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|. Resistive Boundary Conditions using GRIN (A. Pletzer)

e plasma surrounded by a toroidally symmetric resistive wall

e vacuum beyond resistive wall

e B, continuous (thin wall approximation)

e GRIN computes Z, where B = ZB2 = ZB!"
e M3D provides B" and B!"
o F — (nw/a)nx (Bout . an)

The Z matrix depends on the shell geometry only. It is computed before launching
a nonlinear M3D calculation.



B°“ vacuum field

e V.B=0=VxB=B=Vy"xV¢+VA+ [V
o A*pot = VX =0
o VR Z), A= N\, exping

Green’s functions
GRIN calculates ‘impedance’ Z matrix elements from Green's identity

ox 0G,
"On  On
where G, (R, Z; R'Z") is Green's function for the Laplace equation, for n > 0.
Similarly for n = 0. using Green's function for the Grad Shafranov equation.

deR{G /\} —0.



n = 0 External Current Source Model
Given a set of boundary points, R;, Z;, and 1¢% = 1" on the boundary, n = 0
part of the solution is

awout B 0

( n )i = ?Zij’w’vj + 5i.
B N a¢out B 8¢zn
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S accounts for external currents that ensure that v is initially constant on the
boundary. 0v"" /On found from an ideal equilibrium calculation, with ¢*"" =
on the boundary. From £, = 0,
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lI. Inner “vacuum” region

e “vacuum’ — high resistivity 7
o1 ~ T—3/2

e 1 has 3D spatial variation

e T’ evolution

— advection, compression
— large parallel thermal conductivity, using “artificial sound” method

— small cross field thermal conductivity



[Il. Halo Current, Toroidal Peaking Factor

e 2 D Magnetic Field,
B=VyYyxV¢p+ IV

e 2 D poloidal current,

J,=VIxXVg

e Halo current flows along I. Contours of I intersecting the resistive shell are
halo currents. Jyq1, = J,, in halo region.

ol
Jhato = | dl|Ju|(R/ Ro) = | dt| 51/ Ro

e Toroidal peaking factor -

maz{ Jhaio(®) }
J dd)t]halo

tpf =27



V. 2D VDE simulation

sl max 0.12E+01 sl max 0.79E+00 sl max 0.24E+00
min —0.12E—-01 t= 29.90 min —0.37E—-01 t= 34.27 min —0.98E-01 t= 38.89

(b)
RB, evolution in a VDE



V. 3D Disruption

e large inversion radius m = 1 mode

e stochastic field & T collapse

e VDE is independent of m = 1 mode

e thermal quench causes current quench before VDE reaches the wall

e tpf depends on quench rate vs. VDE growth rate



sl max 0.35E+00 sl max 0.36E+00 sl max 0.97E-02
min —0.60E—01 t= 0.00 min —0.47E—-02 t= 0.00 min —0.13E-01 t=  74.93
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RB, evolution in a disruption



tm

max 0.12E+01

min 0.46E-01 t= 0.00

tm max 0.10E+01 tm max 0.13E+4+00
min 0.46E—-01 t= 0.00 min 0.46E-01 t= 74.93

evolution in a disruption



Poincare t= 0.00 Poincare t= 30.81
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Poincare plots in a disruption
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Conclusion

e Resistive wall boundary conditions implemented in M3D
e Vacuum fields calculated with GRIN

e Model external current sources

e inner vacuum modeled by high resistivity

e 3D resistivity ~ 7—3/2

e preliminary VDE

e 3D disruption - tpf depends on current quench vs. VDE

Further work

e ITER geometry and external currents

e worst case tpf



