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Abstract. A plasma confined in a dipole field exhibits unique equilibrium and stability prop-
erties. In particular, equilibria exist at all § values and these equilibria are found to be stable
to ballooning modes when they are interchange stable. When a kinetic treatment is performed
at low beta we also find a drift temperature gradient mode which couples to the MHD mode in
the vicinity of marginal interchange stability.

1 Introduction

A dipole plasma confinement device may be an attractive fusion power source [1, 2]
since it can be stable to MHD instabilities when the pressure and density gradients are
sufficiently gentle. The relatively rapid radial variation of the magnetic field strength
allows very high plasma pressure near the levitated dipole coil while maintaining a much
lower plasma pressure at the outer edge. A critical issue for the dipole fusion concept is
the nature of plasma equilibrium and stability at very high core plasma pressure and local
plasma beta. In this paper, we present models of high beta equilibria that indicate that
plasmas can be MHD stable in a dipole magnetic field even when the local beta greatly
exceeds unity.

Dipole MHD equilibrium and stability have been analyzed both analytically and nu-
merically [3, 4, 5]. The stability of numerically computed free boundary equilibria for a
plasma in the field of a floating ring provides realistic targets that appear achievable and
will provide a test of dipole equilibrium and stability [3]. A useful family of equilibrium so-
lutions to the Grad-Shafranov equation has been found for a point dipole by semi-analytic
methods [4]. The MHD stability problem could then be reduced to a problem of solving
a linear ordinary integro-differential equation [5]. The point dipole equilibria utilizes a
sub-critical pressure profile that is always interchange stable. These point dipole solutions
are valid for arbitrary plasma pressure. Both the numerical floating ring equilibria and
the point dipole equilibria for isotropic plasma pressure have been found to remain stable
to ballooning modes at all beta values when they are interchange stable.

Electrostatic plasma modes for magnetic dipole equilibria (the limit of low plasma
pressure) have also been studied kinetically [6] under the high collisionality assumption.
These modes are flute-like to leading order in the expansion in (kyp;)? < 1, where p;
is the ion Larmor radius and &, is the perpendicular component of a perturbation wave
vector. The electrostatic modes dispersion relation appears to have two branches - an



w > w,,wg “MHD-like” branch and an w ~ w,,wy “drift” branch, where w, w, and w, are
the mode, diamagnetic drift and magnetic drift frequencies. In the absence of collisional
dissipation the stability condition of the “MHD-like” electrostatic mode coincides with
the MHD interchange stability condition, while stability of the “drift” mode depends on
two independent parameters: n = dInT;/dIn N; and d = —dInp/dIn v, where T; and N;
are the ion temperature and density, p is the plasma pressure and v = § d// B with B the
magnitude of the magnetic field and ¢ the coordinate along the magnetic field line.

In the Levitated Dipole Experiment (LDX) [7] now under construction, the dipole
magnetic field will be created by a floating axisymmetric superconducting current ring
(there is no toroidal magnetic field). The device is designed to explore the confinement
and stability of a high-3 plasma confined in a dipole magnetic field. Figure 1 displays the
vacuum field of the device when the floating coil is charged. The floating coil is maintained
at the midplane of the vacuum vessel by attraction to a coil located above the vacuum
chamber and an x-point is evident due to cancellation of fields near the upper wall of the
vacuum chamber. Feedback control is required to maintain vertical stability of the ring.
Shaping coils form an outside separatrix and will permit studies of plasma equilibrium
and stability as the magnetic configuration changes.

2 Ideal MHD Formulation

2.1 Equilibrium

In a laboratory plasma confined in a levitated dipole device the plasma is expected to be
isotropic. Since the currents in the floating ring are toroidal, the magnetic field is entirely
poloidal and currents within the plasma are toroidal as well. All magnetic field lines
are closed so that “flux” or pressure surfaces are determined by their surfaces of rotation
about the symmetry axis. The Grad-Shafranov equation for a dipole is particularly simple
in form:

Vg o dp
V- (ﬁ) = THog (1)

with 1 the poloidal flux function, B = Vi x e;/R, and R, Z, { cylindrical coordinates.
The plasma pressure is a flux function, i.e. p = p(v0). We will define the local beta as
B = 2uop/ B? and represent the beta value on the outer midplane at the location of the
magnetic field minimum (Z=0, R > R,n,) as [o.

2.1.1 High g Equilibrium in LDX: Numerical Solution

We have solved the equilibrium equation numerically for LDX (at arbitrary beta) [3].
The code uses a multi-grid relaxation method to find a free boundary solution to Eq. (1)
by iteratively updating the grid boundary conditions and solving the appropriate fixed
boundary problem at each iteration [8, 9].



For a fixed edge pressure the highest beta value is obtained for a pressure profile that
is marginally stable to interchange modes. We have found that MHD ballooning modes
remain stable at high beta values and therefore we can assume a relatively high edge beta
(Beage = Bo(R = Ruyan)). This does not imply a high edge pressure since the magnetic field
of a dipole falls off as R~ and it will be low (60 G in LDX) at the outer vacuum chamber
wall. At marginal stability, for a dipole, pressure will fall rapidly moving towards the
wall (p o< v™7, v = 5/3) although beta falls more slowly (3 o 1/(B*") ~ 1/(L"B'/?),
L = B§dl/B). A high-8 equilibrium solution, shown in Fig. 2, is found by choosing
a pressure profile that is close to the interchange stability boundary (p o v~ [10]) and
has an edge pressure of 20 Pa which yields B.45 = 0.67. The corresponding peak beta is
Omar = 25 at B = 0.85m and the plasma has effectively excluded the field in this region.
Notice that the equilibrium has shifted outward radially and the plasma is now limited
on an outer limiter and not on the magnetic separatrix.

2.1.2 Point Dipole Equilibrium: Semi-Analytical Solution

For a point dipole it is possible to obtain relatively simple separable solutions of the
Grad-Shafranov equation for both the isotropic [4] and anisotropic [11] pressure cases.
For isotropic pressure we look for a solution of Eq. (1) in a form [4] ¢ = ¢o (Ro/7)™ h (1),
where ;1 = cos 8, 6 is a poloidal angle, & is an unknown function of p only, v is an unknown
eigenvalue (0 < a < 1), and Ry is a cylindrical radius at which the surface g intersects
the symmetry plane ¢ = 0. In order for h to be a function of y only we must assume
P = Po (;/)/;ZJO)ZH/Q. Then 8 = ((u) and By = B(p =0). In this case Eq. (1) can be

transformed into a nonlinear second order differential equation for A

ﬂ(l—ﬁ)%(l_hm)]—<1—a><2+a>h=—ﬂoa<2+a> (L= gty nteeie2)

with boundary conditions A (|u| — 1) — (1 — |u]) and dh/du|=0 = 0.

Equation (2) must then in general be solved numerically but the limiting cases of
large and small 3y are found analytically to give 1 — o = (512/1001) 3y for fy < 1 and
o= 1/[33/2 for By > 1. Notice that the separable solution of the Grad-Shafranov equation
exists for arbitrarily large 3y. The dependence of o (3y) can be found numerically and is
shown in Fig. 3. As 3y increases the constant 1 surfaces become more and more extended
and localized about the symmetry plane, resembling an accretion disk, as shown in Fig. 4,
where the magnetic field lines are shown for # = 0 (the vacuum case) and 3 = 20.

In the presence of pressure anisotropy the Grad-Shafranov equation can be written as

[12]

Vi pr—pi\| _ _ 9m
v T (1 )] - 3)



where p and p, are functions of ¢» and B and the + derivative in Eq. (3) is performed at
fixed B. In Ref. [11] a separable solution of Eq. (3) is found for p; = (1 4 2a)p)|, where
a > —1/2 is an adjustable constant anisotropy parameter. Then py = p () (Bo/B)",
where By = aig/R3 is a constant, p(¥) = po (;/)/;/}0)2(1-"&)(2-"&)/&, and Eq. (3) can be
rewritten as a nonlinear second order differential equation for A (u) with the eigenvalue
a.

It is well known that, unlike the isotropic pressure case, the anisotropic pressure equi-
librium does not exist for arbitrarily large 3y, because it is destroyed by either a fire hose
instability for p; > py (¢ < 0) or a mirror mode instability for py > p; (¢ > 0). In
particular, for the equilibrium of Ref. [11], 8o < Bmm = (1 +a)/[a (1 + 2a)] for a > 0,
and Gy < B = — (1 +a) /a for a < 0.

As in the isotropic pressure case, the equation for & must be solved numerically, but
it can be shown analytically that for Gy > 1, a ~ 1/[33/2 as before.

2.2 Ideal MHD Stability

2.2.1 Energy Principle and Interchange Stability for Isotropic Pressure

The ideal MHD interchange and ballooning stability of the magnetic dipole configuration
can be evaluated using the MHD energy principle. We will employ the notation of Ref.
[13]. For a levitated dipole the magnetic field is purely poloidal, field lines are closed and
the curvature is in the Vi direction, i.e. & = £, Vi with K =b-Vband b = B/B. Due
to the absence of parallel currents the kink driving term is zero for a dipole. Minimizing
the potential energy §Wp o< w? with respect to the parallel plasma displacement results in
an expression for §Wp with a stabilizing plasma compressibility term due to closed field
lines:

SWp = i/pd?’r QL+ BV £, +26, - 1)+ yuop(V - €,); — 2p0(€1 - Vp)(K-€,)] .

)
where Q =V x (§, x B), £, is the perpendicular plasma displacement and the field line
average is defined as (...), =v~' §(...)dl/B, with v = §d(/B.

The first term in Eq. (4) represents the energy associated with field line bending,
and the second and the third terms are due to the stabilizing influence of magnetic field
line compression and plasma compression, respectively. The plasma compression term
appears only for a closed field lines system. The last term is the curvature (instability)
drive.

Writing the perpendicular displacement as

€, = (¢/RB?) Vi — RV,

we can minimize Eq. (4) with respect to 1. Noticing that the modes with highest toroidal



numbers n are the most unstable we consider n — oo limit (see Refs. [5, 10] for details).
Then minimization of éWg for n — oo gives

B? (V- &, +26-&)) ‘|‘/«LO’YP<V‘€L>9 =0,

which also implies n — 0 as /9 x n. Using the preceding equation to eliminate V - &,
and (V- &), from Eq. (4) we obtain the reduced energy principle

1 porp (K€1)
5W:—/d3rl2—|— b _2 -Vp)(k - ) 5
F 2/~LO » QJ_ 1+ M07p<B_2>9 MO(&J_ p)( €J_) ( )
where now &, = (¢/R?B?) V¢ and Q% = R™2B~%(B - V¢)™.
Considering interchange modes, for which B - V¢ = 0 (i.e. 3 = 0), we obtain from
Eq. (5) the general finite [ interchange stability condition

27p<n‘, : V;/J/RQBZ>€ > (1 + /,Lo’yp<B_2>€) (dp/dv) , (6)
which can be rewritten [4, 5] as
ldp ~dv
];% + ;% < 0. (7)

2.2.2 Ballooning Stability for Isotropic Pressure

We next consider the ballooning stability of a magnetic dipole configuration. We notice
here that short-wavelength ballooning modes bend magnetic field lines, which, along with
plasma compression, has a stabilizing influence on the modes. Introducing the perpen-
dicular plasma kinetic energy

1
K= [t (8)
2Jp

as the normalization, with & the perpendicular plasma displacement, we can minimize
the functional

)
W o w?

[X’ Y

where 6Wr is given by Eq. (5) (with @3 # 0). Varying with respect to ¢ to obtain the
infinite n integro-differential ballooning equation gives

d [ 1 de dp p B G9)
B (BR2 %) I (2%@ * ARZBQ) €= oy W

As is shown in Ref. [10], some key properties of the eigenvalues A;, j =0,1,2,..., of Eq.
(9) can be determined based on the eigenvalues A; of the corresponding Sturm-Liouville

A=

differential equation



d 1 d d

B (BR2 d—i) + 10 (%wﬁ + )\#) €=0, (10)
which has a complete set of eigenfunctions ¢; with corresponding distinct eigenvalues A;,
that can be arranged as an increasing set for specified boundary conditions. As the dipole
system is up-down symmetric, the eigenfunctions of Eq. (10) are up-down symmetric
or antisymmetric, and we assign even (odd) indices j to the symmetric (antisymmetric)
eigenfunctions and eigenvalues in such a way that the smaller index corresponds to the
eigenfunction with a smaller eigenvalue. Notice that in general the eigenvalues for the
even and odd eigenfunctions form two independent increasing sets as the corresponding
boundary conditions are different. As is shown in Ref. [10] Ayj11 = Agjp1 < Agjys = Agjis
and Ag; < Ag; < Agjpe < Agjpe. As aresult, Ag > 0 and Ay > 0 lead to A; > 0 and
ballooning stability, while Ay < 0 or Ay < 0 lead to A; < 0 or Ag < 0 and ballooning
instability. For the more subtle case \g < 0 < Ay and Ay = Ay > 0 it is shown in Ref.
[10] that the equilibrium is ballooning stable and Ag > 0 (unstable and Ag < 0), if it is
interchange stable (unstable). Further details of this analysis are given in Ref. [5].

2.2.3 MHD Stability of the Point Dipole Equilibrium and of a High Beta
Equilibrium in a Field of a Levitated Dipole for Isotropic Pressure

For the point dipole equilibrium of Ref. [4] p oc 4?4/ and v oc ¢y =173/ 50 that Eq. (7)
can be rewritten as v > 2(24+«a)/(3+ a) > 4/3 for 0 < o < 1, which is always true, so
the point dipole equilibrium is always interchange stable.

Ballooning stability of this equilibrium was studied in Ref. [5]. Eigenvalues of Eq. (10)
were obtained both analytically in the limiting cases of large and small 3y and numerically
for arbitrary f[y. It was found that Ay < 0 and Ay > A; > 0, so that the point dipole
equilibrium is always ballooning stable because it is interchange stable.

Reference [3] studied interchange and ballooning stability of a laboratory plasma con-
fined in the field of a circular floating coil. It was found that a high beta MHD equilibrium
with a peak local beta of 3 ~ 10 and volume averaged beta of 3 ~ 0.5, obtained numeri-
cally, with a pressure profile near marginal stability for interchange modes, is ballooning
stable for the first antisymmetric ballooning mode of Eq. (10). Since the lowest sym-
metric ballooning mode and the interchange mode are identical at marginality [5], LDX

would be MHD stable for such equilibria.

2.2.4 Anisotropic Pressure MHD Stability

When radio frequency heating is used to increase the plasma temperature a mild pressure
anisotropy may result. Stronger anisotropies are of interest for space and astrophysi-
cal dipole configurations where the dipole field is generated by a dynamo mechanism.
Consequently, the interchange and ballooning stability of an anisotropic pressure plasma
confined by a dipole magnetic field has also been investigated.



An anisotropic fluid energy principle (which reduces to the isotropic limit) has been
derived in Ref. [14] from the Kruskal-Oberman [15, 16] formulation in which the plasma
is treated kinetically along the magnetic field and as a fluid across the magnetic field.
Anisotropic forms of the interchange stability criterion and of the ballooning mode equa-
tion, including plasma compressibility, have been obtained. This stability analysis has
been applied to the anisotropic pressure family of point dipole equilibria [11]. As was
mentioned earlier the mirror instability or firechose instability set limits on the achievable
plasma beta, 3y, when the perpendicular pressure p, is greater (mirror) or less than (fire-
hose) the parallel pressure p;. In Ref. [14] it was found that the point dipole equilibria
of Ref. [11] are interchange stable for all plasma betas up to the 3,,,, or G, whichever
is appropriate. At the same time ballooning modes are stable for all betas up to some
critical value, which is below 3., for 1 < p1/p; < 8 and is equal to 3., for py /p; > 8.
At modest anisotropy the beta threshold may be observable in the high beta plasmas
expected in LDX (for py /p; = 1.2 the beta limit becomes By ~ 6).

2.3 Low-{ Collisional Interchange Modes

We have shown that MHD predicts that at low beta interchange modes limit the pres-
sure gradients that can be stably maintained. Ideal MHD assumes a particularly simple
equation of state and ignores finite Larmor radius effects which can become important for
ions. We would expect a more detailed kinetic stability treatment to produce drift waves
as well as MHD “fluid” modes. We can shed light on these assumptions by considering
the stability of electrostatic interchange modes in a collisional plasma [6].

To compare the MHD results with those of kinetic theory we define

ncd; 1 dp
i = —— —— 11
and
ncl;
W = ZZGRB € b x (V In B + K',), (12)
and find that
ncl; dv

(Wai)g = “Ziew i (13)

where ¢ is the speed of light, T; = T;(¢) and Z;e are the ion temperature and charge,
v = ¢$dl/B and n > 1 is the toroidal mode number. At low § the MHD stability
condition (the interchange stability condition, given by Eq. (7)) can then be written as
Wipi < 7 (wai), or

5
d < — 14
<3 (14)

where d = —dInp/dInv.



We then solve the Boltzmann equation in the high collision frequency limit for both
ions and electrons and therefore apply the following orderings:

Q> wy > v > w, ~wy ~w, (15)

with © the cyclotron frequency, w; the bounce frequency, v. the collision frequency, w.
the diamagnetic drift frequency, and wy the magnetic curvature drift frequency.

Following the treatment of Ref. [17], modified to account for collisions [18], it can
be shown that within the eikonal approximation the perturbed distribution function f;,
Jj =1,e,is given by [1§]

VAT . co
fi = (—%(I)lfMj + hjeZLﬂ) et (16)
J
where h; is a solution of the following equation

. ~ —i i A kv
U”b . Vh] —1 (w — wd]‘) h]‘ = <€ LJC]‘ (hjeLJ)>¢ + QJO ( J(_ZL) . (17)

J
Here we assume that the perturbed potential ®; = Ci)leis_i‘”t, where S is the eikonal,

Li=(v-bxky)/Q and k; = VS. In the above expressions

farj (B, ) = Nj () (M, /20T ()2 e MBI

A Z:e - ME 3
o~ oo -1

with the energy F given by E = v?/2, n; = dInT;/dIn N;, Jy is a Bessel function, M,
1, and C; are the mass, cyclotron frequency and linearized collision operator for species

J, ¢ is a gyrophase and (...), = § d¢(...) /2. We also introduced

v? vl
Gy =ki-bx (—LvaJr —'Pb-Vb) ,

20, Q;
L nch dN]
w*] N Z]‘GN]‘ d@/) ’

and assumed that the equilibrium electric potential ®q = 0. Notice that h; in Eq. (17) is
independent of the gyrophase.

Supressing the index j for simplicity, expanding h = h® + h' + h% + ..., and assuming
|L| < 1, Eq. (17) gives to leading order

o VR = (C (%)), —i(LC (1)), +i(C (L1°)), . (18)



W = fur (B ) (aw) +B($) ”—2) . (19)

To the next order Eq. (17) gives

~ A kivy

0 1 1 0 270
—(w—@a)h® +oyb- VA = (C (h )>¢+<LC (zh )>¢_ (C(L*h /2)>¢+QJ0( y ).(20)
Integrating Eq. (20) over d*v with a weighting function v? with ¢ = 0 and 2, and then
field line (or poloidal angle) averaging the resulting expression annihilates the second term
on the left hand side and the first and the third terms on the right hand side. The result
is two linear algebraic equations for the a (¢)) and 3 (¢) defined in Eq. (19):

</d3mq (w—&d)h0>€ :i</d3vquJ0 (’“{;L»e (21)

where finite Larmor radius effects must be retained for ions only, and collisional modifica-
tions to the right hand side have been neglected. The finite collisional dissipation effects,
which come from the collisional term neglected in (21), and are proportional to v;;b, where

vi; is the ion-ion collision frequency and b = (b;), = (K1 T;/M£}?),, can be important and
can significantly change the stability of the electrostatic modes [19].

We can perform integration and averaging in Eq. (21), solve the resulting equations
for a and 3, and then form hg, f. and f; using Eqgs. (19) and (16). We then evaluate the
perturbed electron and ion densities N; = [ d®v f; and obtain the dispersion relation using
the quasi-neutrality condition. It can be shown that the electrostatic modes are flute-like
(up-down symmetric) to leading order in the expansion in b;. Using this fact to simplify
the dispersion relation and introducing the dimensionless parameters A = w/ (wg;),, d =
wii (14 1:) [ {wai), = —dInp/dInv, and n = n; we eventually find [6]

5 5( 3n—7 b 5 5 1+ 2y
d——))? 2 (4 5) o (2 )\4—<d——))\3—— 3d 7] a2
( 3 +9(1+n+)+(2)[ 3 o \M 1y, T

5( 3n—T 25 d
——(d” +5))\+——]:0, (22)

where we have assumed Z;T; = T..

This equation appears to have two classes of solutions - high-frequency or “MHD-like”
modes for which A > 1 and low-frequency or “drift temperature gradient” (or DTGQG)
modes for which A ~ 1. The modes are uncoupled for b'/? < |d — 5/3|. The “MHD-like”
mode is obtained when the first term of the dispersion relation (22) is balanced by the
third one, so that we find

(wi»)MHD - [W] " (23)

9




This mode is stable (unstable) when d < 5/3 (d > 5/3), as found earlier from ideal
MHD. However, collisional modifications of order w,/v; that arise from next order cor-
rections to h in the bounce frequency expansion (15) may result in terms which are more
important than the finite b terms in Eq. (22). These collisional terms differ from the clas-
sical cross field transport terms (o 14;b ) mentioned below Eq. (21) [19]. They arise from
the collisional relaxation of an anisotropic h(E, 1) towards a Maxwellian, as discussed in
Ref. [20] for a straight magnetic geometry.

To consider the DTG modes we neglect the finite Larmor radius terms proportional
to b in the dispersion relation, and obtain

7—3
( d ) -+ 555& (24)
(wai)g ) pra 9 3-d

The stability and instability regions of the DTG modes are shown in Fig. 5 in white and
grey, respectively. Notice that for d < 5/3 (the MHD stable regime) there are regions
where the DTG mode is unstable. In particular, near the MHD stability boundary d = 5/3
instability occurs for —1 < n < 2/3. Negative d corresponds to the regions near the ring.
The two collisional modifications mentioned in the preceding paragraphs are currently
under investigation and are expected to modify the high frequency “MHD-like” mode of

Eq. (23) and alter the stability of the low frequency DTG mode of Eq. (24).
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Figure 3: Eigenvalue for point dipole equilibrium (Eq. 2) vs 3.
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Figure 5: Drift-temperature gradient (DTG) mode stability regions in d-n space. Stability
and instability regions are shown in white and grey respectively
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