Experiments with a Supported Dipole

Reporting Measurements of the Interchange Instability Excited by Electron Pressure and Centrifugal Force

> Ben Levitt and Dmitry Maslovsky Collisionless Terrella Experiment Mike Mauel – ICC 2004

Outline

- Introduction
- Description of CTX Experiment
- Hot Electron Interchange Instability
- Centrifugal Interchange Instability
- Future Experiments and Campaigns

Introduction

- Interchange (k·B \approx 0) mixing is a natural process in planetary magnetospheres that is either externally-driven (e.g. the solar wind) or internally-excited by instability (e.g. Jupiter's lo torus).
- The Collisionless Terrella Experiment (CTX) was built to investigate interchange instability of "collisionless" plasma confined by a strong laboratory dipole magnet.
 - CTX results have guided physics planning for LDX.
- Since a dipole field has no magnetic shear, exhibits strong compressibility/adiabaticity effects, and with k·B ≈ 0, interchange dynamics in a dipole is a fascinating 2D process.
 - Beautiful nonlinear "wave-particle" interactions result!
 - Good agreement between theory and experiment.
- Recently, Ben Levitt succeeded in exciting the **centrifugal interchange instability** in a rotating dipole plasma.

CTX Plasma

Creating an "Artificial Radiation Belt"

- Low-pressure microwave discharge in hydrogen (2.45 GHz, I kW)
- Energetic electrons (5 40 keV) produced at fundamental cyclotron resonance: an "artificial radiation belt"
- Electrons are strongly magnetized (ρ/L ≪ I) and "collisionless".
 Equatorial drift time ~ I μs.
- Intense fluctuations appear when gas pressure is adjusted to maximize electron pressure

Close-up: Hot Electron Interchange Instability

Properties of Interchange Instability Driven by Energetic Electrons

- Instability acquires a real frequency, $\omega \sim \omega_d$, from the rapid magnetic drift of the electrons.
- Stabilizing ion polarization currents allow pressure gradients to exceed the usual MHD limit, $\delta(pV^{\gamma}) > 0$, creating a threshold to instability and suppressing short azimuthal wavelength.
- Drift-resonance with electrons create "phase-space holes" (or "vacuum bubbles") that propagate inward. These holes can be "plugged" by applying RF scattering with a secondary source [Maslovsky, PRL03].
- Strong modulations in electron density occur that are radially localized (but azimuthally extended) [Warren, PRL95] and have a shorter length-scale as the fluctuating potential [Levitt, POP03].

Self-Consistent, Nonlinear, Multi-Fluid, **Field-Line Integrated, 2D** Simulation Reproduces Dipole Interchange Dynamics and Mode Structure [Levitt, POP03]

Interchange Burst Causes Strong Localized Electron Modulations

[Warren, PRL95]

- Low energy electrons resonantly interact before (faster) high energy electrons.
- Field-line integrated phase-space spatial structures have complex energy dependence due to drift frequency differences.
- Oscillations persist due to at high energy drift resonance at hot electron pressure peak.

Observation of Centrifugal Interchange Instability [Levitt, 2004]

- Axisymmetric bias voltage (≤ 500 V) applied to equatorial mesh placed at plasma's inner boundary.
 - > Axisymmetric radial current drives azimuthal E×B rotation.
 - \triangleright Current increases with neutral pressure and fixed ω_{e} .
 - ▷ "Near sonic" speeds ($\omega_{e}/2\pi \sim 18$ kHz) on outer flux tubes.
- Instability appears only with sufficient rotation drive.
- Low instability frequency, $\omega \ge \omega_e \ll \omega_{dh}$.
- Low amplitude, ~ 10% of HEI, Reduces central density peaking.
- Broad global mode structure, dominated by long azimuthal wavelengths (m = 1, 2) but with a weak radial "spiral".
- Good agreement with theory/simulation when effects of fast electrons are included.

Driven Plasma Rotation Appears Rigid

- Floating potential scales with radius as $\Phi \sim R^{-2}$
- Corresponds to rigid rotation in a dipole, $\omega_e/2\pi = 18$ kHz
- Potential profile consistent with constant radial current proportional to the field-line integrated Pedersen conductivity:

I ≈ 8π M $ω_e(R) Σ_p(R)$

• $\Sigma_p(R)$ is constant if density profile, n ~ R^{-6} , exceeds instability threshold.

Centrifugal Interchange

Frequency (kHz)

(Seconds not msec)

At Lower Density, Centrifugal Instability Mixes with Hot Electron Interchange Bursts

Outward Bursts of Energetic Electrons

Reduced B: Faster Rotation & Fewer Hot Electrons Excites m = 2 Dominated Mode Structure

Nonlinear Simulation with Rigid Rotation Computed in Rotating Frame Unstable Growth and Saturation from Noise

Broad "Spiral" Mode Structure

Summary

- Supported dipole experiments have been used to study basic, low-frequency interchange mixing in a dipole plasma. Interchange instabilities are excited by
 - > Steep energetic electron pressure gradients ($P(R) > R^{-7}$)
 - > Steep density gradients $(n(R) > R^{-4})$ and rigid rotation
- Fast magnetic drift of energetic electrons imparts a real frequency to the interchange mode and creates stabilizing ion polarization effects. The hot electron interchange has a threshold above the MHD limit, and the growth of centrifugal interchange modes with short azimuthal wavelengths are suppressed.
- The radial structure of the fluctuating potential is broad.
- 2D nonlinear models for interchange (k·B ≈ 0) dynamics reproduces both the dynamics and structure of observations.

This Summer

Cassini-Huygens Encounters Saturn

June 14: Phoebe July 1: Orbit Insertion

LDX Creates First Plasma

See Poster Session #3 (Thurs) Garnier, Hansen, Kesner

