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The effect of a subsonic toroidal flow on the linear magnetohydrodynamic stability of a tokamak 
plasma surrounded by an external resistive wall is studied. A complex non-self-adjoint eigenvalue 
problem for the stability of general kink and tearing modes is formulated, solved numerically, and 
applied to high /3 tokamaks. Results indicate that toroidal plasma flow, in conjunction with 
dissipation in the plasma, can open a window of stability for the position of the external wall. In this 
window, stable plasma beta values can significantly exceed those predicted by the Troyon scaling 
law with no wall. Computations utilizing experimental data indicate good agreement with - - 
observations. 0 1995 American institute of Physics. 

I. lNTRODUCTlON 

In the next generation of steady-state advanced toka- 
maks, a high-performance plasma must remain stable over 
time scales long compared to the fIux diffusion time of the 
external resistive wall (7,)). At the same time, it is highly 
desirable to have ,BN(/?aBII) exceed the value (&) given 
by the Troyon scaling law with no wall. The question is can 
we rely on wall stabilization for maintaining the stable op- 
eration of the plasma? It is well known’,2 that for a stationary 
plasma, an external resistive wall does not affect its stability, 
only its growth rate, which is slowed down to -l/r,. Al- 
though the idea of resistive wall stabilization of tearing 
modes3 in a rotating tokamak has been around for some time, 
the stabilization of the external kink mode by a resistive wall 
for a plasma with flow was only recently proposed by 
Bondeson and Ward.4 In their work, they demonstrated this 
idea by modeling a stationary plasma surrounded by a rotat- 
ing external wall. 

Experimentally, it has been demonstrated in DIII-D” that 
a high beta plasma can be maintained at p values above that 
given by /?c for time scales much longer than r,+, .6 These 
discharges are usually heated by coinjected neutral beams, 
and are therefore rotating toroidally. Computations7 assum- 
ing static plasma equilibrium give critical &, in agreement 
with experimentally observed values, when the external wall 
is assumed to be infinitely conducting. When the plasma 
slows down, instabilities are observed. The theory used in 
Ref. 7 ignores the toroidal rotation of the tokamak and can- 
not explain why the wall acts as though it were infinitely 
conducting. Similarly, the behavior of tearing mode unstable 
plasmas have been found to be at variance’ with magnetohy- 
drodynamic (MHD) theory based on a static plasma. For 
instance, the plasma has been found to disrupt less frequently 
than suggested by the simple idea of overlapping static 
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islands9 These observations suggest that a comprehensive 
MI-ID study including the effect of plasma how is needed. 

The effect of Row in MHD attracted early attention from 
theorists.” However, since experimentally observed flows 
are usually much slower than the central sound speed, it was 
reasoned that flow would not affect the short time scale sta- 
bility of the plasma. Renewed interest has arisen recently 
because of the above experimental observations and the re- 
alized importance of improved stability for future tokamak 
development. 

This paper provides a theoretical framework for studying 
the stability of a tokamak plasma with a subsonic toroidal 
rotation and assesses its relevance to present-day experi- 
ments. In Sec. II, we give the formulation for determining 
stability as a non-self-adjoint eigenvalue problem. It is 
solved numerically using an extension of the MARS” code, In 
Sec. III, we present the physical problem under investigation 
and utilize two simple dispersion relations to elucidate the 
characteristics of the solutions. It is shown that, in simplified 
situations, a tearing mode unstable plasma surrounded by an 
external resistive wall satisfies a quadratic dispersion rela- 
tion; while a kink unstable plasma satisfies a cubic equation. 
Plasma rotation coupled with dissipation can stabilize these 
instabilities. In Sec. IV, we present the numerical results for 
both a low qe (edge safety factor) and a high qe, high p 
equilibrium. For the high qe equilibrium that simulates a 
DIII-D discharge, the computed critical rotation velocity for 
plasma stability agrees well with the experimental value. 
Section V contains a brief summary and a conclusion. 

II. FORMULATiON AND METHOD OF SOLUTION 

In this section we present the formulation for determina- 
tion of the linear stability of a tokamak plasma with a sub- 
sonic toroidal flow and surrounded by an external resistive 
wall. 

We start with the MHD equations for the density p, pres- 
sure p, magnetic field B, and fluid velocity v, 

dP -;i;+pv.v=o, 
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(2) 

(3) 

theory for the proper form or magnitude of this term. We, 
therefore, have used several different forms to examine the 
sensitivity of the results to any specific model. These forms 
are given ,in the Appendix. One criterion that we used in 
adopting these forms is that the added terms are dissipative 
in nature, 

dV 
p clt=-Vp+ JxB-V-II, 

where 

d d 
z=z+v.v. 

Here I’ is the ratio of specific heats, 7 is the plasma resistiv- 
ity, and Il is the viscous stress tensor. At equilibrium (~Ybt 
=O), we assume that transport-induced effects from 77 and 11 
are negligible or implicitly balanced by sources. We also 
assume the plasma tb have a subsonic toroidal flow, 

pvo~vv*~vPrJ> (6) 

where the subscript 0 is used to d&note equilibrium quanti- 
ties. It is then easy to see that the the axisymmetric plasma 
equilibrium still satisfies the Grad-Shafraiiov equation 

-3 -~ 
v.V.Ii d ~00: Cl61 

The perturbed MHD equations constitute a set of ten 
coupled linear homogeneous equations for the ten perturbed 
quantities (v,,b,, j, ,p,). One of the special features in this 
formulation is that explicit derivatives with respect to the 
radial variable appear only in-first order. The components of 
j, in Eq. (13) are therefore also included explicitly as depen- 
dent variables. Not shown explicitly are equations-that relate 
the electric field to the currents in the external wall surround- 
ing the plasma. Equations (lOj413) form a complex eigen- 
value problem for the complex. growth rate r. Equilibrium 
flow terms cause the problem to be non-self-adjoint. The 
MARS code” has been adapted to solve this eigenvalue sys- 
tem. 

and 

B,=ToV~+Vq5xV~o. 03) 

In steady-state, Eq. (3) shows that the toroidal rotation fre- 
quency 00(+0) has to be a flux function 

vo=~2~owo)w. (9) 

A straightforward linearization of Eqs. (l)-(4) shows 
that the density perturbation is decoupled from the rest of the 
system. The system of linearized equations is then 

(y+inf&)jp*= --(VI *V)p()- rpoV.v], (io) 
(~+in~ojbl=Vx(vlxBo- ~jlj+(b~~VQojR2V~, 

(11) 
~i~+in~~)v~=-Vp,+j,xB~+j~xb~--V.~~ 

-PoU, (12) 

jl=Vxbl, (13) 

where y=y-io is.the complex growth rate. In Eq. (12), 

(7) 
Ill. PHYSICAL CHARACTERISTICS OF THE PROBLEM 

u=v, x 2x2 .+(v1 *V)vo 
i 1 

and L, 

- V . II, = perturbed viscous force. (15) 

Comparing Eqs. (lo)-(15) with the usual linearized 
MHD equations without flow, we note the presence of the 
underlined additional terms. These are the Doppler shifts, the 
modification to Ohm’s law in Eq. (ll), and the Coriolis force 
and the perturbed viscous force in Eq. (12). To.describe the 
interaction of the plasma with the resistive wall on the slow 
time scale, it is crucial that the perturbed viscous force term 
be included. However, there does not exist a comprehensive 

2 Before examining results from the MARS code, we at- 
tempt to gain a better understanding of the analytic structure 
of- this system by considering two simple model dispersion 
relations. 

We consider a tokamak plasma surrounded by an exter- 
nal resistive wall located at cylindrical radius b and with a 
Rux diffusion time 7w . In here r,,, stands for ,q,crb S for a thin 
wall of thickness Sand conductivity (T. If the plasma is static 
and the external wall perfectly conducting (~,=a), the 
plasma isassumed to be stable if b is less than a critical 
distance b, ; If the -plasma is static and the external’ wall 
resistive (~~<a), the plasma is unstable to an external mode 
regardless of the value of b. 

This stability picture is modified when the plasma rotates 
with rotation frequency no. If, the wall is resistive and slo is 
large enough, the plasma may be stabilized if b is less than 
6,. This phenomenon of stabilization by rotation occurs dif- 
ferently, depending upon whether the plasma mode is a re- 
sistive instability (tearing mode) or an ideal external kink. 
The major difference is that for a tearing mode, the plasma 
kinetic energy is negligible, whereas for an ideal external 
kink it is not. 

First, consider the tearing mode case. Starting from the 
set of equations (lo)-(13), specializing first to fio=O, and 
ignoring the plasma inertia, a dispersion relation for a tearing 
mode unstable plasma surrounded by an external perfectly 
conducting wall may be obtained..A model dispersion rela- 
tion for the perfectly conducting wall at b and a critical wall 
location at 6, may be given as bTT,+ 1 -blb,=O. Here, 7 
is the complex growth rate ( y- io) and Q-~ is the tearing 
mode growth time. The coupling of this tearing mode to the 
diffusion of flux through an external resistive wall 
modifies the .dispersion relation to (b $T~ + 1 - b/b*) 
X( 1 + yb Tz) = 1. The quantity ~2 is a normalized12 
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FIG. I. (a) Growth rate y as a function of external wall location b for the 
coupled tearing mode and diffusion through the resistive wall, Eq. (17). The 
critical wall distance is at br= 1.5. The two branches are coupled by plasma 
rotation R,. As Ge increases, a stability window first appears near the 
plasma edge. This is the case for r%.-+rn. (b) The same as for (a) for the case 
of r,+r,,, . The stability window first appears at the location between the 
plasma edge b = 1 and br . 

resistive wall time. It is -T,(b- 1) when b< 1 + 1/2nt, and 
-r,/2rn when 6> If 1/2m. Here m  is the poloidal mode 
number. Now there are two roots of the dispersion relation, 
and one of them is always unstable. When b is less than bT, 
the instability is a result of the coupling to the flux diffusion 
through the resistive wall, and may thus be called a resistive 
wall mode. With the inclusion of plasma rotation, the disper- 
sion relation is further modified to 

A dispersion relation similar to Eq. (17) has been studied 
before by Bondeson and Persson.” This is a simple quadratic 
equation in + and can be easily solved. The characteristics 
are slightly different, depending on whether T$ is much 
longer or shorter than rV. In present and future tokamaks, we 
expect 7; to be larger than 7; . The typical behavior of the 
growth rate as a function of a0 and the wall position is 
shown in Fig. I(a). When a0 is small (curves marked by 0), 
we have two widely separated branches. One is unstable at 
any location of the wall b and is called the tearing mode 
(when b>b,) or the resistive wall mode (when b<b,). The 
second mode, in which the perturbed flux is mainly diffusing 
through the external wall, is stable. As a0 increases, these 
two branches come together. A stability window in b appears 
near the plasma edge when Cl0 reaches a certain value fi; 

(curves are marked by 0). The stability window increases in 
size with Qo>GT, (curves are marked by +) and the largest 
stable b approaches br as Sz, tends to a. Note that we 
showed only the growth rate (the real part of F) in Fig. l(a). 
The full solution also shows that the unstable branch has its 
frequency o (the imaginary part of +=r-io) always close 
to R, (locked to the plasma), whereas the stable branch has 
w always very small (locked to the wall). 

If the tearing mode growth time is much shorter than the 
resistive wall time ( rV G T$), the growth rate diagram is as 
shown in Fig. l(b). Here, below a critical Cl,,, the two stabil- 
ity branches are widely separated, as shown in Fig. I(a). But 
as fzo is increased, the stability window first appears at a 
location intermediate between the plasma edge (b=l) and 
bT. A further increase in CIo widens this stability window. As 
Sz, increases, the frequency of the unstable mode does not 
increase with 0,. Rather, it remains very close to zero 
(locked to the wall). The frequency of the stable branch, 
however, is always close to the a0 (locked to the plasma). 

If the plasma behavior is close to ideal, then the kinetic 
energy term is of importance. Starting from Eqs. (lo)-(14) 
in Sec. II, we may derive the following dispersion reIation 
for a plasma with a uniform rotation at angular frequency 
St,: 

( T-l- inLko)2K+ ( y+ inRo)D + SW, 

-I- 
SW; j+; + SW; 

jir;+1 = 
O. 08) 

A similar dispersion relation has also been obtained by Betti 
and Freidberg14 and Fitzpatrick.” 

In (18), R is the kinetic energy integral, D is the dissi- 
pation energy integral, LSW, is the plasma potential energy, 
SW~ is the vacuum energy integral with a perfectly conduct- 
ing wail at location 6, and SW; is the vacuum energy with 
the perfectly conducting wall at infinity. It is assumed that 
for a perfectly conducting wall (7: = co), the plasma is 
stable when b is less than b, . From Eq. (18), this indicates 
that SW,, is equal to - c?W: when b equals b, . As b goes to 
CD, the system is unstable with SW,+ SWT<O. 

We see that in contrast to the quadratic equation in + for 
the tearing mode given by Eq. (17), the dispersion relation 
for the coupled external kink and resistive wall gives rise to 
a cubic equation, Eq. (18). Without rotation, and with a per- 
fectly conducting external wall, there are two modes present 
in the plasma. One is the unstable external kink when b is 
larger than 6, and the other is a damped (stable) plasma 
mode that may be modified by plasma effects not included in 
this model. Resistive diffusion of the flux introduces a third 
branch into the stability diagram and destabilizes the external 
kink when b is less than b, . It appears as the resistive wall 
mode. This is indicated in Fig. 2. As Cl0 increases, the resis- 
tive wall mode is stabilized by coupling to the wall mode. 
This mode coupling is indicated in Fig. 2 by the curves 
Q,=fi& At fig, the two branches coalesce and exchange 
character (note this is not the rotation frequency at which the 
stability window first appears). A further increase in 0, leads 
to further opening up of the stability window. [Note that 
without dissipation, the solution of (18) indicates that the 
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FIG. 2. Growth rate y as a function of the external wall location b for 
coupled external kink and diffusion through the resistive wall, E& (18). The 
critical wall distance is at b,= 1.6. Three branches of the solution are shown. 
At &=O (no plasma rotation, long dashed curves), one of the branches 
(external kink-resistive wall mode) is unstable at all b. The other .two= 
branches are stable. As Q, increases, induced coupling between the stable 
and unstable branch causes the s$@ility window to appear. Here @j is the 
critical frequency for mode coupling. It is also close to the frequency at 
which the stability window first appears. The three branches of solutions at 
CI$ are shown as dotted curves. For IL>CL& the stability windows become 
substantial in size. These three branches are shown as solid curves. 

damped branch does not couple with the resistive w& mode. 
No stabilization is achieved by increasing Sz, when there.is 
no dissipation.] 

Thus, we see that the combined presence of plasma dis- 
sipation and plasma rotation profoundly changes the topol- 
ogy of the three roots of the dispersion, relation. mile rota- 
tion alone separates the resistive. .wall mode from the “ideal” 
plasma mode, dissipation reduces the growth rate of the re- 
sistive wall mode and also imparts a finite real frequency to 
it. For a large enough rotation, and when D exceeds a mini- 
mum value, the plasma stability for a fixed external wall then 
approaches that determined for a static plasma surrounded by 
a perfectly conducting wall. 

IV. NUMERICAL RESULTS 

In this section we describe the numerical results obtained 
by applying the adapted MARS code to high beta equilibria. 
We begin with one of the cases that was studied previously 
by Bondeson and:-Ward.4 This equilibrium has aspect ratio 
R/a---3, elongation K= 1.6, triangularity 6-0.3, q0=l.2, 
edge safety factor y,=2.55, plasma ,0=6.7%, normalized 
current IN=IlaB= 1.6, and normalized p,=paB/I=4.25. 
Note that there is only one resonant surface in the plasma. In 
contrast to Bondeson and Ward,4 here the plasma is rotating 
instead of the external wall; the effects due to the Coriolis 
force and flow shear can thus be studied. We normalize the 
rotation frequency to the Alfvin frequency fi*=v AIR, where 
vA is the Alfvdn velocity at the plasma center and R is the 
major radius. In this first example, the p&ma has a’uniform 
rotation frequency of 0.060,. By-varying the pdsition of the 
external resistive wall (with n,~,,,=5000), three distinct 
branches of the mode growth rates are found as shFwn in 
Fig. 3. The curve labeled y1 is’ the ideal branch; it has a 
frequency 0 close to a,. The resistive wall mode branch 
labeled 3/W has a frequency close to zero. The third branch, 

-2 , I I I I I 
1.0 1.2. 1.4 1.6 1.6 2.0. -: : 

Wall DimansionPlasma Dimension 

2 

FIG. 3. The growth rate diagram computed for a low edge q configuration. 
Shown are the three branches of the solution for.a numerical high p equi- 
librium with Rla=3, ~=1.6, q0=1.2, q,=2.55, p=6.7%, IlaB=1.6, and 
&=4.25. The plasma is assumed to have a uniform rotation at 
&=0.06RA. The wall is assumed to be ~,,=5000~, . 

labeled y3, is always heavily damped. This branch also has a 
very small frequency. The ideal branch and the resistive wall 
branch have very similar eigenfunctions within the plasma, 
whereas the third branch has a different eigenfunction. Com- 
paring these results with the expected analytic structure from 
Eq. (18), we recognize that another damped branch w.ith its 
frequency o close to a,, is not found in the present numerical 
scheme. Also, the coupling of different components of the 
mode amplitudes can give rise to new modes with different 
polarizations, in addition to those predicted by the simple 
model of Eq. (18). We have also found that the Coriolis force 
term in Eq. (12) has a negligible effect. This justifies 
a posteriori the neglect of higher-order plasma flow terms in 
the equilibrium equation. We see that in this case a stability 
window exists for b,= 1.3<b<b,= 1.66. 

The stability window shown in Fig. 3 may be altered by 
varying the plasma rotation frequency or the amount of dis- 
sipation. It is found that the plasma has to be rotating faster 
than a threshold value fib for the stability window-to exist. 
And in general, 05 decreases and the width of the stability 
window increases with increasing dissipation. l6 Shown in 
Fig. 4 are computations illustrating these dependences for the 
same plasma configuration shown in Fig. 3. Case A has 
&=0.04~,, rl= 1 [the definition of 71 is given in Eq. (A2)], 
case B has R0=0.06f12,, rl=O.l. The values of 77 and p1 are 
0 for both A and B. Case C has fi,,=O.OSfi*, ?I= 1, v= 10e6, 
/x1=7x 10-5. Th ese transport coefficients are measured in 
units of global transport rate in time units of Q. We have 
also varied’theresistivity of the plasriia atid fitid that it does 
not change the general nature of the stability diagram; thus, 
this resistive wall mode results from the coupling to the ex- 
ternal kink rather than to a tearing mode.17 

Shown in Fig. 5 is the effect of flow shear for this con- 
figuration. We compare the growth rates of a uniformly ro- 
tating plasma with those of a plasma with sheared rotation. 
For utiform rot@qn, the rotation frequency at the q=2 sur- 
face is the same as that at the plasma center. For the sheared 
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FIG. 4. The stability diagram for the same equilibrium shown in Fig. 3 with 
a different rotation frequency and plasma dissipation. This shows that the 
stability window is enlarged by both an increase in plasma rotation fre- 
quency and an increase in dissipation. In case A, Q,=O.OAn, , YI= 1: case 
B, Q,=O.O6Q,, 
,LQ=7x10-5. 

ql=O.l; case C, ne=O.O6R,, rqi=l, ~=10-~, 

FIG. 6. Stability diagram for a high edge q configuration, simulating a 
discharge in DIED. This equilibrium has R/a=2.49, ~=2.1, 6=0.8, 
qo=1.405, q,=5.8, p=6%, NaB=l.6, &=3.8, and q=l. The plasma is 
assumed to be rotating at R,,=O.Olfi* and 7,,,=50007,. 

externa1 kink mode when no wall is present. When we vary 
the plasma rotation speed, keeping the experimentally ob- 
tained density and rotation profiles, we find the stability 
threshold in rotation is similar to that observed in the experi- 
ment. In this comparison, we have taken 91=0.5. This varia- 
tion with rotation is shown in Fig. 7. Although in the experi- 
mental case, near the plasma edge, Eq. (6) is not fully 
satisfied, we do not expect the present conclusion to be 
modified by the inclusion of inertial effects in the equilib- 
rium. This is also being studied presently. 

rotation, we used the profile Q,=fibO’[ 1 -s,p2( l-2/3p)], 
where p is a generalized plasma radius defined as (A’“, 4 is 
the normalized poloidal flux, and p=@= 1 at the plasma 
boundary. The rotation frequency is held fixed at O.O6fi, at 
the plasma center. The rotation velocity at the q =2 surface is 
decreased by increasing s, . The growth rates are plotted as a 
function of the rotation speed of the q=2 surface with re- 
spect to the external wall. It is seen that, for this configura- 
tion, the rotation frequency at the q=2 surface is more im- 
portant than s, in determining the stability of the resistive 
wall mode. 

Shown in Fig. 6 is the stability diagram for an equilib- 
rium simulating a DIII-D discharge with R/a =2.49, ~=2.1, 
6=0.8, qo=1.405, qe=5.8, /3=6%, I/+=1.6, &=3.8, 
&/~,=0.01, 0 ,r,,,=5000, and yl=l. There is no rotation 
shear. Once again, the stability diagram is that of an unstable 

V. CONCLUSION AND SUMMARY 

In this paper, we have formulated the MHD stability 
problem for a tokamak plasma with a subsonic toroidal flow, 
surrounded by an external resistive wall. For weak toroidal 
flow, the plasma satisfies the Grad-Shafranov equation with- 
out how. Linear perturbations satisfy equations that consti- 
tute a non-self-adjoint eigenvalue problem for which the 

8. I 
---jf.--. QZ 

P -43-m 0.4 
--O-- 0.6 

-.- I 

-0.01 b O.bl o.in o.iI3 0.b 0.b o.bs 0 
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1:t i.2 i$ 1;6 
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FIG. 5. The growth rate plotted as a function of the rotation frequency of the 
q=2 surface for rotation profiles with and without rotation shear. The 
growth rate for uniformly rotating plasma is slightly higher than that of a 
plasma with rotation shear, showing that rotation at the singular surface is 
more important for stabilization than rotation shear. 

FIG. 7. Stability diagram for the same equilibrium as shown in Fig. 6 with 
fitted profiles to experimental rotation and density profiles. Computed are 
growth rates for different levels of rotation frequency and with 9,=0.5. It is 
shown that the experimentally observed threshold is well within the com- 
puted range of values, 
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complex growth rate is the eigenvalue. The equations contain 
the usual MHD equations, with additional terms coming 
from the Doppler shift, modification to Ohm’s law, Coriolis 
force terms, and viscous dissipation. The complex eigen- 
value problem is solved using an extension of the MARS 
code. 

When a static unstable plasma is surrounded by an ex- q 
ternal resistive wall, diffusion of the perturbed flux through 
the external wall will make the plasma unstable at any loca- 
tion of the resistive wall. Plasma rotation can couple the 
unstable mode with the stable damped mode and stabilize the 
plasma. Two simple dispersion relations are used to illustrate 
the characteristics of the solutions. Depending on the nature 
of the plasma response, the coupled dispersion relation is 
either quadratic for the tearing mode or cubic for the ideal 
external kink mode. The general features of these solutions 
are given in Sec. III. 

The characteristics of the coupled system of an unstable 
external kink with a resistive wall (the resistive wall mode) 
are verified by computational examples of realistic equilibria 
for both a low qe and a high qc plasma. In general, it is 
found that sufficient toroidal flow opens up a stability win- 
dow for the external wall location. The window size is en- 
hanced by an increased flow velocity or an increased amount 
of plasma dissipation. We find the effect of the Coriolis force 
and other inertial forces on these modes to be minimal. For 
the low qe example, we find that stability depends more on 
the velocity of the resonant q surface relative to the external 
wall rather than on the flow shear. For the high qe example, 
which simulates a DIII-D discharge, we find that the experi- 
mentally observed rotation speed is sufficient for the stabili- 
zation of the resistive wall mode. Insufficient knowledge of 
the plasma viscosity tensor from first principles means that 
the dissipation can be adjusted somewhat to favorably com- 
pare with experiment. This does not impact the favorable 
qualitative comparison with experiment, but it makes the 
quantitative comparison less sharp. 
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APPENDIX: VISCOUS DAMPING MODELS 

The correct choice for a viscoul’damping model is un- 
resolved. We therefore list a few of the possibilities here and 
expect to be able to refine them later on. The viscous force 
has been taken to be 

- v’~=.~~,D+~neo,D+&D. (Al) 
In (Al), the parallel sound wave damping model’ is 

.~sD=-K,,J;;Ik,,UthrlpYI’sI;, 642) 

where kll is the parallel wave number (n -mlq)( 1 lR), and ~1 
is the strength parameter. This is used to model the Landau 
damping effect. The neoclassical damping model used is 
adapted from Ref. 18, 

%eo D = ‘ho (A31 

with Vii the ion collision frequency and pl defined in Ref. 18. 
Here ~~~ is the strength parameter for this model. The force 
from anomalous perpendicular viscosity is taken to be 

*q&D= -(vxPl*.Lvxv,,), * 644) 

Three adjustable parameters (~11, ~~~~~ K~) are used Within 
MARS to examine the sensitivity of the various damping 
models on plasma stability limits. 
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