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LHD & JT-60U
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INTRODUCTION
For the realization of attractive fusion reactors, 

plasma operational boundaries should be clarified, 
and be extended to the higher performance limit. 

There are several plasma operational limits:
(1) confinement Limit ,
(2) stability Limit,
(3) density limit, and 
(4) pulse-length limit.

Here we would like to discuss on the similarities 
and differences between TOKAMAK and HELICAL
systems. 
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Requirement of MHD properties
derived from Reactor System Assessment

High Bootstrap Current Fraction ( >70% )
Reduction of Current Drive Power

High Beta (>4%) Steady-State
Compactness 

Without Disruption ( < once/several years )
High Availability  ( >70% )



Helical/Tokamak
Achieved Maximum Parameters

Electron Temperature
Te (keV) 26 (JT-60U) 10 (LHD)

Ion Temperature
Ti (keV) 45 (JT-60U) 5 (LHD)

Confinement time
τE (s)

1.2
1.1

(JET)
(JT-60U,NS) 0.36 (LHD)

Fusion Triple Product
ni τE Ti (m-3・s･keV) 15x1020 (JT-60U) 0.22x1020 (LHD)

Stored Energy
Wp (MJ)

17
11

(JET)
(JT-60U,NS) 1 (LHD)

Beta Value
β (%)

40 (toroidal)
12 (toroidal)

(START)
(DIII-D) 3.2 (average) (LHD,W7-AS)

Line-Averaged Density
ne (1020m-3) 20 (Alcator-C) 3.6 (W7-AS)

Plasma Duration
τdur

2 min
3 hr. 10min.

(Tore-Supra)
(Triam-1M)

2 min
1 hour

(LHD)
(ATF)

TOKAMAK HELICAL



Control of LHD Plasma
• Shape Control

inward shift ,elongation, triangularity, etc.
(3-pair PF Current Control)

minor radius (3-block HF Current Control)
helical axis (1-pair HF Current Control)
local island (10-pair Additional Coils)

• Current Control
Vloop feed-back control (3-pair PF Current F.B.Control)
N-NBI & ECH current drive
BS current control (power and profile control)

• Density and Heating Power Control
Gas Puffing and Pellet fueling 

• Profile Control
ITB & good confinement with localized ECH
good confinement with Pellet

• Wall & Divertor Control
Boronization & LID(local Island Control)
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Equilibrium: Similarities and Differences 
between Tokamak and Helical Systems

STANDARD TOKAMAK STANDARD HELICAL
Plasma Boundary

Shape 2D 3D

Magnetic Field
Components Toroidal (m,n)=(1,0) Toroidal (1,0) +Helical

(L,M)+ Bumpy (0,M) Ripples

Plasma Currents External + BS Currents No net toroidal current
or BS Current

q-profile Normal or
Reversed shear profile

Flat or
Reversed shear profile

Divertor Poloidal divertor
2D

Helical or island divertor
3D

STANDARD TOKAMAK STANDARD HELICAL

Magnetic shear Substantial Shear or
Shearless in the core Substantial Shear

Magnetic Well Well in whole region Hill near edge

Radial Electric Field driven by toroidal rotation
& grad-p

driven by non ambipolar
loss (Helical Ripple)

Toroidal Viscosity Small Large (Helical Ripple)

grad-j, grad-p grad-j driven
grad-p driven grad-p dominant

Island, Ergodicity near separatrix Edge Ergodic Layer

Physics
Properties

Equilibrium



Core Symmetry Surface Symmetry
Helical Divertor M/L=10/2M/L=4/1

Advanced Plasma Shapes
Standard
Tokamak

Standard
Helical

QA

QP

QO

QH

M=2 M=3

Quasi Omunigenity

Quasi Axi-Symmetry

Quasi Helical Symmetry 

Quasi Poloidal Symmetry

M=4

M=5

Larger M 

M=0
(n=0)

LHD



Magnetic Shear / Well
Tokamak:
Shear is changed

by current profile.
Magnetic well.

Helical:
A variety of shears 

by helical coil.
Magnetic hill near edge. 

Flat  or 
Reversed Shear

Normal  or 
Reversed Shear
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LHD Experimental Set-Up

Experimental 
Conditions:
H & He Plasmas , Rax=3.6 m 
Bt=2.8 T ~ 0.5 T, co & ctr-
NBIs: Pabs≤ 6MW, E≤ 150 keV

Main diagnostics:
Magnetic probe arrays, SX-
detector arrays, Hα-arrays,

Tangential viewing high speed 
SX-camera, Thomson 
scattering, FIR-interferometer, 
ECE, micro-wave 
reflectometer and so onLHD plasma is surrounded by

ergodic field layer.
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Mode structure 
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Rax = 3.5m Rax = 3.6m Rax = 3.75m

Prediction better

Experiment

worse

better worseEnergy Confinement

Particle Confinement

MHD Stabilityworse better



Characteristics of Magnetic Configuration
LHD: l=2/N=10 Heliotron , R~3.6 m, <a>~0.6m, Bt<3 T
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Comparing between ITER ELMy-H Database and 
Stellarator Database adding New LHD data

0.001

0.01

0.1

1

10

ta
u
_e

xp

.001 .01 .1 1 10

tau_IPB98(y)

ATF
CHS
FFHR
HELE
HSR
LHD
MHR
SPPS
W7-A
W7-AS

STELL

重ね合わせプロット

0.001

0.01

0.1

1

10

T
A

U
T
O

T
  

  

.001 .01 .1 1 10

IPB98(y)

ASDEX     
AUG       
CMOD      
COMPASS   
D3D       
JET       
JFT2M     
JT60U     
PBXM      
PDX       
TCV       

TOK       

重ね合わせプロット

0.001

0.01

0.1

1

10

T
A

U
T
O

T
  

  

.001 .01 .1 1 10

tau_ISS

ASDEX     
AUG       
CMOD      
COMPASS   
D3D       
JET       
JFT2M     
JT60U     
PBXM      
PDX       
TCV       

TOK       

重ね合わせプロット

0.001

0.01

0.1

1

10

ta
u_

ex
p

.001 .01 .1 1 10

tau_ISS95

ATF
CHS
FFHR
HELE
HSR
LHD
MHR
SPPS
W7-A
W7-AS

STELL

重ね合わせプロット

95ISS
Eτ

10.050.083.0 ** −−−∝ νβρττ B
ELMY
E

04.016.071.095 ** −−−∝ νβρττ B
ISS
E

EXP
Eτ

EXP
Eτ EXP

Eτ

EXP
Eτ

Reactor

Reactor

HELICALTOKAMAK

40.0
3/2

80.051.059.065.021.295 08.0 ιτ BnPRa e
ISS
E

−=

97.023.008.041.063.093.10365.0 IBnPR e
ELMY
E ετ −=

Confinement Scaling Laws

ELMY
Eτ



Mercier Mode Stability

- Magnetic hill formation due to Rax inward shift
→ Expansion of Mercier unstable region 

- magnetic shear destabilizes core- MHD mode
- Shafranov shift → Second stability

Achieved <β>  Rax = 3.5 m    ⇒ 2.8 %
Rax = 3.6 m    ⇒ 3.2 %
Rax = 3.75 m  ⇒ 1.5 %



m/n = 2/1 mode
- The present operational 
region is located in marginal 
against the low-n ideal 
instability
- Mercier mode is unstable 
when <βdia> < 2.3 %
- The m/n = 2/1 mode has 
been observed in Mericier
unstable region
ι/2π = 1 resonant modes
- In high-β reigon, ideal 
mode in the peripheral 
region is unstable because 
of reduction of magnetic 
shear.  
- Amplitudes of the ι/2π = 1 
resonant modes increases 
with the pressure gradient.

MHD Activities in Rax = 3.6 m Configuration

m/n = 2/1 mode ι/2π = 1 resonant modes



Effects of m=2/n=1 mode 
on plasma confinement

NBI heated plasma 
with ice pellet 
injection at Bt=0.6T
m=2/n=1 mode is 
strongly 
destabilized when 
<βt> exceeds ~2.2%, 
together with 
m=2/n=2 mode.
( S. Sakakibara et al,

NF2001&PPCF2002)

In the case that ∇P is transiently enhanced by ice pellet injection, 
m=2/n=1 interchange mode often induces sawtooth crash even in low beta plasmas.

(S. Ohdachi et al., Int. Stellarater W/S 2002)

0

0.5

1

1.5

2

2.5

3

3.5

4

0

10

20

30

40

50

0.5 0.7 0.9 1.1 1.3 1.5

<β
t> 

(%
), 

 <
n e> 

(1
019

 m
-3

)

time (s)

b θ/B
o (1

0-5
)

<β
t
>

<n
e
>

 m=2/n=1
 m=2/n=2
 m=2/n=3

#25950
K.Toi et al., IAEA-Lyon (2002) EX/S3-2



Effect of Plasma Current 
on High-β Discharges in Rax = 3.5 m Configuration

|Ip/Bt| ≤ 5 kA/T |Ip/Bt| ≤ 70 kA/T

S.Sakakibara et al. ICPP-Sydney (2002)

(a) |Ip/Bt| ≤ 5 kA/T
Ohkawa Current (Counter) + 

Bootstrap Current (Co) ~ 0
- m/n = 2/1 and 2/2 modes are 
observed to the end of 
discharge
- Amplitude of m/n = 2/2 mode 
increases and decreases with ne
→ pressure gradient depends 

on ne

(b) |Ip/Bt| ≤ 70 kA/T
Ohkawa Current (Co) + 

Bootstrap Current (Co)
- m/n = 2/1 mode abruptly 
appears and disappears
→ Disappearance of the 

resonant surface
- <βdia> increases after the 
disappearance of the mode
- m/n = 3/2 mode appears after 
the event
→ the decrease in magnetic 

shear
- ι/2π = 1 resonant modes 
disappear with the m/n = 2/1 
mode

0.5T/6.1MW

Bt>0 Bt<0

2/1 mode 3/2 mode2/1



Disappearance of MHD Activity
- Amplitude of the m/n = 2/1 mode starts to decrease, 
core pressure increases, and the peripheral pressure 
also increases after the mode disappears .

- Te at ρ ≤ 0.6 at t = 1.2 s is higher than that at t = 1.1 s, 
and the profile at t = 1.3 s is almost the same as that at t 
= 1.2 s  

- The ne increases with keeping the same profile.  

The ramp-up rate of ne from 1.1 s to 1.2 s is higher than 
that from 1.2 to 1.3 s, although the gas puff fueling is 
constant.  

- The increase with <βdia> is caused by the increment of 
ne in the peripheral region in addition to the increase in 
core - Te.

S.Sakakibara et al. 
ICPP-Sydney (2002)



NBI heated plasma with L-H 
transition at Bt=0.5T & Pabs~6MW.
At the transition, ne-profile 
becomes further broad, while Te-
profile remains unchanged.

L-H Transition in magnetic hill region
of high beta plasmas
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L-H Transition in magnetic hill region of 
high beta plasmas

m=2/n=3 and m=2/n=2 modes are promptly destabilized at the L-H 
transition that takes place in the plasma edge region of magnetic hill.  The 
excitation of these modes leads to beta-saturation.
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Edge harmonic modes in a plasma with 
steep pressure gradient near the edge

EHMs are often
excited in high
performance
plasma with steep
edge ∇P even in
low beta (< 1%),
and become 
bursting at a
certain (∇P)crit.

Bursting EHM
10%  drop of

Wp (ne-drop 
rather than Te 
in the edge)
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Bursting character of EHM can be suppressed by 
removing m=1/n=1 magnetic island using LID fields.  
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NB Current Drive
in JT-60U RS Elmy H-mode

(80% bootstrap current fraction)

~1 keV long pulse operation 
In LHD (ICRF 0.8MW)

Steady-state Operation
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LH Current Drive in Triam-1M 
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Tokamak Helical

(Triam-1M,
M. Sakamoto，
ITC-12)
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Operational Limits ( General Summary)

STANDARD TOKAMAK STANDARD HELICAL

Confinement Gyro-Bohm Gyro-Bohm (Global)
Helical Ripple Effect (Local)

Beta Limit
Kink-Ballooning Mode

Resistive Wall Mode
Neoclassical Tearing Mode

Low-n Pressure-Driven
Mode

Density Limit Radiation & MHD
Collapses Radiation Collapse

Pulse-Length Limit
Recycling Control

Resistive Wall Mode
Neoclassical Tearing Mode

Recycling Control
Resistive mode (?)

Beyond limit Thermal collapse
Current quench Thermal collapse



A volume averaged beta value of ~3 % was achieved in NBI 
plasmas without disruptive phenomena.  

The m/n = 2/1 mode excited in the core region is dominant, and the 
plasma current decreasing magnetic shear enhances the mode 
activity.  

The plasma current exceeding a certain value (Ip/Bt ~40kA/T) leads 
to the disappearance of the 2/1 mode, and improves the plasma 
confinement by ~20 %.  

L-H transition in magnetic hill region of high beta (>2%) plasmas 
and the beta saturation after this transition were observed.

Bursting Edge Harmonic Modes (EHMs) excited in a plasma with 
steep (∇P)edge even in low beta regime (< 1%).  ELM-like events 
reduce ~10% of the stored energy. Suppression of bursting EHMs
can be done by control of static island.

Summary on  Recent MHD-related LHD Experiment



Near-term Experimental Plan

6th Experimental Campaign:
• From Oct.1, 2002 to

Feb.6,2003.
• Negative-NBI 12 MW 

upgraded
• LID (Local Island Divertor) 

installed
• Target of this campaign

Te = 10keV
Ti = 7keV
Wp = 1.3MJ 
beta = 4%
duration = 30 min.

Helical: LHD

Next year:
• Advanced Tokamak

Experiment
Current Hole
Full CD with Negative-NBI

• ITPA Physics R&D
• University Collaborations

Tokamak: JT-60U


