Workshop on Active Control of MHD Stability: Extension of Performance November 18-20, 2002 Columbia University, New York, NY

Recent MHD-Related Experiment in LHD : Helical vs. Tokamak Comparisons

Kozo Yamazaki, Satoru Sakakibara, Kazuo Toi and the LHD Experimental Group

National Institute for Fusion Science, Toki, Gifu 509-5292, Japan

MHD Control Workshop

S Domestic

Importance of Tokamak & Helical Group Exchange

Domestic Research Collaboration

Feb. 2002 JT-60U → LHD

LHD → *JT-60U Sep. 2001*

LHD & JT-60U

Helical

R=3.9m, a=0.6m V=30m³ B=3T (SC) N-NBI 15MW RF 10MW

Tokamak R=3.4m, a=1m V=90m³ B=4T (NC), Ip=3MA P-NBI & N-NBI 40MW RF 15MW

Outline

1. Introduction

Reactor Prospect Present Plasma Parameters Control of LHD Plasma

- **2. Equilibrium Properties**
- **3. Stability and Confinement**
- **4. Density Limit and Disruption**
- **5. Steady-State Operation**
- 6. Summary

INTRODUCTION

For the realization of attractive fusion reactors, plasma operational boundaries should be clarified, and be extended to the higher performance limit.

There are several plasma operational limits:

- (1) confinement Limit,
- (2) stability Limit,
- (3) density limit, and
- (4) pulse-length limit.

Here we would like to discuss on the similarities and differences between TOKAMAK and HELICAL systems.

Requirement of MHD properties derived from Reactor System Assessment

High Bootstrap Current Fraction (>70%) Reduction of Current Drive Power High Beta (>4%) Steady-State → Compactness Without Disruption (< once/several years) \rightarrow High Availability (>70%)

Helical/Tokamak Achieved Maximum Parameters

	ΤΟΚΑΜΑΚ		HELICAL	
Electron Temperature				
T _e (keV)	26	(JT-60U)	10	(LHD)
Ion Temperature				
T _i (keV)	45	(JT-60U)	5	(LHD)
Confinement time	1.2	(JET)		
τ _Ε (s)	1.1	(JT-60U,NS)	0.36	(LHD)
Fusion Triple Product				
n _i τ _E T _i (m ⁻³ ∙ s ⋅ keV)	15x10 ²⁰	(JT-60U)	0.22x10 ²⁰	(LHD)
Stored Energy	17	(JET)		
W _p (MJ)	11	(JT-60U,NS)	1	(LHD)
Beta Value	40 (toroidal)	(START)		
β (%)	12 (toroidal)	(DIII-D)	3.2 (average)	(LHD,W7-AS)
Line-Averaged Density				
n _e (10 ²⁰ m⁻³)	20	(Alcator-C)	3.6	(W7-AS)
Plasma Duration	2 min	(Tore-Supra)	2 min	(LHD)
τ _{dur}	3 hr. 10min.	(Triam-1M)	1 hour	(ATF)

Control of LHD Plasma

Shape Control

inward shift ,elongation, triangularity, etc. (3-pair **PF Current** Control) minor radius (3-block **HF Current** Control) helical axis (1-pair **HF Current** Control) local island (10-pair **Additional Coils**)

Current Control

V_{loop} feed-back control (3-pair **PF Current** F.B.Control) **N-NBI & ECH** current drive BS current control (power and profile control)

- Density and Heating Power Control Gas Puffing and Pellet fueling
- Profile Control

ITB & good confinement with **localized ECH** good confinement with **Pellet**

Wall & Divertor Control
 Boronization & LID(local Island Control)

1. Introduction Reactor Prospect Present Plasma Parameters Control of LHD Plasma 2. Equilibrium Properties 3. Stability and Confinement 4. Density Limit and Disruption **5. Steady-State Operation** 6. Summary

Equilibrium: Similarities and Differences between Tokamak and Helical Systems

quilibrium		STANDARD TOKAMAK	STANDARD HELICAL
	Plasma Boundary Shape	2D	3D
	Magnetic Field Components	Toroidal (m,n)=(1,0)	Toroidal (1,0) +Helical (L,M)+ Bumpy (0,M) Ripples
	Plasma Currents	External + BS Currents	No net toroidal current or BS Current
	q-profile	Normal or Reversed shear profile	Flat or Reversed shear profile
	Divertor	Poloidal divertor 2D	Helical or island divertor 3D

Ρ	hy	/si	CS	5
P	ro	De	ert	ies

•		STANDARD TOKAMAK	STANDARD HELICAL
ies	Magnetic shear	Substantial Shear or Shearless in the core	Substantial Shear
	Magnetic Well	Well in whole region	Hill near edge
	Radial Electric Field	driven by toroidal rotation & grad-p	driven by non ambipolar loss (Helical Ripple)
	Toroidal Viscosity	Small	Large (Helical Ripple)
	grad-j, grad-p	grad-j driven grad-p driven	grad-p dominant
	Island, Ergodicity	near separatrix	Edge Ergodic Layer

Advanced Plasma Shapes

LHD Experimental Set-Up

LHD plasma is surrounded by ergodic field layer.

Experimental Conditions: H & He Plasmas, R_{ax}=3.6 m B_t=2.8 T ~ 0.5 T, co & ctr-NBIs: P_{abs}≤ 6MW, E≤ 150 keV

Main diagnostics:

Magnetic probe arrays, SXdetector arrays, Hα-arrays, Tangential viewing high speed SX-camera, Thomson scattering, FIR-interferometer, ECE, micro-wave

reflectometer and so on

1. Introduction Reactor Prospect Present Plasma Parameters Control of LHD Plasma 2. Equilibrium Properties 3. Stability and Confinement 4. Density Limit and Disruption **5. Steady-State Operation** 6. Summary

Stability Limits

j (grad-j) dominant or grad-p dominant ?

Tokamak

Ideal beta agrees with Ideal MHD

Resistive beta agrees with NTM & TM, RWM theories

Helical

Beta obtained beyond Mercier mode Global mode is still marginal.

Mode structure

TOKAMAK

(JT-60U, Takeji) **ERATO-J code** Global mode driven by j

HELICAL

Effects of Wall

Tokamak

Helical

Characteristics of Magnetic Configuration

LHD: *l*=2/N=10 Heliotron , R~3.6 m, <a>~0.6m, B_t<3 T

2

Rotational transform: increasing function against ρ

 $R_{\rm m}=3.6$ m configuration (VMEC-cal.) 1.6 **ι=3/2** $\mathbf{0}$ (% 1.4 .55 (%) **ι=4/3** Transform (%) 1.2 .63 (%) **ι=1** 2.15 (%) Rotational 0.8 0.6 ι=1/2 0.4 0.2 0

0.2

0.4

0.6

0.8

0

Magnetic Configuration with magnetic hill & well

Confinement Scaling Laws

Comparing between ITER ELMy-H Database and Stellarator Database adding New LHD data

HELICAL

Mercier Mode Stability

- Magnetic hill formation due to R_{ax} inward shift
 - \rightarrow Expansion of Mercier unstable region
- magnetic shear destabilizes core- MHD mode
- Shafranov shift \rightarrow Second stability

MHD Activities in $R_{ax} = 3.6$ m Configuration

$m/n = 2/1 \mod 1$

- The present operational region is located in marginal against the low-n ideal instability

- Mercier mode is unstable when $<\beta_{dia}>$ < 2.3 % - The m/n = 2/1 mode has been observed in Mericier unstable region

 $\sqrt{2\pi} = 1$ resonant modes - In high- β reigon, ideal mode in the peripheral region is unstable because of reduction of magnetic shear.

- Amplitudes of the $1/2\pi = 1$ resonant modes increases with the pressure gradient.

m/*n* = 2/1 mode

Effects of m=2/n=1 mode on plasma confinement

In the case that ∇P is transiently enhanced by ice pellet injection, m=2/n=1 interchange mode often induces sawtooth crash even in low beta plasmas. (S. Ohdachi et al., Int. Stellarater W/S 2002)

Effect of Plasma Current on High- β Discharges in R_{ax} = 3.5 m Configuration

 $|I_p/B_t| \leq 5 \text{ kA/T}$

(a) $|I_p/B_t| \le 5 \text{ kA/T}$ Ohkawa Current (Counter) + Bootstrap Current (Co) ~ 0 - m/n = 2/1 and 2/2 modes are observed to the end of

discharge

- Amplitude of m/n = 2/2 mode increases and decreases with n_e

 \rightarrow pressure gradient depends on $n_{\rm e}$

(b) $|Ip/Bt| \le 70 \text{ kA/T}$ Ohkawa Current (Co) + Bootstrap Current (Co) - m/n = 2/1 mode abruptly appears and disappears

 \rightarrow Disappearance of the resonant surface

- $<\beta_{dia}>$ increases after the disappearance of the mode

- m/n = 3/2 mode appears after the event

 \rightarrow the decrease in magnetic shear

```
- 1/2\pi = 1 resonant modes
disappear with the m/n = 2/1
```

Bt>0 (b)(a)B. a + 0.5 T (shot#34002) > (%) In/Bt (kA/T 40 n. (10¹⁸ m (a.u.) 20 20 /B, (10°) /B, (10°) m/n = 3/4 /B, (10 m/m = 2/3 equency (ki m/n = 2/3m/n = 2/2 $m(n = 2)^{n}$ 0.5 2.0 1.0 Time (sec)

0.5T/6.1MW

S.Sakakibara et al. ICPP-Sydney (200

Disappearance of MHD Activity

- Amplitude of the m/n = 2/1 mode starts to decrease, core pressure increases, and the peripheral pressure also increases after the mode disappears .

- T_{o} at $\rho \leq 0.6$ at t = 1.2 s is higher than that at t = 1.1 s, and the profile at t = 1.3 s is almost the same as that at t = 1.2 s

- The n_{e} increases with keeping the same profile.

The ramp-up rate of n_{e} from 1.1 s to 1.2 s is higher than that from 1.2 to 1.3 s, although the gas puff fueling is constant.

- The increase with $<\beta_{dia}>$ is caused by the increment of $n_{\rm e}$ in the peripheral region in addition to the increase in

S.Sakakibara et al. ICPP-Sydney (2002)

L-H Transition in magnetic hill region of high beta plasmas K.Toi et al., IAEA-Lyon (2002) EX/S3-2

L-H Transition in magnetic hill region of high beta plasmas

m=2/n=3 and m=2/n=2 modes are promptly destabilized at the L-H transition that takes place in the plasma edge region of magnetic hill. The excitation of these modes leads to beta-saturation.

K.Toi et al., IAEA-Lyon (2002) EX/S3-

Edge harmonic modes in a plasma with steep pressure gradient near the edge

• EHMs are often excited in high performance plasma with steep edge ∇P even in low beta (< 1%), and become bursting at a certain $(\nabla P)_{crit}$.

 Bursting EHM
 →10% drop of
 Wp (ne-drop rather than Te in the edge)

1. Introduction **Reactor Prospect Present Plasma Parameters Control of LHD Plasma 2. Equilibrium Properties** 3. Stability Limit 4. Density Limit and Disruption

- 5. Steady-State Operation
- 6. Summary

Operational Density Regime

Tokamak

radiation & MHD collapse leading to current disruption

radiation collapse slow plasma decay

Helical

Introduction

 Reactor Prospect
 Present Plasma Parameters
 Control of LHD Plasma

 Equilibrium Properties
 Stability Limit

- 4. Density Limit
- 5. Steady-State Operation
- 6. Summary

Steady-state Operation

Tokamak

NB Current Drive in JT-60U RS Elmy H-mode (80% bootstrap current fraction)

Helical

~1 keV long pulse operation In LHD (ICRF 0.8MW)

LH Current Drive in Triam-1M (3hr.10min.)

(Triam-1M, M. Sakamoto, ITC-12)

1. Introduction **Reactor Prospect Present Plasma Parameters Control of LHD Plasma 2. Equilibrium Properties** 3. Stability Limit **4. Density Limit** 5. Steady-State Operation 6. Summary

Operational Limits (General Summary)

	STANDARD TOKAMAK	STANDARD HELICAL	
Confinement	Gyro-Bohm	Gyro-Bohm (Global) Helical Ripple Effect (Local)	
Beta Limit	Kink-Ballooning Mode Resistive Wall Mode Neoclassical Tearing Mode	Low-n Pressure-Driven Mode	
Density Limit	Radiation & MHD Collapses	Radiation Collapse	
Pulse-Length Limit	Recycling Control Resistive Wall Mode Neoclassical Tearing Mode	Recycling Control Resistive mode (?)	
Beyond limit	Thermal collapse Current quench	Thermal collapse	

Summary on Recent MHD-related LHD Experiment

- •A volume averaged beta value of <u>~3 %</u> was achieved in NBI plasmas <u>without disruptive phenomena</u>.
- •The $\underline{m/n} = 2/1 \mod excited$ in the core region is dominant, and the plasma current decreasing magnetic shear enhances the mode activity.
- •The plasma current exceeding a certain value $(I_p/B_t \sim 40$ kA/T) leads to the disappearance of the 2/1 mode, and improves the plasma confinement by ~20 %.
- •<u>L-H transition</u> in magnetic hill region of high beta (>2%) plasmas and the beta saturation after this transition were observed.
- •<u>Bursting Edge Harmonic Modes (EHMs)</u> excited in a plasma with steep (∇ P)edge even in low beta regime (< 1%). ELM-like events reduce ~10% of the stored energy. Suppression of bursting EHMs can be done by control of static island.

Near-term Experimental Plan

Helical: LHD

- 6th Experimental Campaign:
- From Oct.1, 2002 to Feb.6,2003.
- Negative-NBI 12 MW upgraded
- LID (Local Island Divertor) installed
- Target of this campaign

Te = 10 keVTi = 7 keVWp = 1.3 MJbeta = 4%duration = 30 min.

Tokamak: JT-60U

Next year:

- Advanced Tokamak Experiment
 Current Hole
 Full CD with Negative-NBI
- ITPA Physics R&D
- University Collaborations