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Motivation

 Can space weather physics be applied to the laboratory?
+Very high plasma pressure, § > 100%, steady-state, without toroidal field

+ Collisionless and semi-collisional dynamics well-represented by bounce-averaged transport (i.e.
particle number per unit flux with constant energy invariants)

+Fluctuations drive plasma to “canonical” profiles: stationary, marginally stable states, having
minimum entropy generation

 Can laboratory studies facilitate the study of space physics and technology?
+ Controlled experiments in relevant magnetic geometry

+ \ery strong, but small, dipole magnet inside a very large vacuum chamber making possible very
large plasma experiments at relatively low cost

- “Whole plasma” access for unparalleled imaging and diagnostic measurement

- Injection of waves (ECH, “chorus”, Alfvén, and ion-cyclotron waves), current, and particle/plasmoid
gives unprecedented control over plasma properties and behaviors



Laboratory Magnetospheres:
Facilities for Controlled Space Physics Experiments

LDX:
High Beta Levitation & Turbulent Pinch
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Outline

* How does a laboratory magnetosphere work?
* Interchange disturbances and magnetic drift resonances

» Low frequency interchange turbulence: steady “canonical”
profiles and bounce-averaged (flux-tube averaged) gyrokinetics

» Three interchange instabilities: Fast drift-kinetic, centrifugal
interchange, semi-collisional entropy modes

» Examples: exploring plasma dynamics by injection of heat, particles,
current, and magnetic perturbations by decreasing ion inertial lengths
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Laboratory Dipole Experiments Around the World

CTX (Columbia)

150 kA turns
(Not Levitated)
0.15m

Mini-RT (Univ. Tokyo) RT-1 (Univ. Tokyo) LDX (Columbia-MIT)

50 kA turns 250 kA turns 1200 kA turns
17 kg 110 kg 565 kg
0.15m 0.25m 0.34 m
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Lifting, Launching, Levitation, Experiments, Catching




First Levitated Dipole Plasma Experiment
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Outline

How does a laboratory magnetosphere work?
Interchange disturbances and magnetic drift resonances

» Low frequency interchange turbulence: steady “canonical”

profiles and bounce-averaged (flux-tube averaged) gyrokinetics

| exploring plasma dynamics by injection of heat, particles,
current, and magnetic perturbations by decreasing ion inertial lengths




Example Plasma EXx

+ 20 kW injected electron cyclotron waves

+ Plasma energy 250 J (3 kA ring current)
+ Peak § ~ 40% (70% achieved in RT-1)

- Hydrogen gas density 4x10'° ¢cm-3

- Peak plasma density 10" cm™

- Energetic electrons {E) ~ 54 keV

. Peak <T) >0.5keV (thermal)

+ Density proportional to injected power

+ Sustained, dynamic, “steady state”
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Measuring the Plasma Pressure from the Plasma Ring Current

BxVP, Bxk
J. = B2 + B2

(P — P)

Levitation Coil

—
Plasma Ring Current rd

What is the plasma ring current distribution that
fits magnetic sensor arrays?



Measuring the Plasma Pressure from the Plasma Ring Current

BxVP, Bxk
JL=—"p T 5

(P — P)

Reconstruction Results in Very
Good Accuracy of Pressure Profile
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‘Canonical” Profile: 0(PVY) = 0

—
N
=
~
F\
N
=,

2.0 . . . - .
Levitated (100805046), t = 8.2 sec, Y = 5/3
1.5} \/ﬁ/\
1.0_ .............................................................................................................
Supported (100805045)
— t=9.5 sec
0-51 Y =5/3
0-8.6 0.8 1.0 1.2 1.4 1.6

Radius [m]



Measurement of Density Profile with Interferometry

< 5 m >
Levitated
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Measurement of Density Profile with Interferometry
Show Equal Particle Number per Unit Magnetic Flux

(a) Interferometer Cords (b) Interferometer Measurements (c) Density and Number Radial Profiles
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Self-Organized Mixing: Dye Stirred in Glass



Our Space Environment is Complex and Highly Variable
With Concurrent Plasma Processes and Important Questions to Answer

Van Allen Probes (A&B) Launched August 2012

Discovered New 3rd Radiation Belt (2 MeV e°) then annihilated by passage of interplanetary shock
ScienceExpress, Baker, et al., 28 Feb 2013



EXB {zb:vw-vz%:—m%
t . . .
Diffusion {Dw — tlggo dt (¥(t)y(0)) = <¢2>Tc
Coefficient 0
= R*(E)7.

Adiabatic Radial [ OF 94 0 Dyl J) OF

Transport E 8¢ 0, J % 0, J

Collisionless Radiation Belt Particles

NORAD 0V3-4 (1966) validated physics of inward pinch and adiabatic heating of
drift-resonant radiation belt particles. Farley, et al., Phys. Rev. Lett., 1970



INNER MAGNETOSPHERIC MODELING WITH THE RICE lons
CONVECTION MODEL

FRANK TOFFOLETTO, STANISLAV SAZYKIN, ROBERT SPIRO and

RICHARD WOLF
Department of Physics and Astronomy, Rice University, Houston, TX 77005, U.S.A.

Semi-collisional Plasmasphere and Ring Current

TABLE I
Comparison of equations of ideal MHD with those used in the RCM

Ideal MHD RCM Electrons
8 - -

% vV v/ 0 5 kM Xt/ Vg S mg/—L g/

D% V/pi/ jxB-VP jxxB VP

% v V/Pp 23 0 P %Zk e A V23 Ap constant
VB 0 Part of the magnetic field model.
V x B 0]_: Included 1in magnetic field, but j / Dok fk.
V x E —%—? Included implicitly in mapping.

P oiw B = > - 5 VW Ak Xt/

vxB 0 E B Oand E| vy xB n

PLASMA SHEET
== INNER EDGE

CONTOURS OF
CONSTANT [ds.

JE

For each species and invariant energy A, n is
conserved along a drift path.

Specific Entropy 7
pV’ = EEM

N,

ﬁ“ Space Science Reviews 107: 175-196, 2003.
‘~ © 2003 Kluwer Academic Publishers. Printed in the Netherlands.



Bounce-Averaged Turbulent Mixing in Toroidal Laboratory Plasmas

For isentropic mixing and when the turbulent spectrum is sufficiently broad to
interact (nearly equally) with all particles, independent of energy and pitch-angle,
the curvature pinch dominates.

Diffusion of flux-tube particle number, ndV, .
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“‘Canonical” Profiles of Magnetized Plasma
3nV)=0 & J(PVY)=0

Low frequency fluctuations in strongly magnetized plasma, wy ~ w << w, << Wy, conserve energy or
Lagrangian invariants of the flow.

Turbulent mixing across flux tube volumes “self organvizes” magnetized plasma to canonical
profiles, which are nearly stationary d(nV) =0 and d(PV') = 0.

Flux-tube geometry determines curvature diffusive & pinch terms in coordinate-space.

Space (i.e. Dipole) geometry:
= Birmingham, J. Geophysical Res., 1969
» Harel, Wolf, et al., J. Geophys. Res., 1981
» Kobayashi, Rogers, and Dorland, Phys. Rev. Lett., 2010
» Kesner, et al., Plasma Phys. Control. Fusion, 2010; Kesner, et al., Phys. Plasmas, 2011.

Tokamak geometry:
= Coppi, Comments Plasma Phys. Controll. Fus., 1980
» Yankov, JETP Lett., 1994 and Isichenko, et al., Phys. Rev. Lett., 1995
» Baker and Rosenbluth, Phys. Plasmas, 1998; Baker, Phys. Plasmas, 2002
» Garbet, et al., Phys. Plasmas, 2005



Quantitative Verification of Turbulent Particle Pinch

Using only measured electric field fluctuations,
Space weather diffusion model is verified with levitated dipole

< 5 m >
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Quantitative Verification of Turbulent Particle Pinch

Using only measured electric field fluctuations,
Thomas Birmingham’s diffusion model is verified with levitated dipole

Floating Potential (¢ > £ 150 V)

<«— 80deg —

Edge Probe Array:| D = lim [ dt(p(¢)(0)) = (?)7.




Quantitative Verification of Inward Turbulent Pinch
o(nov) e, d(ndV)
o~ 9 awa O

With levitated dipole, inward turbulent
transport sets profile evolution
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Alex Boxer, et al., “Turbulent inward pinch of plasma confined by a levitated dipole magnet," Nature Phys 6, 207 (2010).



Heating or gas modulation demonstrates
(Robust) inward pinch & Natural “canonical” profile

* Density increases with power (T ~ constant). Density profile shape is unchanged near (n6V) ~ constant.
* (as source moves radially outward. Inward pinch required to increase central density.
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Turbulent Pinch is a Fundamental Process found in Toroidal Magnetic Systems
Including Tokamaks and Planetary Magnetospheres (but, different... )

Levitated Dipole Experiment (LDX) Princeton Large Torus (PLT)
1.2 MA Superconducting Ring 17 MA Copper Toroid
Steady-State 1 sec pulses
25 kW ECRH 750 KW Ohmic
1 MW ICRF (unused) 75 kW LHCD

2.5 MW NBI & 5 MW ICRF



A (Historic) Density Rise Experiment on PLT

Jim Strachan, et al., Nuc. Fusion (1982)
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A (Historic) Density Rise Experiment on PLT

Jim Strachan, et al., Nuc. Fusion (1982)

Enhanced Turbulent Fluctuation Intensity...
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But, Toroidal Confinement without Toroidal Field is different...

® Dipole...
» Interchange (not drift-ballooning) sets limits
» B~ 100% with w* ~ wq (isentropic, d(PVY) ~ 0)
» Flux-tubes convect globally without bending
» No toroidally circulating particles
» Peaked profiles with flux tube volume dV ~ R?

¢ Tokamak...
Ballooning and kinks set pressure limit

v v

B ~ €/q = 3% with w* >> w4 (non-isentropic)
Short radial scale of drift waves fluctuations

v Vv

Passing # trapped particles
Flat profiles with 8V ~ qR

v



Outline

* How does a laboratory magnetosphere work?
* Interchange disturbances and magnetic drift resonances

» Low frequency interchange turbulence: steady “canonical”
profiles and bounce-averaged (flux-tube averaged) gyrokinetics

» Three interchange instabilities: Fast drift-kinetic, centrifugal
interchange, semi-collisional entropy modes

» Examples: exploring plasma dynamics by injection of heat, particles,
current, and magnetic perturbations by decreasing ion inertial lengths




Interchange (or Entropy) Instabilities
Always Dominate Turbulent Mixing

¢ Famllla}r magnetogpherlc convection, e.g. Gumett, et al. Science 316, 442 (2007)
Saturnian convection

* Three modes in the laboratory with same
global structure but different frequencies:

» Fast electron gyrokinetic interchange:
Collisionless (wq Teol > 10°%) with (y, J)
invariance; frequency chirping

» Centrifugal interchange Mach ~ 1: Semi-
collisional (Q Tco ~ 1) with (nV) invariance

» Interchange/entropy modes: Semi-collisional

(Wd Teot ~ 1) with (PVY) & (nV) invariance 5(PVY) ~ 5(nV) ~ 0



Trapped energetic particles very well confined
by dipole magnetic field

Cassini at Jupiter (Dec 30, 2000)

The natural high beta in planetary magnetospheres
can be achieved in the laboratory. Steady-state.

e Garnier, POP (1999) shows
equilibria with B > 100% possible

e (Garnier, POP (2006) reports peak
beta 20% achieved

o (Garnier, NF (2009) reports peak
beta doubles with levitation

= Saitoh, JFE (2010) reports peak
beta 70% achieved in RT-1



Drift-Resonant (Hot Electron) Interchange Instability
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Interchange Drift Resonance (4, J) ~ L

Well-modeled with global, nonlinear Bounce-Averaged gyrokinetic simulation...
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“‘Chorus” Injection Fills-in Phase-Space Holes

Well-modeled with global, nonlinear Bounce-Averaged gyrokinetic simulation...
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Low frequency interchange & Entropy modes dominate
Semi-collisional thermal plasma dynamics

Profile “Shape”(i.e. gradient)
Sets Stability Limits

Interchange modes set pressure and density gradient 2 , . ,
limits in dipole-plasma (not ballooning-drift) MHD Unstable

Y =5/3—|

Entropy mode changed our thinking: not just
pressure and density gradients, also n = d(InT)/d(Inn) | ; ;
(Kesner, POP, 2000; Kesner, Hastie, POP, 2002) | A SR

Entropy Moclﬂe
Unstable |

Entropy modes generate zonal flows and self- , | |
regulate transport levels (Ricci, Rogers, Dorland, L O --~~~Stable -
PRL, 20006) | | |

Fluctuations disappear with flat density profiles
(Garnier, JPP, 2008; Kobayashi, et al., PRL, 2009)
Measurements show fluctuations throughout Peaked;  Peaked
plasma (Nature-Physics, 2010); inverse energy 0 Density. - Temperature
cascade (POP, 2009); intermittency (PRL, 2010) 0 1 2




Turbulence drives plasma to steep profiles and creates
“Canonical” Profiles: Self-Organization

Gyrokinetic (GS2) simulations show turbulence drives

particles or heat to maintain uniform entropy density Kobayashi, Rogers, Dorland, PRL (2010)
2 2
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Turbulence Maintains Centrally-Peaked Self-
Organized “Canonical” Profiles

* Thermal plasma energy
Winh = 100 J with 11 kW ECRH.

» Measured edge Te = 14 eV,
density profile, and stored
energy, require
central Te ~ 0.5 keV

* Qutward thermal flux sustains
inward particle flux, n ~ 1.2
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Polar Imaging of Plasma Dynamics

Investigations of Interchange/Entropy Mode Turbulence




High Speed Imaging of Interchange/Entropy Mode
Turbulence at 0.5 Mfps

Detectors biased to collect ion
current

Visualize turbulence

Density fluctuations rotate in
electron drift direction with
random amplitude and phase
modulations

Compute turbulence cascade
and compare with nonlinear
simulations

Brian Grierson



Low-Frequency Turbulent Convection:
Detailed Observation of Particle Transport Process

Well-modeled with global, nonlinear Bounce-Averaged gyrokinetic simulation...
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Low-Frequency Turbulent Convection:
Detailed Observation of Particle Transport Process

Interchange Transport of

“Inward” and “"Outward” Moving
Plasma-Filled Flux Tubes
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Symmetry Breaking and the 2D Inverse Energy Cascade.
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Local Current Injection to Explore Interchange/

Entropy Mode Turbulence
Injector
Sensor
Injector Sensor
ds ds

Ev . JJ_ — Ev . Jp?“b X Ipfr'b 5(¢ — wprobe)é(go o @p"“b)



Current Injection results in Global Amplification or
Local Suppression of m = 1 Entropy Modes

-180°  -135°  -90°  -45° 0° 45° 90°  135°
Nearby Injector (Ap = 12°)

Distant Injector (Ag = 270°)

Spectral Power (V/Hz)?

Max Roberts Frequency (0 - 20 kHz)



Current Injection results in Global Amplification or
Local Suppression of m = 1 Entropy Modes
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Outline

» Examples: exploring plasma dynamics by injection of heat, particles,
current, and magnetic perturbations by decreasing ion inertial lengths



High Speed Pellet Injectionifor Localized Density Transients




Flux Tube Dynamics Following Pellet Release
Experiments in Laboratory Magnetospheres

CH Pellet Ablation

Plasma Flux Tube Evolution



Low-cost “Smart-Probes” for Multiple-Point in situ Measurements

Smart Probe Enclosure

/

32 MB Flash Memory

KLOS MCU

Battery Power

FRDM-KL05Z Development Board
With Arduino & USB Interfaces
3-axis accelerometer

—10 mm Dia—



World’s Largest Lab Magnetosphere

< 5 m >
Supported Levitated

S S

Size matters:
At larger size, trapped particle energy, intensity of “artificial
radiation belt’, and plasma density significantly increase



High Density and Large Size are required for
Controlled Investigations of Alfven Wave Dynamics

000000

Mercury Earth Jupiter
Size 2R 10R 100 R
Density (c/ w 0.1 0.003 0.00001

Comments V Alfvén Resonances | Propagating Alfvén




Alfven Wave Excitation in LDX:
Opportunity for a Many Important Experiments

o Alfvén Wave Spectroscopy and Resonances

* Toroidal-Poloidal Polarization Coupling

o Alfvén Wave interactions with Radiation Belt Particles
* lon Cyclotron Resonance and FLR

Toroidal Poloidal Compressional

Example: 200 kHz m = 2 Polar Launcher



NASA’s early effort in Laboratory Testing and Validation can be
Significantly Advanced with Modern Modeling and Diagnostics

NASA Glenn #5 (1966)



A Large Space Chamber Could be Filled with a
Laboratory Magnetosphere




Laboratory Magnetospheres are Unique Opportunities
for Controlled Plasma Science Experiments

e |aboratory magnetospheres are facilities for conducting controlled tests of
space-weather models in relevant magnetic geometry and for exploring
magnetospheric phenomena by conftrolling the injection of heat, particles,
and perturbations

¢ Semi-collisional and trapped “artificial radiation belt” dynamics and transport
have been studied.

o |arger laboratory magnetospheres significantly increase trapped particle energy,
intensity of “artificial radiation belt”, and plasma density. Allowing new controlled
tests of complex Alfvén wave interactions in the magnetosphere.

o \ery large plasmas can be produced in the laboratory, continuously, with low
power and great flexibility. Verification and discovery of critical plasma science.

* Outlook: We can build/operate the largest laboratory plasma on Earth





