Wall Stabilized Operation and Active Feedback Physics Design in NSTX

S. A. Sabbagh¹, J. Bialek¹, R. E. Bell², A. H. Glasser³, B. LeBlanc², J.E.
Menard², F. Paoletti¹, M. Bell², T. Biewer², R. Fitzpatrick⁴, E. Fredrickson², A. M. Garofalo¹, D.A. Gates², S. M. Kaye², L. L. Lao⁵, R. Maingi⁶, D.
Mueller², G. A. Navratil¹, M. Ono², Y.-K. M. Peng⁶, D. Stutman⁷, W. Zhu¹, and the NSTX Research Team

¹Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
²Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA
³Los Alamos National Laboratory, Los Alamos, NM, USA
⁴University of Texas at Austin, Austin, TX, USA
⁵General Atomics, San Diego, CA, USA
⁶Oak Ridge National Laboratory, Oak Ridge, TN, USA
⁷Johns Hopkins University, Baltimore, MD, USA

Workshop on Active Control of MHD Stability: Extension of Performance

Columbia University - November 18th, 2002

Los Alamos

om

NSTX is operating at sufficiently high beta to study passive wall stabilization

Motivation

- Conducting walls can stabilize global modes in a rotating plasma
- Resistive wall mode (RWM) can heavily damp rotation
- Examine sustained stabilization by active feedback (needed for reactors)

Outline

- Operation in wall-stabilized, high beta regime
- Resistive wall mode and rotation damping
- $\hfill\square$ Physical mechanisms for higher β_N and longer pulse
- Active feedback stabilization system physics design

NSTX is equipped to study passive stabilization

Machine

Aspect ratio	≥ 1.27
Elongation	≤ 2.5
Triangularity	≤ 0.8
Plasma Current	≤ 1.5 MA
Toroidal Field	≤ 0.6 T
NBI	≤ 7 MW

Analysis

EFIT – equilibrium reconstruction DCON – ideal MHD stability (control room analysis) VALEN – RWM growth rate

Plasma operation now in wall-stabilized space

<u>Maximum β_N strongly depends on pressure peaking</u>

•
$$F_p = p(0) /$$

- P profile from EFIT using P_e, diamagnetic loop, magnetics
- Time-dependent calculations required to evaluate stability limits and mode structure

Theoretical RWM growth rate depends on β_N

- Growth rate depends on mode structure and ∇p drive
 - Mode structure depends on equilibrium parameters
- Quantitative agreement between theory and experiment
 - Growth rates, passively stabilized β_N range agree well
 - based on DCON input from plasma 106165

VALEN: J. Bialek

N=1 error field greatly reduced by EF coil correction

β_{N} limit now insensitive to plasma proximity to wall

- At high $\beta_N \sim 5$, external modes are well-coupled to passive stabilizing plates, independent of gap
 - Confirmed by ideal MHD stability calculations
- Higher error field (2001 data) may have also lowered β
 limit for smaller outer gap

Two stages of rotation damping during RWM

• Initial stage: Global, non-resonant rotation damping

 Final stage: Local rotation damping at resonant surfaces appears as rotation slows

Analogous to rotation dynamics in induced error field experiments

E. Lazzaro, *et al.*, Physics of Plasmas **9** (2002) 3906. (JET)

Rotation damping during RWM is rapid and global

Damping from rotating modes alone is localized and diffusive

Rotation damping strongest where mode amplitude largest

 Field ripple damping by neoclassical parallel viscosity ~ δBr²T_i^{0.5} possible candidate for observed damping profile

=(1) NS1

Core rotation damping decreases with increasing q

- Largest rotation damping (dF $_{\phi}$ /dt = -600 kHz/s) at B_t < 0.4T, q_{min} < 2
 - Factor of 8 times larger than damping from n=2 island
- When $q_{min} \sim 2$, rotation damping rate is reduced and F_{ϕ} is maintained longer

• Consistent with theory linking rotation damping to low order rational surfaces

 (1.8 < F_p < 2.3); n=1 mode typically computed stable for β_N< 4.5 W. Zhu

Plasma stabilized above no-wall β_N limit for 18 τ_{wall}

- Plasma approaches with-wall β_N limit
 - VALEN growth rate becoming Alfvénic
- $F_{\phi}(0) \underline{\text{increases}}$ as $\beta_{N} >> \beta_{N}$ no-wall
- Passive stabilizer loses effectiveness at maximum β_N
 - Neutrons collapse with β_N - suggests internal mode
 - ❑ Larger ∇p drive, mode shape change
- TRANSP indicates higher F_p
 - Computed β_N limits conservative

Mode intensifies in divertor region at highest β_N

VALEN / DCON computed *n* = 1 external mode currents

• Increased ∇p drive more significant in producing higher growth rate

Ideal no-wall β_N limit exceeded and maintained

VALEN n=1 RWM growth times

Ideal no-wall limit violated for 400 ms

$$\Box \ t_{\text{pulse}} \sim 8 \ \tau_{\text{E}}$$

- Computed τ_{wall} for n = 1 mode decreases by factor of 100
- Average of computed τ_{wall} gives pulse length > 20 τ_{wall}

Active stabilization might sustain 94% of with-wall β limit

- System with ex-vessel control coils reaches 72% of $\beta_{\text{N wall}}$

Modeled active feedback coils

VALEN: J. Bialek

Control coils among plates reach only 50% of $\beta_{N wall}$

VALEN model of NSTX

(cutaway view)

VALEN: J. Bialek

Modeled active feedback coils

Access to $\beta_N = 8$ conceptual design target exists

- Pressure peaking factor close to existing EFIT experimental reconstructed value
- Need to maintain elevated q as I_p is increased to sustain plasma

F. Paoletti

Research on passive stabilization and high β_N rotation damping physics has begun

- Passive stabilization above ideal no-wall β_N limit by up to 35%
 Improvement in plasmas with highest β_N up to 6.5; β_N/l_i = 9.5
- The β_N limit increases with decreasing pressure profile peaking
- Stability limit insensitive to plasma proximity to passive plates in high β_{N} plasmas with reduced error field
- Global T_e perturbation measured during RWM
- Rotation damping at $\beta_N > \beta_{N \text{ no-wall}}$ has two stages
 - Global, non-resonant damping
 - Local, resonant field damping during final stage
- Rotation damping rate substantially decreases as q increases
- Passive stabilizers may become ineffective at highest β_{N} due to increased ∇p drive and altered mode structure
- Active feedback design shows sustained $\beta_N/\beta_{N \text{ wall}} = 94\%$ possible

