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FRC General Description
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Stability:   s/ε < 0.5 (empirical)
s/ε < 0.2 (MHD w Hall)



• Field-reversed θ pinch formation is an extremely dynamic process 
requiring high voltages and excellent uniformity.

• High input powers allow hot (0.1 – 2.0 keV) high density (~1-5x1021 m-3) 
plasmas to be obtained.

• Best confinement observed with DN ~ 4 m2/s with aφ = 0.06 m (LSX) 
for s ≤ 4
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Merging of Counter-Helicity Spheromaks to 
create FRCs (Y.Ono - University of Tokyo)

Analytic doublet-CT equilibrium
(P. Parks, GA)

Swarthmore Spheromak Experiment (SSX-FRC)
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RMF antenna coils external 
to the axial coil are shown 
below..

FRC Produced by a 
Rotating Magnetic Field (RMF)

I0cos(ωt)

I0sin(ωt)



Measured FRC Particle Confinement
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General:
τN ~ xsrs
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LSX:
τN ~ xsrs
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From past FRC experiments (Hoffman and Slough, 1993) :

τN = 3.2x10-15 ε0.5 xs
0.8 rs

2.1 n0.6

For a given plasma energy Ep =  3/2NkTfus

nτ ~ r2.1 n1.6 ~ r2.1 (N/r3)1.6 ~r-2.7
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Energy requirements vs. plasma density for
various Fusion Regimes

(for nτ E = 3x1020 m-3 sec, Ti = 10 keV, and poloidal β ~ 1 )

•Small-scale FRC fusion regime based on confinement scaling
observed in previous expts. 

•Transport believed to be the result of edge driven microinstability
(Lower Hybrid Drift) where τN ~ R2/ρi.



1. Continued stability at larger sizes as represented by the parameter s (∼

# of internal ion gyroradii)

2. Major confinement improvement at low densities

3. Current (or flux) sustainment at ~ 10 MA level

4. Technical ability to form larger FRCs 

Major Physics Issues for Steady State
FRC Reactor

Reactor Issues for Small Scale FRC Fusion
Maintain stability and enhance confinement for higher fusion gain

Lower the required compression field (18 T)
Increased burn time (τburn ~ τconfig)
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Translation of FRC into TCS
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Experimental Measurements
MOQUI Calculated First 
Reflection Details 
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•FRC confinemnt scaling ⇒ nτ~1019 m-3-s at T > 1 keV
after compression



For a flux conserving vacuum wall (pipe):

Be = Bvac / (1-xs
2), ⇒ Be =  28 T

From pressure balance with Te + Ti ~ 10 keV:

Be
2/2µ0 = n k (Te + Ti) ⇒ nmax = 2x1023 m-3

PHD Burn Parameters for FRC
Assume: Bvac = 18 T (SCC),   xs = rs/rc = 0.6 ε =ls/2rs = 20

Set nτ ~ 1x1020 m-2 s (Lawson) τ ~ 500 µsec

From FRC scaling given above we can solve for rs = 2.8 cm

Coil Radius (xs = 0.6)   ⇒ (rc = 4.7 cm) rc-rs ~   30ρie

Energy in FRC plasma (ellipsoid)

3/2 <β> nmax kT (4/3πεrs
3) ⇒ Ep = 720 kJ

τN = 3.2x10-15 ε0.5 xs
0.8 rs

2.1 n0.6



Instabilities Observed in FRCs

• Rotational mode is driven by 
centrifugal forces from particle loss 
and/or end-shorting of radial E 
field.  

• Mode limits FRC lifetime to ~ ½ τNEnd 
View

Rotational
n=2

Side View

Internal Tilt u Internal tilt starts out as an axial 
n=1 shift mode.  Only clearly 
observed in recent expts. 
(Cothran, Brown, Schaeffer)

u Mode limits FRC lifetime ~3 
axial Alfven times.



FRC Stability (Theory)

Basic MHD 
• Bad curvature produces MHD instability to tilt, interchange and ballooning

modes.  Compressibility stabilizes interchange modes.

MHD with FLR and Hall (two fluid effects)
• Both effects cause the ion and electron disturbances to get out of phase:  Tilt 

growth rate reduced but not stabilized for FLR (Ishida and Steinhauer, Belova)
• Tilt stability for s/ε < 0.2 from Hall Term (Barnes)

Relaxed States with Flow
• High-beta possible;sheared flow necessary in relaxed states

– find proper relaxation principle (Steinhauer, Ishida, Mahajan, Yoshida, 
Dasgupta) 

FRC Stability (Experiment)
•FRC tilt stable for s/ε < 0.5
•FRC grossly stable except for rotational modes 



s /ε parameter

s= ϕ /(2π rs Be ρie) 

FRC poloidal flux:

ϕ = π rc
2 Be (xs/√2)3.5

ϕ = 9.5 mWb

Empirically from LSX data

s/ε< 0.5

for gross stability AND good 
confinement

PHD FRC: s/ε = 2.4/20 = 0.12

FRC Stability in PHD Fusion Regime 
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PHD FRC in MHD Stable Regime



FRC Stability at s/ε ~ 0.5

• Much n=1 activity during 
formation, but dies away if 
distortions not too large

• Formation distortions not 
primarily related to s, but to 
axial dynamics and low axial 
viscosity (low Ti)

• Rotational mode (mostly n=2) 
grows from equilibrium when 
multipole fields not used 

Data taken on LSX at s ∼ 3.5



Stabilization of n=2 Rotational mode
(First demonstrated at U. of Osaka w quadrupole) 

No Stabilization Octopole Stabilization

•Significant wall contact due to plasma flow onto static   
multipole field

•Large plasma distortion (quadrupole) from static field 
created    turbulent boundary in LSX at s>2 



RMF Current Drive

• ‘Drag’ Electrons Along With  Rotating Radial Field
– Must have ωci < ω << ωce for electrons, but not ions, to follow rotation

• Electrons Magnetized on Rotating Field Lines  (ωceτ >> 1)
– Necessary for efficient current drive
– Absolutely necessary for rotating field penetration

RMF antenna
Iz = Iosinωt

RMF antenna
Iz = Iocosωt

Bz field coils

driven electron current rotating field Bω



From synchronous electron motion: j ne rθ ω= −

2ei
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From first order term for screening current jz

This drive term opposes the dissipative ηjθ term, and stops diffusive
losses (ur ~ 0) in steady state (E ~ 0):

 

ur 
vz 

Control of Diffusive Losses with RMF

Gen. Ohm’s Law (θ comp):



FRC Confinement by RMF Field

• Axial currents inside FRC limit RMF ~ 2 cm 
penetration past separatrix

•Strong radial flow urBz ~ <jzBr>/en is obtained

• Minimum energy and particle loss observed
under these conditions
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Internal Profile Measurements from STX Experiment
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STX-HF Experimental Layout
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Internal Bz Profile During RMF
(0 to 0.5 ms) on STX-HF
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Density profile at z = -10 cm from Langmuir probe 
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Enhanced particle confinement from RMF

2
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16
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η⊥

=For RR profile:

For size (rs ~ 0.05) resistivity
inferred for STX-HF:

Te ~ 10 - 30 eV ⇒ η⊥ ~ 60 – 30 µΩ-m
τ = 4 – 8 µsec

RMF must provide >> classical confinement
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Flux Conserving RingsMagnetized Cascaded
Arc Source

Solenoidal Magnet

Rotating Quadrupole Antenna Source
8 Coils per phase

Copper tubes Vacuum wall
Rquad = .17 m
Rrings = .14 m
Rwall = .135 m

Boron Nitride Washers

Molybdenum Washers

Plasma Discharge

Anode

Cathode

Gas Feed

Vd

Solenoidal Coil

Control of Rotational Modes with RQMF



Magnetic field lines and density maps from
numerical simulations of RMF current drive.

Quadrupole:Dipole:
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The parameter an is from external currents, 
and ßn is from internal currents.  If there is no 
plasma, ßn=0, and Br,θ ~ rn-1.

n=1 è rotating dipole (normal RMF)
n=2 è rotating quadrupole (current expt.)
n=3 è octopole field (may be explored)



Dipole Calculation Quadrupole Calculation

Transport  inhibited by
lack of penetration control 

Radial penetration naturally limited
By 1/r.  Can also be controlled 

by amplitude feedback
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Flux at
vacuum wall
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Summary

•Small-scale FRC fusion reduces stability and confinement issues 
to those observed in past FRC experiments 

•Rotating Quadrupole field Stabilizes FRC to rotational modes
Ø Does not allow for plasma flow to wall
Ø Does not distort FRC or drive edge turbulence

•Rotating magnetic field enhances FRC confinement
Ø Drives an inward diffusion that opposes the normal

diffusive decay
Ø Reduces density gradient at separatrix eliminating the 

drive from microinstabilities (LHD)



Ion Spin-up Time: i i
s 2

e ei
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For n (1019 m-3),  η (µΩ-m), m (mH) s
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STX-HF: n19 ~ 5 (10), η ~ 60 (30),  ⇒ τs ~ 40 µsec

From radial component of gen. Ohm’s law: r i
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E 1 dp
u
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Ion diamagnetic drift
Opposite dir. to spin-up

Ion spin-up momentum is lost in 
τN ~ 100 µsec.  The fraction of 
spin-up,  α ( = uiθ/ueθ):
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RMF Induced Ion Rotation

Not ignorable
For STX-HF



Shift of He II Line Center as a Function of  Impact Parameter

vθ/vD ~ 0.35
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Enhanced Confinement Using 
Neutral Beams on FIX

NB injection geometry on 80-cm 
diameter FIX confinement chamber

Simple 15-25 kV NB Injector

Resultant ion orbits in low flux FIX FRC
Measured enhanced lifetime



One of several pair of current loops  where B(t) = const. 

One of two loops for RMF in stationary FRC  where B(t) ~sinωt

In frame of FRC traveling at velocity vFRC, the transverse field 
rotates at a frequency ω =2πvFRC/L:

ω = 9x106 and L =  0.10 m  ⇒ vFRC = 1.4x105 m/s

L

RMF Confinement and Drive from Steady Coils
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•Straight forward extrapolation of demonstrated FRC formation 
and acceleration techniques 
•Simple linear system that could employ superconducting magnets

•Easily varied fusion output power (10s of MW not multi-GW)

•Low cost development path to demonstration ~ 10 M$  not 10 G$

•Converter, burn chamber, accelerator and formation sections 

•well separated.

•Direct electric power conversion possible with flux compression

from expansion of fusion heated FRC

PHD Fusion Reactor Summary



~ 30 m

BURN CHAMBER
(Rc ~ 47 mm)

10 m

1 m

Magnetic 
Expansion Chamber Accelerator   Source

From energy conservation:

vFRC = (5kTfus /mDT)1/2 ~ 1x106 m/s

For constant acceleration a (2x1010 m/s2), accelerator length Lacc:

Lacc = vFRC
2 / 2a ~ 25 m     τacc ~ 50 µsec

Burn chamber length: Lburn ≤ vb τE  ~ (2x104 m/s)(5x10-4 s)

Lburn ~ 10 m

Fusion Power: Pfus = G ·Ep ·rep rate = (10)(700 kJ)·(10)

Pfus ~ 70 MW   @10 s-1 (duty cycle ~ 0.5%)

PHD Accelerator Parameters


