levitated Dipole Plasma Experiment

Floating (Up to 3 Hours)

Diagnostics

Outline

- How does a laboratory magnetosphere work?
- Interchange disturbances and magnetic drift resonances
 - Low frequency interchange turbulence: steady "canonical" profiles and bounce-averaged (flux-tube averaged) gyrokinetics
 - Three interchange instabilities: Fast drift-kinetic, centrifugal interchange, semi-collisional entropy modes
- Examples: exploring plasma dynamics by injection of heat, particles, current, and magnetic perturbations by decreasing ion inertial lengths

Example Plasma Experiment

- 20 kW injected electron cyclotron waves
- Plasma energy 250 J (3 kA ring current)
- Peak $\beta \sim 40\%$ (70% achieved in RT-1)
- Hydrogen gas density 4×10¹⁰ cm⁻³
- Peak plasma density 10¹² cm⁻³
- Energetic electrons <E> ~ 54 keV
- Peak (T) > 0.5 keV (thermal)
- Density proportional to injected power
- Sustained, dynamic, "steady state"

Measuring the Plasma Pressure from the Plasma Ring Current

fits magnetic sensor arrays?

Measuring the Plasma Pressure from the Plasma Ring Current

$$\mathbf{J}_{\perp} = \frac{\mathbf{B} \times \nabla P_{\perp}}{B^2} + \frac{\mathbf{B} \times \kappa}{B^2} (P - P_{\perp})$$

Reconstruction Results in Very Good Accuracy of Pressure Profile

3 kA

"Canonical" Profile: $\delta(PV^{\gamma}) \approx 0$

Measurement of Density Profile with Interferometry

Measurement of Density Profile with Interferometry Show Equal Particle Number per Unit Magnetic Flux

"Canonical" Profile: $\delta(nV) \approx 0$

Self-Organized Mixing: Dye Stirred in Glass

Our Space Environment is Complex and Highly Variable

With Concurrent Plasma Processes and Important Questions to Answer

Van Allen Probes (A&B) Launched August 2012 Discovered New 3rd Radiation Belt (2 MeV e⁻) then annihilated by passage of interplanetary shock ScienceExpress, Baker, *et al.*, 28 Feb 2013

Convection Electric Fields and the Diffusion of Trapped Magnetospheric Radiation

THOMAS J. BIRMINGHAM

EXB {
$$\dot{\psi} = \nabla \psi \cdot \mathbf{V} = \frac{\partial \Phi}{\partial \varphi} = -RE_{\varphi}$$

$$\begin{array}{l} \mbox{Diffusion}\\ \mbox{Coefficient} \end{array} & \left\{ \begin{array}{l} D_{\psi} = \lim_{t \to \infty} \int_{0}^{t} dt \, \langle \dot{\psi}(t) \dot{\psi}(0) \rangle \equiv \langle \dot{\psi}^{2} \rangle \tau_{c} \\ \\ = R^{2} \langle E_{\varphi}^{2} \rangle \tau_{c} \end{array} \right. \end{array}$$

$$\begin{array}{ll} \mbox{Adiabatic Radial}\\ \mbox{Transport} \end{array} & \left\{ \left. \frac{\partial F}{\partial t} = S + \left. \frac{\partial}{\partial \psi} \right|_{\mu,J} D_{\psi}(\mu, \, J) \left. \frac{\partial F}{\partial \psi} \right|_{\mu,J} \right. \end{array} \right.$$

Collisionless Radiation Belt Particles

NORAD OV3-4 (1966) validated physics of inward pinch and adiabatic heating of drift-resonant radiation belt particles. Farley, et al., Phys. Rev. Lett., 1970

INNER MAGNETOSPHERIC MODELING WITH THE RICE CONVECTION MODEL

FRANK TOFFOLETTO, STANISLAV SAZYKIN, ROBERT SPIRO and RICHARD WOLF

Department of Physics and Astronomy, Rice University, Houston, TX 77005, U.S.A.

Semi-collisional Plasmasphere and Ring Current

TABLE I

Comparison of equations of ideal MHD with those used in the RCM

Ideal MHD	RCM
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{\partial}{\partial t} \vec{v}_k \ \lambda_k \ \vec{x} \ t / \ \nabla / \eta_k S \ \eta_k / - L \ \eta_k / \vec{j}_k \times \vec{B} \nabla P_k$ $P \frac{2}{3} \sum_k \eta_k \ \lambda_k \ V^{-5 \ 3} \ \lambda_k constant$ Part of the magnetic field model. Included in magnetic field, but $\vec{j} \ / \ \sum_k \vec{j}_k$. Included implicitly in mapping. $\vec{E} \ \vec{B} 0 \text{ and } \vec{E}_\perp \vec{v}_k \times \vec{B} \frac{\nabla W \ \lambda k \ \vec{x} \ t / }{q_k}$

For each species and invariant energy λ , η is conserved along a drift path. Specific Entropy $pV^{\gamma} = \frac{2}{3} \sum |\lambda_s| \eta_s$

Space Science Reviews **107**: 175–196, 2003. © 2003 Kluwer Academic Publishers. Printed in the Netherlands.

Bounce-Averaged Turbulent Mixing in Toroidal Laboratory Plasmas

For isentropic mixing and when the turbulent spectrum is sufficiently broad to interact (nearly equally) with all particles, independent of energy and pitch-angle, the curvature pinch dominates.

Diffusion of flux-tube particle number, nδV, ...

Diffusion of Energy/Entropy, **PδV**^γ, ...

$$\frac{\partial(\bar{P}\delta V^{\gamma})}{\partial t} = \langle H \rangle + \frac{\partial}{\partial \psi} D_{\psi} \frac{\partial(\bar{P}\delta V^{\gamma})}{\partial \psi}$$

"Canonical" Profiles of Magnetized Plasma $\delta(nV) \approx 0 \quad \& \quad \delta(PV^{\gamma}) \approx 0$

- Low frequency fluctuations in strongly magnetized plasma, ω_d ~ ω << ω_b << ω_c, conserve energy or Lagrangian invariants of the flow.
- Turbulent mixing across flux tube volumes "self organizes" magnetized plasma to canonical profiles, which are nearly stationary $\delta(nV) \approx 0$ and $\delta(PV^{Y}) \approx 0$.
- Flux-tube geometry determines curvature diffusive & pinch terms in coordinate-space.
- Space (*i.e.* Dipole) geometry:
 - Birmingham, J. Geophysical Res., 1969
 - Harel, Wolf, et al., J. Geophys. Res., 1981
 - Kobayashi, Rogers, and Dorland, *Phys. Rev. Lett.*, 2010
 - Kesner, et al., Plasma Phys. Control. Fusion, 2010; Kesner, et al., Phys. Plasmas, 2011.

• Tokamak geometry:

- Coppi, Comments Plasma Phys. Controll. Fus., 1980
- > Yankov, JETP Lett., 1994 and Isichenko, et al., Phys. Rev. Lett., 1995
- Baker and Rosenbluth, Phys. Plasmas, 1998; Baker, Phys. Plasmas, 2002
- Garbet, et al., Phys. Plasmas, 2005

Quantitative Verification of Turbulent Particle Pinch

Using only measured electric field fluctuations,

Space weather diffusion model is verified with levitated dipole

Quantitative Verification of Turbulent Particle Pinch

Using only measured electric field fluctuations,

Thomas Birmingham's diffusion model is verified with levitated dipole

Quantitative Verification of Inward Turbulent Pinch

Alex Boxer, et al., "Turbulent inward pinch of plasma confined by a levitated dipole magnet," Nature Phys 6, 207 (2010).

Heating or gas modulation demonstrates (**Robust**) inward pinch & **Natural** "canonical" profile

- Density increases with power ($T \sim \text{constant}$). Density **profile shape is unchanged** near ($n\delta V$) ~ constant.
- Gas source moves radially outward. Inward pinch required to increase central density.

Turbulent Pinch is a Fundamental Process found in Toroidal Magnetic Systems Including Tokamaks and Planetary Magnetospheres (but, different...)

Levitated Dipole Experiment (LDX)

1.2 MA Superconducting Ring Steady-State25 kW ECRH1 MW ICRF (unused) **Princeton Large Torus (PLT)**

17 MA Copper Toroid 1 sec pulses 750 kW Ohmic 75 kW LHCD 2.5 MW NBI & 5 MW ICRF

A (Historic) Density Rise Experiment on PLT

Jim Strachan, et al., Nuc. Fusion (1982)

FIG.2. (a) Time evolution of the loop voltage, V, the lineaverage density \bar{n}_{e} , and the central electron density, $n_{e}(0)$ during the density rise. (b) Time evolution of the central electron temperature from $2\omega_{ce}$ (----), and from TVTS (•), with the time evolution of the central ion temperature from neutrons (--), and from charge exchange (X) during the density rise.

Inward Turbulent Pinch "is necessary to model the experimental results" of peaked density from edge gas source

A (Historic) Density Rise Experiment on PLT

Jim Strachan, et al., Nuc. Fusion (1982)

but gas puff intensifies turbulence and Outward Ion Energy Flux accompanies Inward Turbulent Particle Pinch

But, Toroidal Confinement without Toroidal Field is different...

• Dipole...

- Interchange (not drift-ballooning) sets limits
- ▶ $\beta \sim 100\%$ with $\omega^* \sim \omega_d$ (*isentropic*, $\delta(PV^{\gamma}) \sim 0$)
- Flux-tubes convect globally without bending
- No toroidally circulating particles
- Peaked profiles with flux tube volume $\delta V \sim R^4$

• Tokamak...

- Ballooning and kinks set pressure limit
- β ~ ε/q ≈ 5% with ω* >> ω_d (*non-isentropic*)
- Short radial scale of drift waves fluctuations
- Passing ≠ trapped particles
- Flat profiles with δV ~ qR

Outline

- How does a laboratory magnetosphere work?
- Interchange disturbances and magnetic drift resonances
 - Low frequency interchange turbulence: steady "canonical" profiles and bounce-averaged (flux-tube averaged) gyrokinetics
 - Three interchange instabilities: Fast drift-kinetic, centrifugal interchange, semi-collisional entropy modes
- Examples: exploring plasma dynamics by injection of heat, particles, current, and magnetic perturbations by decreasing ion inertial lengths

Interchange (or Entropy) Instabilities Always Dominate Turbulent Mixing

Familiar magnetospheric convection, *e.g.* Saturnian convection

Gurnett, et al., Science 316, 442 (2007)

- Three modes in the laboratory with *same global structure* but different frequencies:
 - Fast electron gyrokinetic interchange: Collisionless (ω_d τ_{col} > 10³) with (μ, J) invariance; frequency chirping
 - Centrifugal interchange Mach ~ 1: Semicollisional ($\Omega T_{col} \sim 1$) with (nV) invariance
 - Interchange/entropy modes: Semi-collisional (ω_d τ_{col} ~ 1) with (PV^γ) & (nV) invariance

 $\delta(\mathsf{PV}^{\gamma}) \sim \delta(\mathsf{nV}) \sim 0$

Trapped energetic particles very well confined by dipole magnetic field Cassini at Jupiter (Dec 30, 2000)

The natural high beta in planetary magnetospheres can be achieved in the laboratory. Steady-state.

- Garnier, POP (1999) shows equilibria with $\beta > 100\%$ possible
- Garnier, POP (2006) reports peak beta 20% achieved
- Garnier, NF (2009) reports peak beta doubles with levitation
- Saitoh, JFE (2010) reports peak beta 70% achieved in RT-1

 Shot 5070101
 X-Ray E > 40 keV

 LDX (Jul 1, 2005)
 X-Ray

0.7: 0.8

Drift-Resonant (Hot Electron) Interchange Instability

Kinetic Interchange Drift Mode can also appear in LDX with $\beta \sim 40\%$ "Artificial Radiation Belt"

Interchange Drift Resonance (μ , J) ~ 1/L²

Well-modeled with global, nonlinear Bounce-Averaged gyrokinetic simulation...

"Chorus" Injection Fills-in Phase-Space Holes

Well-modeled with global, nonlinear Bounce-Averaged gyrokinetic simulation...

Dmitri Maslovsky

Low frequency interchange & Entropy modes dominate Semi-collisional thermal plasma dynamics

- Interchange modes set pressure and density gradient limits in dipole-plasma (*not* ballooning-drift)
- Entropy mode changed our thinking: not just pressure and density gradients, also η = d(lnT)/d(lnn) (Kesner, POP, 2000; Kesner, Hastie, POP, 2002)
- Entropy modes generate zonal flows and selfregulate transport levels (Ricci, Rogers, Dorland, *PRL*, 2006)
- Fluctuations disappear with flat density profiles (Garnier, *JPP*, 2008; Kobayashi, et al., *PRL*, 2009)
- *Measurements show fluctuations throughout plasma* (*Nature-Physics*, 2010); inverse energy cascade (*POP*, 2009); intermittency (*PRL*, 2010)

Turbulence drives plasma to steep profiles and creates "Canonical" Profiles: Self-Organization

Gyrokinetic (GS2) simulations show turbulence drives particles or heat to maintain uniform entropy density

Kobayashi, Rogers, Dorland, PRL (2010)

Profile Parameter, $\eta = d \ln T / d \ln n$ Profile Parameter, $\eta = d \ln T / d \ln n$

Turbulence Maintains Centrally-Peaked Self-Organized "Canonical" Profiles

- Thermal plasma energy
 W_{th} ≈ 100 J with 11 kW ECRH.
- Measured edge T_e ≈ 14 eV, density profile, and stored energy, require central T_e ~ 0.5 keV
- Outward thermal flux sustains inward particle flux, η ~ 1.2

Boxer, et al., Nature Phys. (2010)

Polar Imaging of Plasma Dynamics

Investigations of Interchange/Entropy Mode Turbulence

High Speed Imaging of Interchange/Entropy Mode Turbulence at 0.5 Mfps

- Detectors biased to collect ion current
- Visualize turbulence
- Density fluctuations rotate in electron drift direction with random amplitude and phase modulations
- Compute turbulence cascade and compare with nonlinear simulations

Brian Grierson

Low-Frequency Turbulent Convection: Detailed Observation of Particle Transport Process

Symmetry Breaking and the 2D Inverse Energy Cascade.

Matt Worstell

Current Injection results in Global Amplification or Local Suppression of m = 1 Entropy Modes

Current Injection results in Global Amplification or Local Suppression of m = 1 Entropy Modes

Outline

- How does a laboratory magnetosphere work?
- Interchange disturbances and magnetic drift resonances
 - Low frequency interchange turbulence: steady "canonical" profiles
 - Three interchange instabilities: Fast drift-kinetic, centrifugal interchange, semi-collisional entropy modes
- **Examples:** exploring plasma dynamics by injection of heat, particles, current, and magnetic perturbations by decreasing ion inertial lengths

High Speed Pellet Injection for Localized Density Transients

CAUT

Flux Tube Dynamics Following Pellet Release Experiments in Laboratory Magnetospheres

Low-cost "Smart-Probes" for Multiple-Point in situ Measurements

3-axis accelerometer

World's Largest Lab Magnetosphere

Size matters:

At larger size, trapped particle energy, intensity of "artificial radiation belt", and plasma density significantly increase

High Density and Large Size are required for Controlled Investigations of Alfvén Wave Dynamics

	Mercury	Earth	Jupiter	
Size	2 R	10 R	100 R	
Density (c / ω	0.1	0.003	0.00001	
Comments	V	Alfvén Resonances	Propagating Alfvén	

Alfvén Wave Excitation in LDX: Opportunity for a Many Important Experiments

- Alfvén Wave Spectroscopy and Resonances
- Toroidal-Poloidal Polarization Coupling
- Alfvén Wave interactions with Radiation Belt Particles
- Ion Cyclotron Resonance and FLR

Example: 200 kHz m = 2 Polar Launcher

NASA's early effort in Laboratory Testing and Validation can be Significantly Advanced with Modern Modeling and Diagnostics

NASA Glenn #5 (1966)

A Large Space Chamber Could be Filled with a Laboratory Magnetosphere

Laboratory Magnetospheres are Unique Opportunities for Controlled Plasma Science Experiments

- Laboratory magnetospheres are facilities for conducting controlled tests of space-weather models in relevant magnetic geometry and for exploring magnetospheric phenomena by controlling the injection of heat, particles, and perturbations
- Semi-collisional and trapped "artificial radiation belt" dynamics and transport have been studied.
- Larger laboratory magnetospheres significantly increase trapped particle energy, intensity of "artificial radiation belt", and plasma density. Allowing new controlled tests of complex Alfvén wave interactions in the magnetosphere.
- Very large plasmas can be produced in the laboratory, continuously, with low power and great flexibility. Verification and discovery of critical plasma science.
- Outlook: We can build/operate the largest laboratory plasma on Earth