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Overview

Suppression of m/n=3/2 and 2/1 neoclassical tearing
modes (NTM) via electron cyclotron current drive (ECCD)
has been demonstrated inthe DII1-D tokamak;

Realtime control has been successfully used in DI11-D to
detect the presence of 3/2 and 2/1 NTMs and align the
ECCD deposition with the island location;

Simulation of island suppression dynamics and control
action are used to develop and improve the control
algorithms;

The DII1-D 2003 campaign will see application of new
“Target Lock” algorithm, realtime Shafranov shift
compensation, gyrotron control to sustain increased [3.



NTM l|slands Degrade Confinement and

Can Lead to Disruption

NTM triggered by “seed”
Island from other MHD;
Sufficiently high 3
destabilizes NTM, island
grows to saturated size;

L oss of bootstrap current in
O-point LI helically
perturbed bootstrap current;
Pressure flattened inside O-
point, not in X-point;

3/2 typically degrades
confinement, 2/1 often
disruptive
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NTM Can Be Suppressed by Replacing
L ost Bootstrap Current with ECCD
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Accuracy Needed for ECCD Suppression of
NTM Requires Active Control

No direct realtime measurement of correct location (g=3/2
surface + Doppler shift correction) for ECCD yet available;

Measurement of MHD mode amplitude allows indirect
Inference of proximity to correct deposition location;

Deposition region and island must be aligned to within ~1 cm
for full suppression;

* Search/Suppress’ executed by realtime control system to
find best alignment in 1 cm steps: alignment detected by
effect on mode amplitude; dwell if sufficient mode decay rate

DIII-D Plasma Control System provides flexible platform for
Implementation of complex Search/Suppress logic, digital
filters, etc..



NTM Search/Suppress Algorithm Can Now
Vary One of Several Quantitiesto Align
ECCD & Idand

* AR = plasmamajor radius varied with rigid shift (move
Island itself relative to ECCD deposition) Used
successfully for NTM suppression

« ABt =toroidal field varied (increase with positive voltage,
or decrease with L/R decay) to move location of deposition
with island ~fixed Used successfully for NTM suppression

o AZ =plasmavertical position with rigid shift (move island
relative to ECCD deposition) Basic function tested in

piggyback, but not yet used operationally with actual
NTM+ECCD



NTM Control Algorithm in PCSWill Include
Many Extensions Beyond Sear ch/Suppress
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3/2NTM Suppressed Using AR Search Initially

Off Optimum
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Rp Sear ch/Suppress Finds Same Optimum
L ocation as Preprogrammed AR Scan

Search/Suppress
follows several
dwell/search
steps to reach
full suppression

Suppression
point (R~1.7)
same for both
blind search and
preprogrammed
scan of AR

106654 Mode Amplitude vs. Major Radius Trajectory
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Search Histories Can Be Very Complex:
Wrong Initial Direction, Backtracking....
Eventually Suppressing Mode
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2[1 NTM Suppressed Using ECCD with
Sear ch and Suppress Bt Variation
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Suppression of 3/2NTM Allows 3 to Increase

3/2 NTM suppressed
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Detuning from Shafranov Shift Will be
Corrected by Realtime Tracking

* Raised 3 produces (Shafranov) shiftinisdand R
» Realtime compensation for Shafranov shift after island suppression will maintain alignment
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Target Lock Algorithm Developed for Fast
Acquisition of Optimum Plasma Position

The Target Lock algorithm compares variations in measured NTM growth rate
with those predicted due to radial displacements of the plasma

Predicted variations are cal culated using an approximation to the Modified
Rutherford Equation with multiple choices of optimum plasma position:

T, dw 0L 0 O rw rwéOI 8qr5&{njecJD
— =Ar+e¢ =
rodt F%B WoHw w oW g

n= ,70(1 + 2562C /WZ)_1 exp[—(SAR/ 3560)2] ECCDTstabiIizi ng term
T

0 Whileisland present, MRE provides estimate of AW /0R

jbs

Alignment error

[1 Optimum is least-squares min of estimated-measured difference



Target Lock Finds Unique Valuefor

Optimum Plasma Position
Shot# 106652

 Smaller square sums
signify better fits between
predicted and measured
growth rates

* Ineverytimedicethereis
only one minimum in the
sguare sum

 TheTarget Lock algorithm
infers Ry, from this
minimum
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Target Lock Algorithm PerformsWaell In
Simulation from Experimental Data

Shot# 106652
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High Performance MHD Control Design Benefits
from Detailed Simulation of I ntegrated Systems

O] e D3D Sim

To Workspace6

P d_pf

Pp{d_tcam

Pp{pl_loop

DIID PF SYSTEM

Pp{pl_probe

P pl_pf

Pp{pl_ves

|-
zeros(28,1) Pp{shape

Constant

P contvals

ECCD,C/Icoil,Gas

DINA SFUNCTION Dina Output

RWMID,MIMO RWM_SIM+GATO/DCON

e (S

ImpurityInjection GA HALO, KPRAD

S&S,TargLock ModRutherford+

SHAPE CONTROLLER



|ndividual
PF System

Blocks Can be Very Complex
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Simulations Allowed Design/Optimization of
Sear ch/Suppressfor Robust First-Time

Performance
NTM Suppression Sim
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Simulations Show Target L ock Accuracy can
beimproved by jitter in the plasma position

Shot# 107383
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This discharge displays a
higher fluctuation in
plasma position

As a consequence the
Target Lockalgorithm has
more information on how
suppression depends on R

This makes the solution for
optimum plasma position
clearer (the minimum or
trench in the graph)

Improved accuracy in &
IS obtained by a jitter of the
plasma



R of inboard midplane of 3/2—surface

Fast Target Lock in All Simulated Cases
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Summary

o Useof ECCD with realtime NTM “Search and
Suppress’ control was successful in suppressing
3/2 and 2/1 NTM using major radial and toroidal
field regulation (separately)

» Plasma 3 increased through active (3/2) NTM
suppression
o Simulation of NTM suppression scenariosis used

extensively to test and optimize control schemes
prior to experimental execution



NTM Suppression Plansfor 2003 Campaign

Sustained increased 3, through 3/2, 2/1 NTM
control

|mprovements to algorithm:

— Shafranov shift compensation (primarily due to Bp
change)

— Target Lock algorithm to accelerate search

Realtime gyrotron (power) control

Direct feedback on R(g=3/2) error in concert with
reduced-di splacement Search& Suppress+Target
L ock+Shafranov Compensation algorithms



