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Magnetohydrodynamic stability in a levitated dipole
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Plasma confined by a magnetic dipole is stabilized, at low beta, by magnetic compressibility. The
ideal magnetohydrodynami@MHD) requirements for stability against interchange and Mmgh-
ballooning modes are derived at arbitrary beta for a fusion grade laboratory plasma confined by a
levitated dipole. A high beta MHD equilibrium is found numerically with a pressure profile near
marginal stability for interchange modes, a peak local bet@-ef0, and volume averaged beta of
B~0.5. This equilibrium is demonstrated to be ballooning stable on all field lines19€9
American Institute of Physic§S1070-664X99)01809-1

The dipole magnetic field is the simplest and most comfield can be determined from a solution of the Grad-—
mon magnetic field configuration in the universe. It is theShafranov equation. At sufficiently high beta the stability of
magnetic far-field of a single, circular current loop, and it MHD ballooning modes needs to be examined.
represents the dominate structure of the middle magneto- The high beta MHD stability limit has been examined by
spheres of magnetized planets and neutron stars. The use ofeveral authors’ in the magnetospheric context. For the
dipole magnetic field generated by a levitated ring to confinenagnetospheric problem it is necessary to consider rotation,
a hot plasma for fusion power generation was first considanisotropy f, # p|) as well as the boundary condition where
ered by Akira Hasegaw¥? In order to eliminate losses along the field lines enter the conducting regions near the planetary
the field lines Hasegawa suggested the use of a levitated ringoles. Charet al.” utilize a low beta equilibrium expansion
He postulated that if a hot plasma having pressure profilei the ballooning calculation and their results are suspect at
similar to those observed in nature could be confined by &igh beta®
laboratory dipole magnetic field, this plasma might also be  As a laboratory approach to controlled fusion, a circular
immune to anomalou®@utward transport of plasma energy magnet that is located within a plasma will generate a dipole
and particles. configuration. To avoid losses on supports the ring needs to

The dipole confinement concept is based on the idea dbe superconducting and be magnetically levitated within the
generating pressure profiles near marginal stability for lowvacuum chamber. Since a large flux expansion is necessary
frequency magnetic and electrostatic fluctuations. From ideab obtain a fusion grade plasntfor fixed edge plasma pa-
magnetohydrodynamidMHD) marginal stability results rametersthe configuration tends to require a small coil that
when the pressure profile satisfies the adiabaticityis levitated within a relatively large vacuum chamber. An
condition®* §(pV?) =0, wherep is plasma pressur¥,is the initial test of this concept is embodied in the levitated dipole
flux tube volume Y=¢dI/B) and y=5/3. This condition experiment (LDX) which is being built jointly by Columbia
leads to dipole pressure profiles that scale with the radius asniversity and MIT. An important goal of this experiment is
r ~20% similar to energetic particle pressure profiles observedo study the beta limits of the dipole configuration.
in the Earth’s magnetosphere. This condition limits the peak In this article we consider the beta limits imposed by
pressure, i.e Ppears Pedgd Vedgd Vpead ” @nd a relatively low  ideal MHD in a dipole configuration as formed by a floating
pressure at the plasma edge requires a large flux expansiaimg. We will first find the numerical solution to the finije-
i.€., Vedge Vpea> 1. equilibrium. We will then use the equilibrium solution to

At low beta the magnetic field in the plasma will closely evaluate interchange and ballooning stability. We will show
approximate the vacuum field. At finite beta the equilibriumthat when an equilibrium is obtained for a plasma profile that
is stable to interchange modes it will also be stable to high-

dAlso at Department of Applied Physics, Columbia University, New York, bglloomng mOdes- The reason for_ t.he. unusually hlgh bal-
New York 10027. looning limit is that, in order to minimize the stabilizing
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FIG. 1. Vacuum field in LDX.

plasma compressibility, the most unstable modes will be up
down antisymmetric. As a result the ballooning eigenmode

are forced to have a node at the point of maximum Ketar
the outer midplane of the configuratjoand the region of
strong bending is forced to occur at relatively low beta.

We consider first the MHD equilibrium of a fusion grade
laboratory plasma confined by a levitated superconductin
magnet. Since the currents in the floating ring and extern
coils are toroidal and we assume that no poloidal currents a J
driven in the plasma, the magnetic field will be entirely po-
loidal. We can then write a somewhat simplified Ampere’s

Law as?®

1
pod=— ZA* ey, ®

where ¢ the flux function, = (1/27)[B-dA, B=Vy
X ey/R, the elliptic operatorA*, A*y=R?V-(Vy4/R?),
andR, Z, ¢ are cylindrical coordinates.
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FIG. 2. High B equilibrium (B,a= 10) solution in the LDX geometry.

and a separatrix can form due to the presence of a coil that is

gutractive to and supports the weight of the floating coil.

We have solved the equilibrium equation numerically
using a modified version of the TokaMac cddeSimilar to
the EFIT (Ref. 12 equilibrium fitting code, the code finds a
free boundary solution to E@2) by iteratively updating the

ﬁrid boundary conditions and then solving the appropriate

xed boundary problem fog at each iteration using a mul-

{:lt rid relaxation method. On each iteration, the Dirichelet
boundary condition is computed from Green’s functions for

each coil and the plasma current is determined from the
right-hand side of Eq(2).

For a fixed edge pressure the highest beta value is ob-
tained for a pressure profile that is marginally stable to inter-
change modes. Therefore, we will search for high beta equi-
libria that are obtained as follows: We specify a zero
pressure at the surface of the floating ring and a fixed value,
Pedge @t the outer flux surfacédefined to be either the
vacuum chamber wall or a magnetic separatrix, whichever is

Since plasma field lines pass through the open bore Qb 4teq closer in We also specify the spacial location of the

the magnet the field lines are closed. Unlike magnetOSpher'ﬁressure peak. Between the inner zero pressure surface and
plasmas particles are confined on closed field lines and w;

can assume an isotropic plasma pressure. We will also Neusoidal fashion
glect gravitational and rotational forces that are significant in_ o)1 i
space plasmage.g., in the Jovian magnetosphere rotational 0

pressure is larger than the kinetic presgufeorce balance
then yields a reduced Grad—Shafranov equation

dp
A* = _Mode_wa )

where the plasma pressurp, is a flux function, i.e.,p

=p(y). Unless otherwise specified we will define beta as

the local beta throughout this article, i.e.,

)
B=2uoghn g €

fhe pressure peak we specify that the pressure rise in a cosi-
i.e.p(¢)=0.5(1~cog 2m(y)— o)/ (peak

). This choice provides a zero gradient at the inner
and the peak pressure locations. Between the location of the
pressure peak and the outer flux surface we specify that the
pressure rises according to the finite beta interchange con-
straintp 1/V?. This profile is applied in an iterative fashion.
The pressure profile will therefore be marginally stable to
interchange modes between the pressure peak and the outer
flux tube.

We demonstrate higJg-equilibrium by choosing a pres-
sure profile that is defined by an edge pressure of 7 Pa and
the peak pressure location B=0.75 m. The floating coil
extends betweeR=0.2235 m andk=0.585 m and the pres-
sure is set to zero on the field line that passes through the

The vacuum field, which closely resembles the low betaR=0.2235 m location. The resulting equilibrium, shown in

equilibrium field is shown in Fig. 1. Notice that aapoint

Fig. 2 has a peak local beta gf,.,=10. The highg equi-
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librium will be used to evaluate the field line curvature as is 61 : : :
required for the solution of the ballooning equatipfg. [ Pressure Jo.14
(12)] which is discqssed below. Notice t_hat the_equilibrium | I — — —  Magnetic Field _20'12
has moved out radially and the plasma is now limited on an Al ' PN
outer limiter and not by the magnetic separatrix. < ) Jo10g
L . A . X r Bmax = 5.5 radius @
The stability of a dipole to ideal MHD interchange and Joost
ballooning modes can be evaluated from the MHD energy a2 l\ =
principle. We will consider the confinement of a high- oL \ 7006 &
plasma. For a levitated dipole the field is poloidal and the - Jooa”
curvature is in theVy direction, i.e., k=x,Vi with ]
=b-Vb. The energy principle give¥: I _ 1002
0 .~ oo
1 Q0.5 1.0 1.5 2.0 2.5
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FIG. 3. Pressure profile and midplane magnetic field for an equilibrium with

+ yuop(V- fﬁz_ (2mo€, - Vp) (k- €)1, (4 (Bmax=10) solution in the LDX geometry.

with the flux average defined &s)=(¢cdl/B)/($dI/B). In 1 dX (Xr,)

Eq. (4) Q=V X (&XB) and ¢, is the amplitude of the per- p— —|+2M0K¢p¢X—4y,uopK¢1+—<,6>/2=0
pendicular displacement. The first term in E4). represents BR Y

the energy associated with field-line-bending. The second ®)
term magnetic compression and the third term is plasmavith p,=dp/dy. Equation (8) together with the Grad-—
compression. The plasma compression term only appears f&@hafranov equatiofEq. (2)] determine the marginal stability
a closed field line system. The last term is the curvaturedf both highn interchange and ballooning modes. The con-
(instability) drive. There is no kink drive term because only tinuity of the eigenfunction and its derivative provide the

o

54
di

diamagnetic current is present in the equilibrium, ijg.,
=0. We can minimize the sum of the stabilizing plasma
magnetic compression terms to obtdin

Ayuop(&, - K)*

BV & +2&, - if*+ yuop(V-£)°> — ¥(B)2
(5

Consider highly localized modes. We approximdte
=mn, €S, where VS=k, and B-VS=0. Following
Freidberg'® we can obtain to lowest ordéin 1/k, a), 7, o
=(X/B)bXk, . The second order contribution ®N then
becomes

_ 1
5W2—Z—MOJ dydpW (6)
with
k2 [9X\2 4S\?d
Wi .0)= [ g0z Jzéz(a—z) ‘Zﬂo(ﬁ) a0
(é’S 2 (KkyX)?
+4yuop 96] Tr9B)2|" (7)

boundary condition for integrating around a closed field line.

Consider first the stability of interchange modes, i.e.,
modes withX=constant. Equatiof8) then indicates stabil-
ity for

2yp(ky) _
1+ y(B)2~ Pu

We can simplify Eq.(8) for ballooning modes by con-
sidering the flux tube average to obtain a constraint on the
solution. The flux tube average of E®) is

2yp(xy)
0| gz

Equation (10) indicates that when interchange modes are
stable the solution to Eq8) requires tha{ X« ,)=0. Thus
we can simplify Eq.(8) for ballooning modes,

d 1 dX
B -
dl BR? dI
We have added a multiplicative constant, to the second
term in Eq.(11) and therefore this equation reduces to the
balloon equation whear=1. The condition(X« ) =0 is sat-

isfied by both even and odd modes but the odd modes are
found to be the most unstable.

9

=0.

(10

+2apok P, X=0. 11

In the region between the pressure peak and the wall of the Once the equilibrium is solved we can determingand

vacuum chamber the curvature drieecond term in Eq7)]
is always destabilizing sincp,<0 and «,<0. The com-
pressibility term[the third term in Eq(7)] is always stabi-

Eqg. (11) can be easily solved with a shooting technique. In
the solution we seX=0 at the minimum magnetic field
point and integrate around ttielosed field line of lengthL.

lizing provided(X« ,)# 0 although the stabilization becomes We vary « until X(L)=X(0). Further, since a redexperi-

inefficient at sufficiently high8). Sincek, only occurs in

menta) configuration is not up—down symmetric we need to

the stabilizing field-line-bending term we can further mini- vary the X=0 starting point location until we finck’(0)

mize Eq. (7) by taking k, =k,V¢+k,Viy=~(1/R)dSIdp
=n/R. We can now minimize Eq.7) to obtain the balloon
equation(at marginal stability,

=X'(L). The X=0 point is found to be close the the mag-
netic field minimum at the outer midplane. The valuexofs
a measure of how stabl@r unstable the field line is to
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10 ' ' ' 6 peak value. The even mode is always seen to be more stable
__ (E)Zfd” :”r;‘;‘j; ] because it is forced to ber@nd change signsn the high
beta region and it therefore requires a larger bending energy.
In conclusion we have shown that the equilibrium and high-
n ballooning equations become relatively simple in a dipole
configuration. The steepest pressure profile that is consistent
with interchange stability provides the maximum peak-local-
beta for a given radial extent of the confined plasma. An
evaluation of equilibrium and stability indicates that equilib-
ria can be found at very hig3 and we have shown a case
] that was solved foB~10. We have also found that high-
. AT 0 ballooning modes remain stable in the highregime.
o T o A e ansy ™ m It has been pointed out that in a similar configuration a
separatrix can be formed withkipoints on the magnetic axis
FIG. 4. The approximate eigenmodes for jie 5 field line (in the high8  sych thatfdl/B— . In this configuration the edge pressure
equilibrium). The beta profile along-the-field-line is also shown. gradient can become very large and ballooning modes will
limit B in the vicinity of the separatriX°*® We have not
ballooning with o>1 indicating stability. This method of examined this possibility.
stability analysis is similar to the Newcomb theor&h.
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