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Abstract.  We report the first production of high beta plasma confined in a fully levitated laboratory dipole using 
neutral gas fueling and electron cyclotron resonance heating.  The pressure results primarily from a population of 
energetic trapped electrons that is sustained for many seconds of microwave heating provided sufficient neutral 
gas is supplied to the plasma. As compared to previous studies in which the internal coil was supported, 
levitation results in improved particle confinement that allows higher-density, high-beta discharges to be 
maintained at significantly reduced gas fueling.  Elimination of parallel losses coupled with reduced gas leads to 
improved energy confinement and a dramatic change in the density profile.  Improved particle confinement 
assures stability of the hot electron component at reduced pressure. By eliminating supports used in previous 
studies, cross-field transport becomes the main loss channel for both the hot and the background species. 
Interchange stationary density profiles, corresponding to an equal number of particles per flux tube, are 
commonly observed in levitated plasmas.  

1. Introduction

The dipole confinement concept [1, 2] was motivated by  spacecraft observations of planetary 

magnetospheres that show centrally-peaked plasma pressure profiles forming naturally  when 

the solar wind drives plasma circulation and heating. Unlike most other approaches to 

magnetic confinement in which stability requires average good curvature and magnetic shear, 

MHD stability in a dipole derives from plasma compressibility  [3–5]. At marginal stability 

!(pV") = 0 (with p the plasma pressure, 

! 

V= dl /B"  is the differential flux tube 

volume, and " = 5/3), and an adiabatic 

exchange of flux tubes does not  modify the 

pressure profile nor degrade energy 

confinement. Non-linear studies indicate that 

large-scale convective cells will form when 

the MHD stability  limit is weakly  violated, 

which results in the circulation of plasma 

between the hot core and the cooler edge 

region [6]. Studies have also predicted that 

the confined plasma can be stable to low 

frequency (drift wave) modes when #=dln 

Te/d ln ne>2/3 [7]. The marginally  stable case 

to both drift  waves and MHD modes, is thus 

where:

p ∝ V γ and
n ∝ V −1.

1! !                           IC/P4-12
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FIG. 1. Schematic of LDX device showing  

electron cyclotron resonance zones configuration.
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Diffusion due to Random Velocity Fluctuations
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Shake Sand on Plate
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Dye Stirred in Glass
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“Inward” Diffusion in Magnetized Plasma
(Flux tube Motion due to Random Low-frequency E!B Fluctuations)
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(Flux tube Motion due to Random Low-frequency E!B Fluctuations)
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Centrally peaked profiles result from 
turbulent interchange mixing: 

Electrostatic Self-Organization

Naturally peaked profiles sustained 
steady-state by microwave heating.

“Inward” Diffusion in Magnetized Plasma
(Flux tube Motion due to Random Low-frequency E!B Fluctuations)
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TFTR
Density Profile q-Scaling

V.  Yankov, 1994

•! The pinch effect [is the result] of 
a turbulent uniform distribution 
of particles over some phase-
space surfaces specified by the 
geometry of the magnetic field 
and by invariants is introduced. 

•! Large-scale electrostatic modes 
lead to a turbulent uniform 
distribution nq = const with a 
maximum particle density at the 
center of the column. 

•! Leading to a natural explanation 
of the self-consistency of profiles. 
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DIII-D: Ip Ramps (L-Mode)

(Dan Baker, 2002)
Lagrangian Transport 

Description with Preserved 
Adiabatic Invariants

After Ramp-Up Flat Top

After Ramp-Down Flat Top

9Wednesday, March 17, 2010

Outline
• Plasma transport due to low-frequency fluctuations in a 

magnetospheric/dipole field: The Turbulent Pinch

• Levitated Dipole Experiment (LDX)

• Comparing discharges confined by a Supported and Levitated 
superconducting magnet

• Observation of the turbulent inward particle pinch and 
measurement of random E!B motion at edge.

• Turbulent transport of entropy density, G = P"V"

• New research tools for LDX

• Tritium-suppressed fusion
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Particle Dynamics Characterized by Adiabatic Invariants: 
Gyration (µ), Bounce (J), and Drift (ψ)

3 kHz

1 Hz

10 mHz

For outer zone e- 

(~ 0.5 MeV)…

With strong B and large size,
three motions separate!

L

Northrup and Teller, “Stability of the Adiabatic Motion of 
Charged Particles in the Earth’s Field,” Phys Rev (1960)

Warren, et al. “On Arnol'd diffusion in a perturbed 
magnetic dipole field,” GRL (1992)
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Magnetosphere

• Energy: mostly from the sun

• Low Energy Particles: mostly from the atmosphere

• High Energy Particles: mostly from outer boundary
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Structure of Magnetosphere

T. Birmingham, JGR (1969)
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Collisionless Random 
Electric Convection

α = magnetic flux, ψ
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Random Interchange Motion

∂N

∂t
= �S� +

∂

∂ψ
D

∂N

∂ψ

D = lim
t→∞

� t

0
dt�ψ̇(t)ψ̇(0)� ≡ �ψ̇2�τc

Correlation Time

ψ̇ = ∇ψ · V =
∂Φ
∂ϕ

= −REϕ

D = R2�E2
ϕ�τc

Flux tube 
particle number

T. Birmingham, JGR (1969)
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• Plasma interchange dynamics is characterized by flux-tube averaged quantities:

‣ Flux tube particle number, N = # ds n/B $ n %V

‣ Entropy density, G = P %V", where " $ 5/3

‣(n, P) ⇔ (N, G) are related by flux tube volume (geometry), %V =  # ds/B

• Random fluctuations cause radial diffusion or plasma “flux-tubes”. Interchange 
mixing flattens &[N and G]/&' ( 0 at the same rate.

! Steady turbulent profiles imply N and G are homogeneous.  

• Natural profiles are “stationary” since fluctuating E!B flows do not change (N, G).

Stationary Turbulent Profiles:
Connection with Magnetic Geometry
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Natural Profiles are also Marginally Stable Profiles

!  N = constant, is the D. B. Melrose criterion (1967) for 
stability to centrifugal interchange mode in rotating 
magnetosphere.

! G = P !V" = constant, is the T. Gold criterion (1959) for 
marginal stability of pressure-driven interchange mode in 
magnetosphere, and also Rosenbluth-Longmire (1957) 
and Bernstein, et al., (1958).

! Self-Organization is possible: e.g. steep central pressure 
gradients excites instability that drives inward turbulent 
particle pinch while relaxing pressure to P !V" = constant
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Natural Profiles in Solenoidal Geometry

• Flux tube volume:
‣ "V =  # ds/B = constant

‣ "V =  # ds/B = (qH)-0.8 (tokamak)

• Natural profiles:
‣ n "V = constant
‣ P "V" = constant
‣ Density and pressure profiles 

are flat

! Density, pressure, and temperature 
at edge and at core are equal 
unless interchange mixing is 
suppressed.

Theta-pinch, large aspect ratio solenoid, …

B $ constant
"V $ constant
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Natural Profiles in Dipole Geometry

• Flux tube volume:
‣ "V =  # ds/B $ R4

• Natural profiles:
‣ n "V = constant
‣ P "V" = constant
‣ Density and pressure profiles 

are strongly peaked!

! Density, pressure, and temperature 
at edge and at core are not equal.

Interchange mixing sustains 
peaked profiles.

Dipole
B $ 1/R3

"V $ R4

“Natural” Profiles in LDX:

δVedge/δVcore ≈ 50
ncore/nedge ≈ 50
Pcore/Pedge ≈ 680
Tcore/Tedge ≈ 14
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Electrostatic Self-Organization

JETP Letters, Vol. 82, No. 6, 2005, pp. 356–365.

Self-Consistent Turbulent Convection in a Magnetized Plasma
V. P. Pastukhov* and N. V. Chudin
Russian Research Centre Kurchatov Institute, pl. Akademika Kurchatova 1, Moscow, 123182 Russia

Heat injection creates super-critical gradients creating global turbulent 
fluctuations that relax gradients while driving particles inward.

Relax G(%) gradient
Drive particles inward, 
flattening N(%) gradient
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LDX Experiment

Ryan

21Wednesday, March 17, 2010

2 m

\

Ryan
Bergmann

Rick
Lations

IMAGE Spacecraft
• Project start: 1999
• Launch/Mission: August 2004 to Present.
• Weight: 565 kg (floating coil)

• Key diagnostics:
Magnetic Loops  
(Ring Current)

Probes
(Edge Dynamics & Structure)

Microwave Interferometers 
(Plasmasphere)

plus Optical and X-Ray Imagers
(Plasmasphere and Ring Current)

Levitated Dipole Experiment (LDX)

3 hr float time
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1.  Magnet Winding Pack 
2.  Heat Exchanger tubing 
3.  Winding pack centering 

clamp 
4.  He Pressure Vessel 

(Inconel!625) 
5.  Thermal Shield (Lead/

glass composite) 
6.  Shield supports (Pyrex) 
7.  He Vessel Vertical 

Supports/Bumpers 
8.  He Vessel Horizontal 

Bumpers 
9.  Vacuum Vessel (SST) 
10. Multi-Layer Insulation 
11. Laser measurement 

surfaces 
13. Outer structural ring  

Floating Coil Cross-Section
FM-1b Experience
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RT-1 (University of Tokyo)

1/3-scale as LDX
High-beta (40%)
10 keV electrons

0.2 sec hot electron 
confinement-time
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Previous Result using a Supported Dipole:

High-beta (! ~ 26%) plasma created by multiple-
frequency ECRH with sufficient gas fueling

• Using 5 kW of long-pulse ECRH, plasma with trapped fast 
electrons (Eh > 50 keV) were sustained for many seconds.

! Magnetic equilibrium reconstruction and x-ray imaging 
showed high stored energy > 300 J (τE > 60 msec), high peak 
# ~26%, and anisotropic fast electron pressure, P⊥/P|| ~ 5. 

• Stability of the high-beta fast electrons was maintained with 
sufficient gas fueling (> 10-6 Torr) and plasma density. 

• D. Garnier, et al., PoP, (2006)
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LDX High-Beta Plasma Torus
Visible

“Artificial Radiation Belt” 
with ECRH
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LDX High-Beta Plasma Torus
X-Ray

(J. Ellsworth)

“Artificial Radiation Belt” 
with ECRH

High-Beta 
Trapped Electrons
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J⊥ =
B ×∇P⊥

B2
+

B × κ

B2
(P|| − P⊥)

300 J (2.5 kW)
β(peak) = 27%
〈β〉 = 3.8%
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Thin Supports were a Major Power Loss…

Three high-strength, alumina-
coated spokes support dipole 

during Phase I experiments

Supports become “very warm” 
during high-beta plasma 

operation

Elimination of supports, next step, will further 
enhance confinement, density, …
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8 Channel
Laser Detection 

and RT Controller

30Wednesday, March 17, 2010



Lifting, Launching, Levitation, Experiments, Catching

J. Belcher
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Levitated Dipole Plasma Experiments
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Levitated Dipole Plasma Experiments

Levitation:

✓Proven reliable a
nd safe!

✓Over 60 hours of 
“float 

time” (>160,000 sec
!)

✓Cyrostat perform
ance:     

3 hours between re-cooling!
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New Result with Levitated Dipole: 

Centrally peaked density profiles and Increased 
plasma pressure occur during levitation

• Magnetic levitation eliminates parallel losses, and plasma profiles are 
determined by radial transport processes.

! Multi-cord interferometry reveals dramatic (up to 10-fold) central peaking of 
plasma density during levitation. 

• Profile peaking occurs rapidly, allowing direct measurement of the inward 
particle pinch.

• Low-frequency fluctuations are observed with an intensity consistent with 
the observed inward pinch.

• The turbulent pinch is associated with increased plasma pressure 
consistent with constant entropy density, G = P!V", and high thermal 
electron temperature, Te > 300 eV.
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(a) Side View

Catcher
Raised

Upper Hybrid
Resonances

Open
Field-Lines

Cyclotron
Resonances

(b) Top View

Catcher
Lowered

Closed
Field-Lines

4 Channel
Interferometer

Density Profile with/
without Levitation

• Procedure: 
‣ Adjust levitation coil to 

produce equivalent magnetic 
geometry 

‣ Investigate multiple-
frequency ECRH heating

• Observe: Evolution of density 
profile with 4 channel 
interferometer

• Compare: Density profile 
evolution with supported and 
levitated dipole

Catcher
Raised

Catcher
Lowered

Alex Boxer, MIT PhD, (2008)
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Plasma Confined by a Supported Dipole

• 5 kW ECRH power

• D2 pressure ~ 10-6 Torr

• Fast electron instability, ~ 0.5 s

• Ip ~ 1.3 kA or 150 J

• Cyclotron emission (V-band) 
shows fast-electrons

• Long, low-density “afterglow” 
with fast electrons 
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Plasma Confined by a Levitated Dipole

• Reduced fast electron instability

• 2 x Diamagnetic flux

• Increased ratio of 
diamagnetism-to-cyclotron 
emission indicates higher 
thermal pressure.

• Long, higher-density “afterglow” 
shows improved confinement.

• 3 x line density
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Multi-Cord Interferometer Shows Strong 
Density Peaking During Levitation
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Inversion of Chord Measurements
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Inversion of Chord Measurements
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Levitation Always Causes More Peaked Profiles 
Relative to Supported Discharges  

• Comparison of density profiles for levitated and 
supported discharges always show more peaked 
profiles during levitation.

• Natural density profiles are created regardless of 
plasma pressure (i.e. both low and high beta).

• Natural density profiles are established rapidly, 
within ~20 msec.

• Natural density profiles are sustained steady-state 
by microwave heating.
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Natural Density Profiles Established Rapidly

• Levitation vs. Supported comparisons 
provide an opportunity to directly observe 
the effects of turbulent transport, as the 
parallel losses are switched off/on.

• Short 1/2 second heating pulses 
minimize influence of hot electrons on 
plasma dynamics.

• Turbulent fluctuations are established 
quickly as the ECRH is switched on. 
Fluctuations diminish after ECRH is 
switched off.
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ECRH Heating Pulse
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(a) Short Half-Second Heating Pulse (b) Visible Light from Supported and Levitated Plasma

(c) Line Density from Supported and Levitated Plasma
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(Eq. 1)
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Naturally Peaked Profiles Established Rapidly
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Neutral Source Appears at Outer Edge
(Levitation Shields Neutrals from Core)
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Floating Potential Probe Array

24 Probes @ 1 m Radius

Ryan BergmannRick
Lations

• Edge floating 
potential 
oscillations

• 4 deg spacing @ 
1 m radius

• 24 probes

• Very long data 
records for 
excellent 
statistics!!
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Low-Frequency Fluctuations are Observed throughout 
Plasma and Probably Cause Naturally Peaked Profiles 

• Low-frequency fluctuations (f ~ 1 kHz and < 20 kHz) are observed with edge 
probes, multiple photodiode arrays, interferometry, and fast video cameras.

• The structure of these fluctuations are complex, turbulent, and not understood. 

• Edge fluctuations can be intense (E ~ 200 V/m) and are dominated by long-
wavelength modes that rotate with the plasma at 1-2 kHz 

• High-speed digital records many seconds long enable analysis of turbulent 
spectra in a single shot. We find the edge fluctuations are characteristic of 
viscously-damped 2D interchange turbulence.

• See Brian Grierson, et al. “Global and local characterization of turbulent and 
chaotic structures in a dipole-confined plasma,” Phys Plasmas (2009).
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Plasma ExB Motion

V = −ϕ̂R
∂Φ
∂ψ

+
ψ̂

RB

∂Φ
∂ϕ

.

ψ̇ = ∇ψ · V =
∂Φ
∂ϕ

= −REϕ

Measured 
at edge
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Random Interchange Particle Diffusion

∂N

∂t
= �S� +

∂

∂ψ
D

∂N

∂ψ

D = lim
t→∞

� t

0
dt�ψ̇(t)ψ̇(0)� ≡ �ψ̇2�τc

Cross Correlation Function

D = R2�E2
ϕ�τc

Measured 
at edge
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(c) Supported Dipole Correlations (d) Levitated Dipole Correlations

16 !sec

D = R2�E2
ϕ�τc

≈ 0.05 Weber2/s
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Naturally Peaked Profiles Established Rapidly

5.00 5.02 5.04
time (s)
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ECRH

0
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4

6

Line Density from Supported and Levitated Plasma

3 msec

25 msec

(Eq. 1)

(1)

D ≈ 0.05 Weber2/s across the profile and S ≈ 0
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ECRH Power (kW)

ECRH Heating Pulse
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(a) Short Half-Second Heating Pulse (b) Visible Light from Supported and Levitated Plasma
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(Eq. 1)
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Turbulent Particle Pinch is associated with Turbulent 
Entropy Pinch: Pressure Peaking

• Flux-tube density and entropy density have 
identical dynamics for a plasma with an 
adiabatic closure, G = P"V"

• (N, G) ~ constant implies peaked density and 
pressure profiles (if " > 1)

• Edge Te ~ 15 eV, implies central Te ~ 500 eV 
with measured diamagnetism and measured 
density profile

• Thermal stored energy of 60 J (this example 
levitated discharge, 2 &Torr D2)
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Turbulent Particle Pinch is associated with Turbulent 
Entropy Pinch: Pressure Peaking

• Flux-tube density and entropy density have 
identical dynamics for a plasma with an 
adiabatic closure, G = P"V"

• (N, G) ~ constant implies peaked density and 
pressure profiles (if " > 1)

• Edge Te ~ 15 eV, implies central Te ~ 500 eV 
with measured diamagnetism and measured 
density profile

• Thermal stored energy of 60 J (this example 
levitated discharge, 2 &Torr D2)

Adiabatic mixing implies
core parameters 

determined by edge & 
compressibility:

τe/τp ~ (4γ-3)Cvγ-1 > 50

CL

LSOL
L0

!SOL

L*
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Next Steps in LDX Dipole Confinement Physics

• Do natural pressure profiles, P ~ 1/!V", develop? Soft x-ray 
diagnostics (installed) and Thomson scattering (SSPX) for warm 
plasma pressure profile measurements.

• What are the spatial structures of the convective flows? Install 
additional interferometer channels, reflectometer, and complete 
high-speed optical tomography analysis (in progress).

• Higher density plasma with additional heating options: 
✓ 10 kW CW 28 GHz gyrotron (1st experiments successful)
‣ 1 MW CW ICRF heating (TSW2500 from GA, starting…)

• What is the effect of magnetic field errors on confinement?
Install non-axisymmetric trim/error coils. Induce ~15 kA plasma 
current to create very weak rotational transform.

54Wednesday, March 17, 2010



Fusion Fuels

• Back to The Future (July 3, 1985)
Fuel: banana, beer 

• Spider-Man 2 (June 30, 2004)
Fuel: tritium
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• Opened July 19, 2009. (Written and directed by Duncan Jones, son of  David Bowie.)

• It is the near future. Astronaut Sam Bell is living on the far side of  the moon, 
completing a three-year contract with Lunar Industries to mine Earth’s primary 
source of  energy, Helium-3. It is a lonely job, made harder by a broken satellite 
that allows no live communications home. Taped messages are all Sam can send 
and receive. 

Fuel:  3He
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Deuterium-Fueled Power Plants with Tritium Suppression
John Sheffield and Mohamed Sawan, Fus. Sci. Tech. (2008) 
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Levitated Dipole Confinement Concept:
Combining the Physics of Space & Laboratory Plasmas

400-600 MW
DT Fusion

• Steady state

• Non-interlocking coils

• Good field utilization

• Possibility for !E > !p

• Advanced fuel cycle

• Internal ring

Levitated Dipole Reactor

60 m
500 MW

DD(He3) Fusion

Kesner, et. al.  Nuclear Fusion (2004)
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Dipole Fusion ConceptTesting a New Approach to Fusion and 

Laboratory Plasma Confinement

400-600 MW
DT Fusion

Levitated Dipole 
2nd Generation Reactor

30 m 60 m

500 MW
DD(He3) Fusion

ITER
1st Generation Reactor 

Kesner, et. al.  Nucl. Fus. 2004
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Summary
• Levitation eliminates parallel particle losses and allows a dramatic 

peaking of central density.

LDX has demonstrated the formation of natural density profiles in a 
laboratory dipole plasma and the applicability of space physics to 
fusion science.

• Random fluctuations of density, light emission, potential, and electric 
field provide evidence of random E$B motion that causes interchange 
mixing and an turbulent inward pinch.

• Intensity of E% fluctuations measured at edge can account for inward 
diffusion.

• Increased stored energy consistent with adiabatic entropy density 
profile: a necessary physics requirement for dipole fusion.
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LDX Dedication
October, 2004
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