

Inward Turbulent Diffusion of Plasma in a Levitated Dipole

LDX Experimental Team

Ryan Bergman, Alex Boxer, Matt Davis, Jennifer Ellsworth, Darren Garnier, Jay Kesner, Mike Mauel, Phil Michael, Paul Woskov

1

Wednesday, March 17, 2010

Diffusion due to Random Velocity Fluctuations

$$X(t + \Delta t) = X(t) + \int_{t}^{t + \Delta t} dt' \tilde{V}(t')$$

where $\langle \tilde{V} \rangle = 0$
then $\frac{\partial N}{\partial t} = \frac{\partial}{\partial X} D \frac{\partial N}{\partial X}$
with $D = \int_{0}^{t \to \infty} dt' \langle \tilde{V}(t') \tilde{V}(0) \rangle$
 $= \tau_{cor} \tilde{V}_{RMS}^{2}$
 $N(x, t)$

Shake Sand on Plate

Wednesday, March 17, 2010

"Inward" Diffusion in Magnetized Plasma

(Flux tube Motion due to Random Low-frequency E×B Fluctuations)

Wednesday, March 17, 2010

"Inward" Diffusion in Magnetized Plasma

(Flux tube Motion due to Random Low-frequency E×B Fluctuations)

Turbulent "Inward Pinch"

$$\begin{aligned} \frac{\partial N}{\partial t} &= \frac{\partial}{\partial \psi} D \frac{\partial N}{\partial \psi} \\ D_{\psi,\psi} &= \lim_{t \to \infty} \oint_0^t dt \langle \dot{\psi}(t) \dot{\psi}(0) \rangle \\ &\equiv \langle \dot{\psi}^2 \rangle \tau_{cor} = R^2 \langle E_{\phi}^2 \rangle \tau_{cor} \end{aligned}$$

Levitated: Density (Particles/cc)

Wednesday, March 17, 2010

"Inward" Diffusion in Magnetized Plasma

(Flux tube Motion due to Random Low-frequency E×B Fluctuations)

Centrally peaked profiles result from turbulent interchange mixing: Electrostatic Self-Organization

Naturally peaked profiles **sustained steady-state** by microwave heating.

Levitated: Density (Particles/cc)

Wednesday, March 17, 2010

uppo

Inserted

ШC

TFTR Density Profile *q*-Scaling

Glow from

Plasma

Support Withdrawn

FIG. 1. Density in units of 10^{19} m⁻³ as a function of minor radius in cm. The dots are data points from the supershot TFTR-76770, the dashed curve is proportional to 1/q, and the solid curve is calculated from Eq. (1).

V. Yankov, 1994

- The pinch effect [is the result] of a turbulent uniform distribution of particles over some phasespace surfaces specified by the geometry of the magnetic field and by invariants is introduced.
- Large-scale electrostatic modes lead to a turbulent uniform distribution nq = const with a maximum particle density at the center of the column.
- Leading to a natural explanation of the self-consistency of profiles.

Wednesday, March 17, 2010

Outline

- Plasma transport due to low-frequency fluctuations in a magnetospheric/dipole field: *The Turbulent Pinch*
- Levitated Dipole Experiment (LDX)
- Comparing discharges confined by a Supported and Levitated superconducting magnet
- Observation of the **turbulent inward particle pinch** and measurement of random **E**×**B** motion at edge.
- Turbulent transport of entropy density, G = PδV^γ
- New research tools for LDX
- Tritium-suppressed fusion

Particle Dynamics Characterized by Adiabatic Invariants: Gyration (μ), Bounce (J), and Drift (ψ)

Northrup and Teller, "Stability of the Adiabatic Motion of Charged Particles in the Earth's Field," Phys Rev (1960) Warren, et al. "On Arnol'd diffusion in a perturbed magnetic dipole field," *GRL* (1992)

Wednesday, March 17, 2010

Magnetosphere

Structure of Magnetosphere **Electric Field**

Wednesday, March 17, 2010

JOURNAL OF GEOPHYSICAL RESEARCH, SPACE PHYSICS

Vol. 74, No. 9, MAY 1, 1969

Electric Convection

Convection Electric Fields and the Diffusion of Trapped Magnetospheric Radiation Collisionless Random

THOMAS J. BIRMINGHAM

$$\frac{\partial \langle \bar{Q} \rangle (\alpha, M, J, t)}{\partial t} = \frac{\partial}{\partial \alpha} \left[\overline{D_{\alpha \alpha}} \frac{\partial \langle \bar{Q} \rangle}{\partial \alpha} \right] \quad (5)$$

α = magnetic flux, Ψ

dipole field. We describe \mathbf{E} by the potential V

$$V = \frac{A(t)r}{\sin^2\vartheta}\sin\phi \qquad (2)$$

A being a positive, time-dependent amplitude. The form equation 2 is the fundamental (m = 1)asymmetric mode in Fälthammar's [1965] Fourier potential. Since $r \sin^{-2} \vartheta$ and ϕ are both constant on dipole field lines, **B** lines are equipotentials, and **E** · **B** is zero. In the $\vartheta = \pi/2$, equatorial plane

$$\overline{D_{aa}} \approx \frac{c^2 \mu^2}{4\alpha^2} \left(\pi\right)^{1/2} \tau_c \alpha \tag{18}$$

A reasonable direction to proceed, in view of the paucity of direct experimental evidence of electric fields and their time variations, is to assume that the autocorrelation $(\delta A(t - \tau))$ $\delta A(t)$ has the form

$$\langle \delta A(t-\tau) \ \delta A(t) \rangle = \alpha \exp - \frac{\tau^2}{\tau_o^2}$$
 (16)

from dawn to dusk, and is random on the time expansion of a general longitudinally dependent scale on which the solar wind executes time variations of large spatial extent. (The correlation time τ_{\bullet} is thus typically one hour.)

Random Interchange Motion

Wednesday, March 17, 2010

15

Stationary Turbulent Profiles: Connection with Magnetic Geometry

- Plasma interchange dynamics is characterized by flux-tube averaged quantities:
 - Flux tube particle number, $N = \int ds n/B \approx n \, \delta V$
 - Entropy density, $G = P \,\delta V^{\gamma}$, where $\gamma \approx 5/3$

 $(n, P) \Leftrightarrow (N, G)$ are related by flux tube volume (geometry), $\delta V = \int ds/B$

- Random fluctuations cause radial diffusion or plasma "flux-tubes". Interchange mixing flattens ∂ [*N* and G]/ $\partial \psi \rightarrow 0$ at the same rate.
- Steady turbulent profiles imply **N** and **G** are homogeneous.
- Natural profiles are "stationary" since fluctuating E×B flows do not change (*N*, *G*).

Natural Profiles are also Marginally Stable Profiles

- N = constant, is the D. B. Melrose criterion (1967) for stability to centrifugal interchange mode in rotating magnetosphere.
- G = P δV^Y = constant, is the T. Gold criterion (1959) for marginal stability of pressure-driven interchange mode in magnetosphere, and also Rosenbluth-Longmire (1957) and Bernstein, et al., (1958).
- Self-Organization is possible: e.g. steep central pressure gradients excites instability that drives inward turbulent particle pinch while relaxing pressure to P δV^Y = constant

Wednesday, March 17, 2010

Natural Profiles in Solenoidal Geometry

Theta-pinch, large aspect ratio solenoid, ...

- Flux tube volume:
 - $\delta V = \int ds/B = \text{constant}$
 - $\delta V = \int ds/B = (q\mathcal{H})^{-0.8}$ (tokamak)
- Natural profiles:
 - $n \, \delta V = \text{constant}$
 - P δV^γ = constant
 - Density and pressure profiles are flat
- Density, pressure, and temperature at edge and at core are equal unless interchange mixing is suppressed.

Natural Profiles in Dipole Geometry

Electrostatic Self-Organization

Heat injection creates *super-critical gradients* creating global turbulent fluctuations that *relax gradients* while *driving particles inward*.

Wednesday, March 17, 2010

LDX Experiment

Wednesday, March 17, 2010

Levitated Dipole Experiment (LDX)

Wednesday, March 17, 2010

Floating Coil Cross-Section

- 1. Magnet Winding Pack
- 2. Heat Exchanger tubing
- 3. Winding pack centering clamp
- 4. He Pressure Vessel (Inconel 625)
- 5. Thermal Shield (Lead/ glass composite)
- 6. Shield supports (Pyrex)
- 7. He Vessel Vertical Supports/Bumpers
- 8. He Vessel Horizontal Bumpers
- 9. Vacuum Vessel (SST)
- 10. Multi-Layer Insulation
- 11. Laser measurement surfaces
- 13. Outer structural ring

Wednesday, March 17, 2010

RT-1 (University of Tokyo)

1/3-scale as LDX
High-beta (40%)
10 keV electrons
0.2 sec hot electron
confinement-time

Previous Result using a Supported Dipole:

High-beta (β ~ 26%) plasma created by multiplefrequency ECRH with sufficient gas fueling

- Using 5 kW of long-pulse ECRH, plasma with trapped fast electrons ($E_h > 50$ keV) were sustained for many seconds.
- Magnetic equilibrium reconstruction and x-ray imaging showed high stored energy > 300 J (τ_E > 60 msec), high peak β ~26%, and anisotropic fast electron pressure, P_⊥/P_{||} ~ 5.
- Stability of the high-beta fast electrons was maintained with sufficient gas fueling (> 10⁻⁶ Torr) and plasma density.
- D. Garnier, et al., PoP, (2006)

Wednesday, March 17, 2010

Thin Supports were a Major Power Loss...

Lifting, Launching, Levitation, Experiments, Catching

Wednesday, March 17, 2010

Levitated Dipole Plasma Experiments

Levitated Dipole Plasma Experiments

Wednesday, March 17, 2010

New Result with Levitated Dipole:

Centrally peaked density profiles and Increased plasma pressure occur during levitation

- Magnetic levitation eliminates parallel losses, and plasma profiles are determined by radial transport processes.
- Multi-cord interferometry reveals dramatic (up to 10-fold) central peaking of plasma density during levitation.
- Profile peaking occurs rapidly, allowing direct measurement of the inward particle pinch.
- Low-frequency fluctuations are observed with an intensity consistent with the observed inward pinch.
- The turbulent pinch is associated with increased plasma pressure consistent with constant entropy density, G = PδV^γ, and high thermal electron temperature, T_e > 300 eV.

Density Profile with/ without Levitation

- Procedure:
 - Adjust levitation coil to produce equivalent magnetic geometry
 - Investigate multiplefrequency ECRH heating
- **Observe:** Evolution of density profile with 4 channel interferometer
- Compare: Density profile evolution with supported and levitated dipole

Alex Boxer, MIT PhD, (2008)

Wednesday, March 17, 2010

Plasma Confined by a Supported Dipole

- 5 kW ECRH power
- D₂ pressure ~ 10⁻⁶ Torr
- Fast electron instability, ~ 0.5 s
- Ip ~ 1.3 kA or 150 J
- Cyclotron emission (V-band) shows fast-electrons
- Long, low-density "afterglow" with fast electrons
- ➡ 1×10¹³ cm⁻² line density

Plasma Confined by a Levitated Dipole

Multi-Cord Interferometer Shows Strong Density Peaking During Levitation

Inversion of Chord Measurements

Wednesday, March 17, 2010

Inversion of Chord Measurements

Levitation Always Causes More Peaked Profiles Relative to Supported Discharges

- Comparison of density profiles for levitated and supported discharges always show more peaked profiles during levitation.
- Natural density profiles are created regardless of plasma pressure (*i.e.* both low and high beta).
- Natural density profiles are established rapidly, within ~20 msec.
- Natural density profiles are sustained steady-state by microwave heating.

Wednesday, March 17, 2010

Natural Density Profiles Established Rapidly

- Levitation vs. Supported comparisons provide an opportunity to directly observe the effects of turbulent transport, as the parallel losses are switched off/on.
- Short 1/2 second heating pulses minimize influence of hot electrons on plasma dynamics.
- Turbulent fluctuations are established quickly as the ECRH is switched on.
 Fluctuations diminish after ECRH is switched off.

Naturally Peaked Profiles Established Rapidly

Wednesday, March 17, 2010

Neutral Source Appears at Outer Edge (Levitation Shields Neutrals from Core)

Floating Potential Probe Array

- Edge floating potential oscillations
- 4 deg spacing @ 1 m radius
- 24 probes
- Very long data records for excellent statistics!!

Wednesday, March 17, 2010

Low-Frequency Fluctuations are Observed throughout Plasma and Probably Cause Naturally Peaked Profiles

- Low-frequency fluctuations ($f \sim 1$ kHz and < 20 kHz) are observed with edge probes, multiple photodiode arrays, interferometry, and fast video cameras.
- The structure of these fluctuations are complex, turbulent, and *not understood*.
- Edge fluctuations can be intense ($E \sim 200$ V/m) and are dominated by longwavelength modes that rotate with the plasma at 1-2 kHz
- High-speed digital records many seconds long enable analysis of turbulent spectra in a single shot. We find the edge fluctuations are characteristic of viscously-damped 2D interchange turbulence.
- See Brian Grierson, *et al.* "Global and local characterization of turbulent and chaotic structures in a dipole-confined plasma," *Phys Plasmas* (2009).

Plasma ExB Motion

$$\mathbf{V} = -\hat{\varphi}R\frac{\partial\Phi}{\partial\psi} + \frac{\hat{\psi}}{RB}\frac{\partial\Phi}{\partial\varphi}$$

•

$$\dot{\psi} = \nabla \psi \cdot \mathbf{V} = \frac{\partial \Phi}{\partial \varphi} = -RE_{\varphi}$$

Measured
at edge

Wednesday, March 17, 2010

Random Interchange Particle Diffusion

Wednesday, March 17, 2010

Naturally Peaked Profiles Established Rapidly

Wednesday, March 17, 2010

51

Turbulent Particle Pinch is associated with Turbulent Entropy Pinch: Pressure Peaking

 Flux-tube density and entropy density have identical dynamics for a plasma with an adiabatic closure, G = PδV^γ

$$\frac{\partial N}{\partial t} - \frac{\partial}{\partial \varphi} \left(N \frac{\partial \Phi}{\partial \psi} \right) + \frac{\partial}{\partial \psi} \left(N \frac{\partial \Phi}{\partial \varphi} \right) = S$$
$$\frac{\partial G}{\partial t} - \frac{\partial}{\partial \varphi} \left(G \frac{\partial \Phi}{\partial \psi} \right) + \frac{\partial}{\partial \psi} \left(G \frac{\partial \Phi}{\partial \varphi} \right) = H$$

- (N, G) ~ constant implies peaked density and pressure profiles (if γ > 1)
- Edge T_e ~ 15 eV, implies central T_e ~ 500 eV with measured diamagnetism and measured density profile
- Thermal stored energy of 60 J (this example levitated discharge, 2 µTorr D₂)

Turbulent Particle Pinch is associated with Turbulent Entropy Pinch: Pressure Peaking

• Flux-tube density and entropy density have identical dynamics for a plasma with an adiabatic closure, $G = P\delta V^{\gamma}$

$$\frac{\partial N}{\partial t} - \frac{\partial}{\partial \varphi} \left(N \frac{\partial \Phi}{\partial \psi} \right) + \frac{\partial}{\partial \psi} \left(N \frac{\partial \Phi}{\partial \varphi} \right) = S$$
$$\frac{\partial G}{\partial t} - \frac{\partial}{\partial \varphi} \left(G \frac{\partial \Phi}{\partial \psi} \right) + \frac{\partial}{\partial \psi} \left(G \frac{\partial \Phi}{\partial \varphi} \right) = H$$

- (N, G) ~ constant implies peaked density and pressure profiles (if γ > 1)
- Edge T_e ~ 15 eV, implies central T_e ~ 500 eV with measured diamagnetism and measured density profile
- Thermal stored energy of 60 J (this example levitated discharge, 2 µTorr D₂)

Adiabatic mixing implies core parameters determined by edge & compressibility:

Wednesday, March 17, 2010

53

Next Steps in LDX Dipole Confinement Physics

- Do natural pressure profiles, P ~ 1/δV^Y, develop? Soft x-ray diagnostics (installed) and Thomson scattering (SSPX) for warm plasma pressure profile measurements.
- What are the spatial structures of the convective flows? Install additional interferometer channels, reflectometer, and complete high-speed optical tomography analysis (in progress).
- Higher density plasma with additional heating options:
 - ✓ 10 kW CW 28 GHz gyrotron (1st experiments successful)
 - ▶ 1 MW CW ICRF heating (*TSW2500 from GA, starting...*)
- What is the effect of magnetic field errors on confinement? Install non-axisymmetric trim/error coils. Induce ~15 kA plasma current to create very weak rotational transform.

• Back to The Future (July 3, 1985) Fuel: banana, beer

• Spider-Man 2 (June 30, 2004) Fuel: tritium

im

Wednesday, March 17, 2010

- Opened July 19, 2009. (Written and directed by Duncan Jones, son of David Bowie.)
- It is the near future. Astronaut Sam Bell is living on the far side of the moon, completing a three-year contract with Lunar Industries to mine Earth's primary source of energy, Helium-3. It is a lonely job, made harder by a broken satellite that allows no live communications home. Taped messages are all Sam can send and receive.

Deuterium-Fueled Power Plants with Tritium Suppression

John Sheffield and Mohamed Sawan, Fus. Sci. Tech. (2008)

Fig. 1. dpa and He production rates in ferritic steel for D-T and D-D systems for the first wall of a ferritic steel/ H_2O shield.

Wednesday, March 17, 2010

Levitated Dipole Confinement Concept: Combining the Physics of Space & Laboratory Plasmas

- Steady state
- Non-interlocking coils
- Good field utilization
- Possibility for $\tau_E > \tau_p$
- Advanced fuel cycle
- Internal ring

Levitated Dipole Reactor

Dipole Fusion Concept

ITER
ts Generation ReactorLevitated Dipole
Sud Generation ReactorImage: Stress of the stres

Kesner, et. al. Nucl. Fus. 2004

Wednesday, March 17, 2010

Summary

• Levitation eliminates parallel particle losses and allows a dramatic peaking of central density.

LDX has demonstrated the formation of natural density profiles in a laboratory dipole plasma and the applicability of space physics to fusion science.

- Random fluctuations of density, light emission, potential, and electric field provide evidence of random E×B motion that causes interchange mixing and an turbulent inward pinch.
- Intensity of E_{ϕ} fluctuations measured at edge can account for inward diffusion.
- Increased stored energy consistent with adiabatic entropy density profile: a necessary physics requirement for dipole fusion.

Wednesday, March 17, 2010