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Abstract

Steady state interchange-like electrostatic turbulence, produced in a plasma confined by a strong

dipole magnet, is observed to be dominated by a limited number of low-order, rotating azimuthal

modes which vary irregularly in time and cause chaotic plasma fluctuations. The predominance of

large scale structures represents the “self-organized” state of dipole-confined plasma turbulence and

is attributed to a nonlinear inverse energy cascade and a linear damping of small scale structures.

PACS numbers: 52.35Mw, 52.35.Ra, 52.55.Hc
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Fluid and plasma turbulence results from complex, nonlinear phenomena that couples

structures at different scales. Understanding the spatial and temporal characteristics of the

turbulent fluctuations remains a fundamental challenge[1, 2]. Recently, significant progress

has been made through diagnostic improvements that allow observation of quasi-coherent

structures and measurement of multipoint statistics of steady driven turbulence[3]. Progress

has been especially rapid in certain types of strongly magnetized plasma and thin layers of

fluid where the turbulent dynamics is nearly two-dimensional[4, 5]. Turbulence in two-

dimensional systems is associated with an inverse energy cascade[6] that can generate self-

organization at large scales and structures with long correlation lengths[7]. Quasi-two-

dimensional turbulence appears to be relevant in several circumstances, and examples include

plasma confined in long magnetic solenoids[8–11], in simple magnetic torii without magnetic

shear[12, 13], in the scrap-off-layers of toroidal fusion confinement devices[14–16], in the

solar wind[17], in magnetized columns of electrons[18, 19], and in driven thin sheets of

fluid[20–22].

This Letter addresses two important questions regarding quasi-two-dimensional turbu-

lence found in strongly magnetized plasma. What are the average local rates of linear and

nonlinear energy flow associated with the turbulent spectrum? And, what are the global

quasi-coherent structures that dominate the fluctuations? We answer these questions by

making simultaneous measurements of both the local and global fluctuations of a plasma con-

fined by a strong dipole magnet. Since a dipolar magnetic field has no shear, low-frequency

fluctuations are electrostatic, interchange-like, and essentially two-dimensional[23]. Using a

model for nonlinear power transfer[24], we find short wavelength fluctuations are damped and

energy flows nonlinearly from small to large scales. Simultaneously, we observe the gross

spatial and temporal fluctuations throughout the entire plasma. We find the large-scale

structure of turbulence consists of rotating, long-wavelength convective cells with ampli-

tudes that varying irregularly in time. We believe these dominant rotating global structures

represent the “self-organized” state of dipole turbulence, and we attribute their appearance

to an inverse energy cascade[6, 7]. Furthermore, we believe the complex temporal dynam-

ics of the global modes result from nonlinear self-interactions[8, 25] and produce chaotic

convective dynamics that should be describable by a low-dimensional model[26, 27].

Measurements were made using the Collisionless Terella Experiment (CTX), which con-

sists of strong dipole electromagnet centered within a large 1.6 m diameter vacuum vessel.
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Dipole-confined plasma with stationary turbulence is sustained by microwave heating and

hydrogen gas fueling for discharges lasting up to one second. High-speed and simultaneous

measurements of the fluctuations of the currents and voltages of various probe arrays and of

visible light are digitally recorded at rates up to 250 ksps. The CTX device is described with

detail in several references that reported measurements of centrifugally-driven interchange

instability[28, 29], hot-electron driven interchange instability[30], and nonlinear phase-space

dynamics due to drift-resonances with rotating interchange modes[31, 32]. Operationally,

the turbulent plasma discharges reported here are obtained in the same way as described

in previous studies except the level of gas fueling was doubled. This significantly increases

plasma density to approximately n0 ∼ 1011 cm−3 from 1011 cm−3 used in previous studies.

Higher density in turn significantly reduces the production of energetic trapped electrons

and stabilizes the fast hot electron interchange instability[30]. Under these conditions, the

plasma exhibits strong and steady interchange turbulence that is the subject of this Letter.

The ensemble-averaged frequency spectrum of the fluctuations is measured using a single

movable probe inserted into the plasma at various radii and then averaging over many

hundreds of equivalent time intervals in many discharges. Fig. 1 shows the floating potential

spectrum has a broad frequency band at all radii. The lower frequency range is dominated by

two large-amplitude modes, one at f ∼ 1−2 kHz and the other at f ∼ 4−6 kHz, and we find

these modes to be quasi-coherent. Above 7 kHz, the potential fluctuations have a spectrum

with a power-law dependence that scales between ∼ f−4 and ∼ f−5. Fluctuations of the

density measured by ion saturation current also show the quasi-coherent modes but, above

7 kHz, the ensemble-average density fluctuations have a spectrum that scales as ∼ f−3.

The turbulent fluctuations in these higher density discharges are electrostatic and

interchange-like, just as they were in previously measured interchange instabilities at lower

density[29, 30]. When two probes are located along the same magnetic field line, two-point

correlations of the floating potential are coherent over the bandwidth of fluctuations. Addi-

tionally, the ion current fluctuations detected at two locations along the same field line are

correlated, have zero phase lag, and display the same dominant frequency and power-law

spectral characteristics. For example, the ion current fluctuations at a location on a pole-

face of the dipole magnetic are correlated to current fluctuations detected by a Langmuir

probe.

Using multiple probes around the azimuth, the cross-field, spatial coherence and az-
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FIG. 1: Floating potential spectrum Φ̃f as a function of equatorial radius, L, measured using a

movable probe.

imuthal correlation length of the turbulence, δφc, are determined. One probe is used as

reference, and the ensemble cross-correlation is found between three other probes with az-

imuthal spatial separation of 9◦, 90◦, 180◦. The fluctuations propagate in the direction of the

average E×B direction, which is also the electron diamagnetic drift direction. The decrease

in cross-correlation amplitude with probe separation is fit to a Gaussian, and the azimuthal

correlation length of the turbulence in CTX is determined to be near Lδφc ∼ 45 cm at

an equatorial radius of L = 50 cm. This corresponds to δφc ∼ 0.9 or 14% of the device

circumference. At 90◦ probe separation, only the low-frequency modes below 7 kHz show

quasi-coherence, as shown by in Fig. 2a where the magnitude of the ensemble-averaged cross

coherence of the floating potential is shown as a function of frequency.

When two probes are separated by a short distance in the azimuthal direction, ∆ξ =

L∆φ = 8 cm, we are able to measure the local wavenumber and dispersion of the fluc-

tuations. The average phase of the cross coherence, 〈α(Φ̃1, Φ̃2)〉, is proportional to the

azimuthal wavenumber, kξ ≈ 〈α(Φ̃1, Φ̃2)〉/∆ξ. The dispersion kξ(ω) is shown in Fig. 2b.

The dispersion is nearly linear up to 35 kHz and corresponds to a constant phase velocity,

ω/kξ ≈ c ∼ 2π km/sec, which we believe represents relatively rapid rotation of slowly-

evolving turbulent structures. The rotation frequency is c/2πL ∼ 2 kHz, comparable to the

E×B frequency. The underlying turbulent structure evolves as it rotates and decorrelates

in a time approximately Lδφc/c ∼ 70 µsec, which is short compared to the rotation period.

The measured frequency spectra (Fig. 1) and the linear relationship between wavenum-

ber and frequency (Fig. 2b) are consistent with Kraichnan’s prediction for two-dimensional
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FIG. 2: Ensemble bispectral and cross-coherence analysis of the linear dispersion and nonlinear

relative power transfer obtained from two-point measurements of the floating potential.

turbulence that conserves both energy and enstrophy[6]. Note that in the drift-interchange

limit[7, 9], the energy contained in a low-frequency electrostatic plasma fluctuation with

wavenumber k is proportional the sum of an adiabatic and an electrostatic part, or

(ñk/n0)
2 + k2ρ2

s(eΦ̃k/Te)
2. At L ∼ 50 cm, the total fluctuation intensity is |ñ|/n0 ∼ 0.6,

e|Φ̃|/Te ∼ 0.5, and the sonic larmor radius is ρs ∼ 2 cm, with Te ∼ 10 eV and |B| = 140

G. While the adiabatic part of the fluctuation energy appears larger than the electrostatic

part, when 〈Φ̃2
k〉 ∼ 1/f 5 and 〈ñ2

k〉 ∼ 1/f 3, both have the same power-law dependence for the

energy spectrum, which scales as the Kraichnan result, ∼ k−3, for the enstrophy cascade.

A dynamical description of the spectral energy is calculated through a statistical analysis

that assumes a linear growth and dispersion and a quadratically nonlinear mode coupling

term proportional to the bispectrum[24]. The fluctuations, Φ̃k, are taken to vary dynamically
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according to a linear rate, γk + iωk, and also to a nonlinear three-wave structure coupling

coefficient, Λk(k
′, k − k′). The time evolution of the ensemble average of the fluctuation

intensity, 〈Φ̃2
k〉, increases linearly as 2γk 〈Φ̃2

k〉 and nonlinearly in proportion to the relative

power transfer, defined as
∑
k′ <{Λk(k

′, k − k′)}〈Φ̃∗kΦ̃k′Φ̃k−k′〉. Measurement of the auto-

and cross-bispectrum and various cross correlations determine both the linear and nonlinear

coefficients. Fig. 2c shows the fluctuation intensity damps at a rate that increases with

frequency approximately as 2γk/ωk ≈ 0.13. For example, fluctuations at 20 kHz have a high

azimuthal mode number (m ∼ 10) and a characteristic damping time of 1/γk ≈ 140 µsec.

Fluctuations with frequencies near 6 kHz are essentially undamped, and this scale may

represent the turblence “source”. As shown in Fig. 2d, the relative power transfer shows a net

energy transfer from small scale structures with f > 6 kHz to the large global structures with

f < 6 kHz. Indeed, Fig. 2 indicates that the large amplitude of the global m = 1 structure

at 2 kHz represent nonlinear amplification due to the inverse energy casade expected for

two-dimensional turbulence.

The quasi-coherent large-scale structures that comprise the “self-organized” turbulent

state can be directly measured by using an array of 96 gridded particle detectors located at

one pole of the dipole magnet[29]. The currents collected by all detectors are recorded simul-

taneously once every 4 µsec. Since the detectors are spaced more closely than a correlation

length, the 96 detectors are sufficient to make high-speed images of the global dynamics of

the entire plasma.

One method of viewing the polar ion current is shown in Fig. 3a where a short 8 msec

record of the density fluctuations at a particular radius (L = 50 cm) is displayed as a function

of time and azimuthal angle. The density fluctuations are dominated by rotating structures

that can exists for multiple transits around the device. At each sample time, the azimuthal

structure is Fourier decomposed, and the mode having the largest amplitude is indicated

in Fig. 3b. For most of the second half of the time-record, a long-lived, rotating m = 1

structure appears and extends around the device circumference for a period much larger

than the typical decorrelation time. At other times in the record, the dominate azimuthal

mode can be either m = 2, 3, 4, or 5.

A second method to view the global structure dynamics of turbulence is the bi-orthogonal

decomposition[33]. Bi-orthogonal decomposition is a tool for decomposing multiple space-

time points into orthogonal spatial and orthogonal temporal mode functions using the singu-
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FIG. 3: (a) Density fluctuations ñ(t, ϕ) in time and azimuthal angle ϕ, measured at one radial

location. (b) Indicator of the dominant Fourier mode number.

lar value decomposition. The data provided by the polar detector array are decomposed into

mode functions that are well ordered in amplitude. The spatial and temporal mode func-

tions are dominated by the longest wavelengths and the lowest frequencies. Fig. 4 shows the

result of the decomposition. The dominant spatial modes of the turbulent state are found

to be spatially simple, sine and cosine functions with low-order azimuthal mode. The first

two modes are the m = 1 sine and cosine pair, and they have nearly the same singular

value due to the plasma’s E × B rotation. The next two mode functions are the m = 2

sine and cosine pair that vary more quickly. Fig. 4 also shows a short 8 msec record of the

temporal variations of the m = 1, 2, 3 modes. While the characteristic frequencies of the

modes increase in proportion to m as expected, the temporal modes are highly irregular,

impulsive, and bursty.

An analysis of the time series of the density fluctuations shows the density varies chaot-

ically. The numerical Lyapunov spectrum was calculated[34] for the plasma density fluc-

tuations obtained from the polar imager diagnostic, which provides the time series for the

bi-orthogonal decomposition. A single positive Lyapunov exponent is found to converge

when the embedding dimension equals three or more. A positive Lyapunov number in-

dicates that the dynamical system has chaotic properties. This positive exponent has a

characteristic time of 50 µsec, comparable to the auto-correlation time of the time series.

When the embedded dimension exceeds three, the Lyapunov spectrum calculation produces

small negative exponents, indicating a three-dimensional phase space is sufficient to describe

the turbulent system. This result is similar to the chaotic convection motion observed in a

simple shear-free magnetic torus[26]. We believe it likely that a description of the chaotic

nature of convective flute motion presented by Rypdal and Garcia[27] is also applicable to

the chaotic interchange dynamics in a dipole-confined plasma.
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FIG. 4: Global mode structure dynamics resulting from bi-orthongal decomposition of the polar ion

current measurements. Although the spatial mode functions (top) are relatively simple sinusoids,

the temporal variations of the mode amplitudes and phases (bottom) are complex.

In summary, we report comprehensive measurements of the local and global structure of

plasma turbulence confined by a dipole magnetic field. The spatial structure of the turbu-

lence is dominated by long wavelength rotating structures that represent a “self-organized”

state of the turbulent plasma. The global structures have complex and irregular time signa-

tures, and the associated density fluctuations are chaotic. Ensemble-averaged spectral and

bispectral analysis of the fluctuations show energy is nonlinearly transferred from short to

long length scales as expected of a two-dimensional system. Other measurements and anal-

yses support the notion that driven turbulence in dipole-confined plasma is comprised of a

few dominate large-scale modes that varying chaotically in time, and these will be presented

8



in a longer article.
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