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Introduction

• Neoclassical processes have important influences on a
number of phenomena in toroidal confinement devices
– Damping of fluid flows

– Neoclassical tearing modes

– Polarization island thresholds

• Theoretical modeling used in numerical simulations
– Neofar, NIMROD, NFTC, M3D

• Further theoretical developments are under way
– MHD perturbation induced toroidal viscosity

– Time dependent viscosities



Neoclassical physics is important in high temperature
tokamaks

• Neoclassical theory is usually formulated in the language of viscosities
with a small parameter (ρL/a << 1).
– To leading order, viscous forces damps flows in the direction of magnetic

field asymmetry .  Viscous force ~ v. ∇ |B|
– For axisymmetric equilibrium

–  µ = flow damping frequency (collisionality dependent),
µ ~ ε0.5ν at low collisionality

• Viscous force on ions - damps poloidal ion flow
• Viscous force on electrons - enters through Ohm’s law - leads to

bootstrap current and neoclassical modification to the plasma
resistivity
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For numerical simulation, expressions for local viscosities
are required

• Neoclassical theory usually used to describe transport processes across
flux surfaces - flux surface averaged quantities are evaluated.
– Requirement for numerical simulations = local quantities in

temporal/spatially/topologically evolving magnetic fields.

– “Heuristic” closure (Gianakon, et al)

• Correctly retains all the conservation properties of the actual viscosities,

• Correctly reproduces the linear and nonlinear properties of NTM physics
obtained from kinetic theory predictions
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The use of the approximate closure schemes allow
Neoclassical Tearing Mode simulations to be performed

• In these simulations, 
anisotropic thermal 
Conductions (χ||/χperp

~ 1010) provides 
a neoclassical tearing
mode threshold.  (no
two fluid effects) 
S = 2.7×106

•  Reproduces expected
NTM behavior in
experimentally relevant
parameter ranges



Modifications to neoclassical theory are needed to
completely model MHD phenomena in tokamaks

• Toroidal viscosity due to 3-D perturbations  (Shaing, et al
‘02)
– In the presence of a MHD perturbation, a three-dimensional

perturbation is introduced- [B =  Bo(ψ,θ) + Σmn bmncos(mθ-nζ)],
– For a magnetic island

• Time dependent viscosities for “fast” temporally varying
phenomena (Garcia-Perciante et al ‘02)
– Work in progress
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Nonaxisymmetric physics affects toroidal rotation

• Nonaxisymmetric neoclassical fluxes present with nonzero
bmn.  [B =  Bo(ψ,θ) + Σmn bmncos(mθ-nζ)], ωDr = Ti/eBRr
– Nonresonant (plateau regime) [Shaing, et al PF ‘86; Smolyakov

‘95]

– Resonant “1/ν” regime [ν i/ε > (w/Ro)ωD] (Shaing, PRL ‘01]

– Resonant “superbanana” [νi/ε < (w/Ro)ωD]  (Shaing, IAEA ‘02]

– Transition formulae for different “colllisionality regimes” can  be
generated
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The emergence of toroidal viscosity affects a number of
important MHD processes

• Interaction of toroidal flow velocity and MHD  modes
– Neoclassical viscosity damps toroidal flow in the presence of 3-D

perturbations (Lazzero, et al ‘PoP ‘02;  Sabbagh et al ‘02;  LaHaye
et al ‘01) -Different mechanism than slowing due to localized
torques due

• Effect of neoclassical polarization currents for NTM
physics
– Enhances polarization current from Wilson, et al calculation

– Introduces dissipation - damps polarization currents - contributes
to the determination of the mode frequency



Toroidal flow evolution determined by a number of effects

• Parallel momentum balance
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- Unlike the EM torques which are localized to the vicinity of the rational
surfaces, the toroidal neoclassical viscosity describes damping throughout
the plasma cross-section



Heuristic model for neoclassical physics can be
expanded to include toroidal viscosities

• A phenomenological fluid-like model is suggested to
describe the toroidal viscosity modification with viscous

damping

frequencies
(µ||
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Toroidal viscosity modifies the neoclassical
polarization drift

• Neoclassical effects dominate MHD polarization drifts in
the quasineutrality equation of high temperature tokamaks.

• New element brought in by toroidal viscosity is a damping
of the neoclassical polarization.  (for µ||

ζ = µT
θ =0, µ||

θ > ω)
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Time dependent viscosity

• Conventional neoclassical theory calculates in the long
time asymptotic regimes (t >> 1/νi)

• Some problems require understanding timescales short of
the collision time
– Finite frequency

– NTM seed island formation problem
• seeding often associated with a “fast” MHD event, e. g., sawtooth

• temporal behavior of the polarization threshold.



Formulation of the problem is developing

• Chapman-Enskog distribution function
f(x,v,t)   =  fM(x,v,t)  + F(x,v,t)

– fM:  flow shifted Maxwellian - n(x,t), V(x,t), T(x,t)
– F:  kinetic distortion; does not contribute to density, momentum and

energy moments

• Time dependent drift kinetic equation

νΟ related to the collisional momentum restoring term

– Lowest order solution (bounce time)
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Perturbed distribution satisfies a partial differential
equation involving time and pitch angle scattering

• Bounce averaging the next order solution yields an equation for g

Where

– Solution of g in terms of time dependent sources U, <B.Π>

• Similar procedure developed for describing neoclassical heat flux with
multiple magnetic asymmetries lengthscales (Held, et al Phys. Plasmas 2001)
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Solution can be obtained using eigenfunctions of
scattering operator

• The equation can be solved by using an expansion in eigenfunctions of
the homogeneous equation in order to separate the speed and pitch
angle dependencies

• Where the eigenfunction equation satisfies

And satisfies orthogonality conditions
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Summary

• Parallel neoclassical viscosities - poloidal flow damping,
bootstrap currents, neoclassical modification to resistivity
– Neoclassical tearing mode physics included in present day

simulation tools

• Extensions of neoclassical theory are required to improve
our understanding of various MHD phenomena
– Torodial viscosities

• Effect on toroidal flow evolution in the presence of 3-D perturbations
• Neoclassical polarization physics

– Time dependent viscosities
• For use in time scales short of collision frequencies (εω >νi)
• Seed island formation for NTM physics


