Creating Artificial Radiation Belts in the Lab

or "Some Observations of Hot Plasma Trapped in a Dipole Magnetic Field"

M. E. Mauel and Results from the CTX and LDX Experiments

MIT, Sept 16, 2005

- Fast-electron, gyrokinetic interchange instability creates inward-propagating "phase-space holes" (bubbles) and a chorus of rising tones. (Maslovsky, PRL, 2003)
- Slow, MHD-like centrifugal interchange instability creates broad convection cells that have the same global structure as the fast-electron mode. (Levitt, PRL, 2005)
- With a "nearly levitated" dipole, neutral gas programming stabilizes the fast-electron interchange mode and creates the first high-beta plasma trapped in a laboratory dipole. (Garnier, DPP, 2005)

Acknowledgments

- The Earth's radiation belts and ring current
- Fast-electron interchange instability in CTX
- Slow, centrifugal interchange instability in CTX
- Creating high-beta plasmas in LDX
- Not today: Dipole fusion. Global particle convection and good high-beta confinement may make possible D-D(³He) fusion.

"My God, space is radioactive!"

James Van Allen, Carl McIlwain, Ernest Ray, George Ludwig

"Artificial Radiation Belts"

Van Allen kissing Explorer 4 "good bye" before it's launch to measure the artificial radiation belt produced by the Argus explosions (1958).

(Explosions continued through 1963. By 1968, belts finally returned to "natural" state.)

What are the Radiation Belts?

- Two zones:
 - Inner proton and electron belt L ~ 1.5
 - Outer zone, L > 4, electrons.
 Highly variable intensity.
- Highly penetrating energetic trapped electrons and protons.
- Radiation belt particles penetrate 0.6 mm of Al!
- Low beta, low fractional density, n_h/n < 10⁻⁴.

Where do they come from?

Where do they come from?

Where do they come from?

Rad Belt Dynamics Characterized by Adiabatic Invariants: Gyration (μ), Bounce (J), and Drift (ψ)

Low-Frequency Dynamics is One-Dimensional $(1D, k_{\perp} \rho \ll 1, Gyrokinetics!)$

$$\mathcal{H} = \frac{m_e c}{2e} \rho_{||}^2 B_0^2 + \mu_e^2 (B_0 + \delta B) - c\delta \Phi$$

 $B_0 \gg \delta B$, $\delta \mathbf{B} = \nabla \times \delta \mathbf{A}$, and $\delta \mathbf{E} = -\nabla \delta \Phi - \frac{1}{c} \frac{\partial \delta \mathbf{A}}{\partial t}$

A. Chan, L. Chen, R. White, GRL (1989)

Adiabatic Radial Dynamics

$$\frac{\partial F}{\partial t} + \dot{\phi} \frac{\partial F}{\partial \phi} + \dot{\psi} \frac{\partial F}{\partial \psi} = 0$$

 $F(\mu, J, \psi, \phi, t) = F_0(\mu, J, \psi) + \delta F_{m,\omega} e^{-i(\omega t - m\phi)}$

Linear Response...

$$\delta F \approx \frac{-i\dot{\psi}_{m,\omega}\,\partial F_0/\partial\psi}{\omega - m\omega_d}$$

Quasilinear Diffusion...

$$\frac{\partial F_0}{\partial t} = \frac{\partial}{\partial \psi} D_{\psi\psi} \frac{\partial F_0}{\partial \psi} \text{ with } D_{\psi\psi} = \sum_{m,\omega} \frac{\pi}{2} \delta(\omega - m\omega_d) \left| \dot{\psi}_{m,\omega} \right|^2$$
Fluctuating
$$\mathbf{E} \times \mathbf{B}$$

Perturbed ψ Caused by Global Fluctuations of Geomagnetic Cavity (Easily Measured!)

Nakada and Mead, JGR (1965)

T. Birmingham, JGR (1969)

Quasilinear Radial Diffusion

(Farley, Tomassian, Walt)

VOLUME 25, NUMBER 1

PHYSICAL REVIEW LETTERS

6 July 1970

With (Inward!) Diffusion

No Diffusion

Cluster II

(Launched 16 July 2000)

Cluster II Wideband Plasma Wave Investigation (Don Gurnett, ...)

A-D02-139-3

Curlometer

Ring Current: Trapped, High-β Protons (15-250 keV)

- Greatly intensified during geomagnetic storms
- $T_i \sim 7T_e$ and $P_\perp \sim 1.5 P_{\parallel}$
- Monthly storms: ~5 MA. (LDX: 3-4 kA)
 I0 MA storms few times a year.
- Current centered near L ~ 4-5R_e;
 ΔL ~ 2.6R_e wide and Δz ~ 1.6R_e;
 Not axisymmetric.
- Curlometer during storms:
 J_{RC} ~ 25 nA/m² (Cluster II, 2005)

AMPTE/CCE-CHEM Measurements Averaged over 2 years (De Michelis, Daglis, Consolini, JGR, 1999)

D_{st} and the Dessler-Parker-Sckopke Relation

Centrally-Peaked Proton Pressure (Even with Plasma Sheet, Outer-Edge, Source!)

Tromsø, Norway July 2005

Birkeland and assistant Olav Devik with his Largest chamber and terrella (1913)

The first laboratory plasma physicist!

200 Kroner (~ \$30) Issued by Norway in 1994

Back side shows a map of the north polar regions, where Birkeland established a network of auroral observatories, and the location of the "Birkeland currents" as depicted in 1908.

CTX Plasma Torus

"Artificial Radiation Belt" with ECRH "Artificial Gravity" with Radial Current Rad Belt Dynamics Characterized by Adiabatic Invariants: Gyration (μ), Bounce (J), and Drift (ψ)

Observing Interchange Modes

- Artificial Radiation Belt
 - "Fast" gyrokinetic interchange

> $\gamma_h \sim \sqrt{\omega_{ci}\omega_{dh}lpha}$, $\omega_{dh}/2\pi$ ~ 0.1 - 1.0 MHz

- Artificial Gravity
 - "Slow" centrifugal interchange

>
$$\gamma_g \sim \sqrt{\omega_{ci}\omega_g}$$
 , $\omega_{
m g}/2\pi$ ~ 0.2 - 1.0 kHz

Collisionless Terrella Experiment (CTX)

Creating an "Artificial Radiation Belt"

- Low-pressure microwave discharge in hydrogen (2.45 GHz, I kW)
- Energetic electrons (5 40 keV) produced at fundamental cyclotron resonance: an "artificial radiation belt"
- Electrons are strongly magnetized (ρ/L ≪ I) and "collisionless".
 Equatorial drift time ~ I μs.
- Intense fluctuations appear when gas pressure is adjusted to maximize electron pressure

Hot Electron (Fast) Interchange Instability

Multiple Low-m Modes & Frequency Sweeping

- Chaotic drift-resonant transport measured during dense spectral content. ^{chac} of (Warren, PRL, 1995)
- Quasi-coherent frequencysweeping indicates
 collisionless waveparticle dynamics.
- Multiple probe correlation measurements determines global mode structure.

Bursting "Phase-Space" with Low-Power RF (Maslovsky, PRL, 2003)

Related work: Heeter, Fasoli, Sharapov, PRL (2000)

Jovian Rotation Drives Io Mass Outward ~1 ton/sec

Centritueal

Pele • Volcano on lo Hubble Space Telescope • WFPC2

Creating "Artificial Gravity" through Rapid Plasma "Co-Rotation"

- Floating potential scales with radius as $\Phi \sim R^{-1}$ (negative bias)
- Corresponds to **rigid rotation** in a dipole, $\omega_e/2\pi = 18$ kHz
- Potential profile consistent with radial current proportional to the field-line integrated Pedersen (ion-neutral) conductivity:

I ≈ 8π M $ω_e(R) Σ_p(R)$

• $\Sigma_p(R)$ is constant if density profile, $n \sim R^{-6}$, **exceeds** centrifugal instability threshold.

Centrifugal (Slow) Interchange Excited by Rapid Plasma Rotation (Levitt, PRL, 2005)

Frequency (kHz)

(Seconds not msec)

At Lower Density, Centrifugal Instability Modulated by Hot Electron Interchange Bursts

Modeling Interchange

Interchange mode structure (relatively easy)

Adiabatic nonlinear dynamics

• Transport, dissipation, confinement (not easy)

Interchange Mixing in Dipole: Route to "Electrostatic Self-Organization"

- (1) "Inward" Adiabatic Heating
 - Ring current intensification
 - Storm-time belt formation
- Outward" Transport/Profile Consistency
 - Planetary winds (Centrifugal)
 - Magnetic confinement
- ③ "Phase-Space" Structure
 - Drift-echos (injections)
 - Holes (bubbles)
 - Frequency sweeping
 - Centrally-peaked profiles

Flux-Tube Integrated Dynamics Gyrokinetic Electrons and Cold Ion Fluid Coupled through 2D Electric Fields

$$\frac{\partial}{\partial\varphi}\left(h\varphi\frac{\partial\Phi}{\partial\varphi}\right) + \frac{\partial}{\partial\psi}\left(h_{\psi}\frac{\partial\Phi}{\partial\psi}\right) = -4\pi e(N_i - N_e)$$

Electric Potential (Constant along B-line & small dissipation)

Self-Consistent, Nonlinear, **Flux-Tube Integrated**, Simulation Reproduces Dipole Interchange Dynamics

- Global mode structure
- Frequency sweeping
- Mode amplitude
- ✓ RF scattering effects
- Combined centrifugal (slow)
 & gyrokinetic (fast) effects
- Initial value; no sources

Gyrokinetic Interchange Creates Persistent Phase-Space Structures

- Low energy (slower) electrons resonantly interact before (faster) high energy electrons.
- Field-line integrated phase-space spatial structures have energy dependence since drift frequency ∝ energy.
- Oscillations persist at drift resonance of high energy electron pressure peak.

Physical Picture of Frequency Sweeping Suppression

Location of a ~100 V phasespace "hole" at 1.0 MHz. $\omega = m \omega_d(\mu,L)$

RF cyclotron resonant fields applied are localized at the outer flux surfaces - locations where phase-space "holes" are initiated

RF mixing along µ causes the phase-space "holes" to fill/ untrap and suppress frequency sweeping

Nonlinear Simulation Reproduces Measured Frequency Sweeping Suppression

Relative Strength of Centrifugal and Curvature Drives Determine Mode Structure

Centrifugal (Slow) Interchange with Rigid Rotation Computed in Rotating Frame Unstable Growth and Saturation from Noise

5% Hot Electron Fraction

Phase Measurements Show "Spiral" Mode Structure of Centrifugal Mode

Dipole Interchange Modes have Broad Radial Structures

(2D Poisson's Equation: Computed mode structure shown with solid lines.)

LDX:A New Confinement Experiment

MIT-Columbia University

Big Plasma "Ring Current" Observed!

- Plasma currents reconstructed from least-squares best fit to magnetic diagnostics (and inductive coupling to superconducting coil.)
- For a given pressure profile shape, diagmagnetic current is proportional to stored energy. (Dessler-Parker-Sckopke)
- Plasma current up to 4 kA ~ 300 J! (Global energy confinement τ_E ~ 50 ms)
- Motion of ring current radius indicates profile evolution

Three Regimes in LDX...

Low-Density

High-Beta

Afterglow

50317014

- Intense, quasi-continuous hot-electron interchange pulsations. Visible image shows inward fast-electron transport.
- High-beta (~10%), higher-density. Quasi-steady state. Bright "halo" surrounds fast-electrons.
- "Afterglow" lasting several seconds. No heating; lower density. Fastelectrons visible as neutrals penetrate.

Continuous "Bursty" Fluctuations During Low-Density

Isolated Relaxation Events During High Beta Regime and During Afterglow

- At high β, periodic "relaxation" events occur a few times per second.
 Outward motion of ring currrent. (Also, x-ray and µwave bursts !)
- Depending upon neutral fueling and heating power, relaxation events can be *small* or *fully disrupt* high-beta regime.
- HEI can appear in (nearly?) all cases
- LDX is the first to observe the HEI in a *high-beta* dipole plasma!

All Events Characterized by Frequency Sweeping (E. Ortiz)

Where is the High-B Plasma?

Where is the High-B Plasma?

Abel Inversion (Equatorial) Show Profiles Highly Peaked Near 2.45 GHz Resonance

Where is the Ring Current?

- 8 flux loops
- 9 normal-B sensors
- 9 tangential-B sensors
- Constant flux constraint on superconducting dipole
- Isotropic now ($P_{\perp} > P_{\parallel}$ in future)
- 26 measurements;
 3 unknowns: (p₀, ψ₀, g) ...

Family of Profiles with Same χ^2

- More than 1 m separation between plasma current and magnetic detectors.
- Profiles with same plasma dipole moments, fit magnetics equally well.
- New, nearby magnetic sensors to be installed.
 - Where is the pressure peak? Answer: at ECRH Resonance

χ^2	Peak P	I _P (kA)
10.4	0.70	3.2
10.6	0.77	3.I
10.7	0.80	2.9

Summary

- Dipoles provide magnetic confinement for hot plasma in nature and in the laboratory.
- The dipole has a unique field structure for study of confined plasma: unmatched diagnostic access, well-characterized magnetic geometry, and fascinating (and musical) wave-particle interactions.
- Two types of global interchange instabilities excited/modeled:
 - Hot electron interchange (fast) modes illustrate collisionless gryokinetic dynamics with "phase-space" mixing and "bubbles".
 - Centrifugal interchange (slow) modes illustrate MHD mass flows and convective mixing.
- The world's first **high-beta** dipole-confined plasma has been created in LDX. LDX offers a new facility to study high-beta instability, "electrostatic self-organization", controlled convection, energy and particle confinement, ...