RFP Performance Enhancement Through MHD Mode Control

John Sarff & MST Team

MHD Mode Control Workshop — Columbia University November 18-20, 2002

Standard RFP confinement is limited by MHD tearing.

- Steady toroidal induction in low BT geometry drives current profile peaking:
 - -m = 1,0 resistive MHD tearing unstable
 - Instability saturates by J(r) self-flattening through dynamo relaxation
- Performance characteristically high beta β < 20%, but relatively poor confinement χ > 50 m²/s.

Two paths to improved RFP confinement.

• Optimized magnetic relaxation:

- a) Induce and control "single-helicity" dynamo (*P. Martin's talk*)
- b) Possible favorable Lundquist number scaling for "multiple-helicity" relaxation (all tearing modes decrease together at higher temperature)
- Current profile control for tearing stability: (this talk)
 - Minimize magnetic relaxation
 - All tearing modes vanish (in principle)

Goal for both paths is reduced magnetic stochasticity.

Outline.

- MHD foundation for an RFP without dynamo
- Improved confinement in MST:
 - J(r) modification via inductive current drive
 - Tokamak-like confinement at high beta, low BT in MST
- Broadband mode reduction key to reduced transport in the RFP
- Control tools in development:
 - RF current drive (& heating)
 - Neutral beam heating

MHD computation predicts current drive in outer region reduces tearing and magnetic stochasticity.

Steady toroidal induction E_{ϕ} cannot support outer-region J_{\parallel} .

MST

r

• Standard RFP requires dynamo current drive.

Auxiliary current drive replaces dynamo sustainment of the required poloidal current.

- E_{ϕ} (steady induction) E_{\parallel} 1.0 1.0 ηJ_{\parallel} ηJ_{\parallel} E_{\parallel} + auxiliary $\mathcal{E}_{dyn} = \eta J \| - E \|$ 0 0 J(r)-controlled Standard RFP 8.0 1.0 0.2 0.2 0.6 0.4 0.6 0.8 1.0 0 0.4 0 r/a r/a
- Current drive "aligned" to current profile.

Madison Symmetric Torus (MST)

Programmed inductive loop voltages provide current drive targeted to edge region.

MST

"PPCD" – Pulsed Poloidal (or Parallel) Current Drive

Edge current drive simultaneously controls many modes.

J/*B* larger in outer region, as intended.

- Toroidal equilibrium reconstruction using:
 - 11-chords FIR polarimetry (UCLA collab.)
 - B(0) from MSE with DNB (BINP collab.)
 - Conventional edge magnetics

Temperature profile peaks, χ_e greatly reduced.

- Electrons are hotter with **reduced** Ohmic heating, gradient extends into core.
- 100-fold increase in hard x-ray bremsstrahlung implies confined fast electrons.

PPCD confinement comparable to same-current tokamak, but with 10X smaller B(a) in the RFP.

- Compare τ_E "= 10 ms for 200 kA PPCD with tokamak τ_E empirical scaling:
 - use "engineering" formulas with MST's *I*, *n*, *P*, size & shape, but tokamak $B_{T1}(a) = 1.0 \text{ T}$ (corresponding to $q_a = 4$).

PPCD doubles the already high beta value in RFP.

• Experimental β -limit unknown in the RFP (possibly pressure-tearing or g-mode??)

MST

Toroidal beta *decreases* during PPCD to $\beta_T \sim 80\%$ (from >>100%)

Bulk electron heat transport in standard plasmas agrees with stochastic diffusion expectations.

MST

• Field line tracing used to directly evaluate $D_m = \langle (\Delta r)^2 / \Delta L \rangle$.

Heat conductivity reduction greatest where stochasticity is usually most intense.

Sustained reduction of mid-radius resonant modes leads to highest $T_e(0)$, therefore largest τ_E .

$T_e(0)$ weakly correlated with dominant core mode.

The ion temperature doesn't change during PPCD.

• Standard: $P_{e-i} \le P_{CX}$; $T_i / T_e > 0.5$ (>1 at sawtooth crash) \Rightarrow anomalous ion heating

MST

• **PPCD:** $P_{e-i} \ge P_{CX}$; $T_i / T_e < 0.5$

Tools to extend plasma control in development.

- RF current drive for precise, localized J(r)-control and auxiliary heating:
 - Lower-hybrid (800 MHz, $n_{\parallel} = 8$, stripline antenna)
 - Electron Bernstein wave (~ 3.5 GHz, waveguide antenna)
 - Required power ~ 1-2 MW both waves (LH theoretically more efficient)
- Oscillating Field Current Drive for DC current sustainment (and possibly profile control) from purely AC inductive loop voltages (AC helicity injection).
- Neutral beam heating, e.g., investigate beta limit ($P_{\Omega} < 1$ MW during PPCD).

Second generation lower-hybrid antenna installed.

Twin-waveguide installed to drive EBW in overdense RFP

• 3.2-3.7 GHz (variable) from two 60 kW traveling wave tube sources.

Good fast ion confinement encouraging for NB heating.

1 MW short pulse next step

Summary.

- Two paths for enhanced RFP energy confinement, with one common goal reduced transport from magnetic stochasticity
- Tokamak-like energy confinement demonstrated at high beta and 10X smaller B(a) in MST with (transient) edge inductive current drive:
 - $\chi_e \sim 5 \text{ m}^2/\text{s}$ and $\beta_{total} \leq 15\%$
 - Fast electrons confined, with velocity-independent diffusivity
- Broadband mode reduction key to improved confinement, but one remaining large mode is tolerable (analogous to tokamak sawtoothing)
 - Bodes well for "single-helicity" dynamo ... maybe even for multiple-helicity dynamo if high-*n* scaling is strong
- Extending plasma control
 - RF, neutral beam, and OFCD tools in development (low power)
 - PPCD: find the optimum E(a,t), evaluate pulsed-reactor scenario