MHD Stability and Equilibrium on Current Hole configuration

presented by T. Ozeki T.Fujita, Y.Miura and JT-60 team

Japan Atomic Energy Research Institute Naka Fusion Research Establishment

Workshop on Active Control of MHD Stability 18 - 20 November 2002 Columbia Univ. New York

Contents

- I. Observation of current hole plasmas in JT-60U
- II. Equilibrium and MHD stabilities of strongly hollow current plasma
 - Equilibrium of high qo/qmin plasma
 - Ideal MHD stability of high qo/qmin plasma
 - Equilibrium and stability of high qo/qmin plasma with flat j and flat p

III. Summary

Observation of Current Hole

- Projected angle was ~0 in a central region for both MSE viewing co and counter beams.
 ➡ E_r effect was small and B_p~0
- Very small current in a central region; |j(0)| <~ 0.07<j>
- Equilibrium with q(0)~100 almost agrees with MSE data.

Profiles of Current Hole Plasma

- Current density is close to zero.
- Density and temperature profiles are flat inside the current hole, but steep gradients (ITBs) are formed outside the current hole.
- a(0) is very large: Strongly hollow current profile.

Formation of current hole

- Central current started to decrease after the growth of off-axis current.
- No counter current drive is expected due to balanced NB injection.
- Negative j(0) was not observed, even though E ^{ind}(0) was negative.

Current hole was sustained stably

- The current hole was sustained for ~5 seconds without any global instabilities though its radius continued to shrink due to the penetration of inductive current.
- High confinement (HH_{98y2}<~1.5) and moderate beta (β_N <~1.7) were obtained.

Termination of High performance in Curr. Hole

No MHD instability inside the current hole was observed, though the plasma was terminated by collapse.

Equilibrium and Stabilities of high qo/qmin plasmas

MHD equilibrium code

Grad-Shafranov equation;

 $-\Delta^*\Psi = \mu_0 \mathbf{Rj}(\mathbf{R}, \Psi)$

 $\mathbf{j}(\mathbf{R}, \Psi) = \mathbf{R}\mathbf{p}'(\Psi) + (1/\mu \mathbf{0}\mathbf{R})^* \mathbf{F}(\Psi)\mathbf{F}'(\Psi).$

was solved for the prescribed parameter of p' and $<j_{||}>$ profiles.

- (1) The deceleration factor in the iteration of Grad-Shafranov equation solver was introduced.
- (2) Radial mesh was accumulated near the plasma center, because the very small grad- ψ inside the current hole region.

MHD stability code

Low n ideal MHD stability code in the toroidal configuration : ERATO-J

Equilibrium of high q_0/q_{min} plasmas with low β

Equilibrium of high qo/qmin plasmas with finite β

Stability Limit due to the Ideal MHD mode

Beta limits due to the kink-Ballooning modes by ERATO. ERATO: Low n ideal MHD stability in the toroidal configuration.

Beta limits in the strongly hollow current is $\beta N \sim 2.5$ -3, that is similar to those in the standard hollow current. In the high βp region, the null point may emerge.

Stability limit of normal reversed shear plasma

As a reference, beta limits of normal R/S plasmas (q0/qmin~2)

Beta limits is about 2.5-3, but profiles are not optimized.

Eigenfunction

The unstable mode is resonant with inside and outside rational surfaces and the mode coupling is stronger for high q_0/q_{min} .

Equilibrium of high qo/qmin plasmas with flat p

• Equilibrium with high q0 of ~100, qmin~5 and β p~1.5 can be produced. • Small Shafranov shift ($\epsilon\beta p(core)=0.0$). No Pfirsch-Schluter current in the central region. • Current density at the magnetic axis is very few % of the maximum. (Ψ)Z Χ 4.0 2.5 3.0 3.5 R(M)

Stability limit of high qo/qmin with flat p

Beta limits are similar to those of the parabolic profile case. Stability property is mostly determined by the outer current and pressure profiles.

No P-S current in the core region, then the null point may not emerge in the high βp region.

Equilibrium of high qo/qmin plasmas with flat j

- Equilibrium with high q0 of ~80, qmin~6 and βp~1.0
- Small Shafranov shift ($\epsilon\beta p(core)=0.0$).
- No Pfirsch-Schluter current in the central region.
- Current density at the magnetic axis is very few % of the maximum.

Stability limit high qo/qmin plasmas with flat j

Beta limits due to the n=1 kink-Ballooning modes is similar to those in the normal reversed shear plasma.

The stability boundary is not clearly depend on the single m/n mode.

No significant MHD instability was obtained inside the current hole region, if the p- and j-profile are flat and the current density is positive.

Eigenfunction

The unstable mode is resonant with internal and external rational surfaces and the mode coupling is stronger for high q_0/q_{min} .

Eigenfunction (2D)

Eigenfunction localized around the peripheral region for high q0/qmin plasma, while it has a global structure in the normal reversed shear plasma.

Summary

MHD stabilities of the current hole plasmas were investigated.

- 1) Equilibrium with high q0/qmin (~20) plasmas were obtained.
 - The finite current on the magnetic axis is produced, which does not have the null point of the poloidal field.
 - When there is a pressure gradient, as βp increases, the Pfirsh-Schluter current is induced and reduces the poloidal field in the inboard side. The resultant q-profile is similar to the experimental observation.
- 2) Stability limits of the high q0/qmin plasma do not change very much, but the profiles are not optimized.
 - Equilibrium with flat j near the center has weakly hollow q-profile, but it may not affect the stability when the pressure gradient is small.
 - The eigenfuntion consists of internal and external resonant surfaces.
 - Mode coupling is stronger than the normal R/S plasma.
- 3) Possibilities of equilibrium with the negative current and the mechanism of the formation and sustainment of the nearly zero current density are remained as a future work.

Central Current is clamped to Zero in JT-60U

- The peaked j_{EC} is not generated in a current hole.
 As suggested by a flat Te profile, it implies low radial confinement of electron momentum.
- Even if a uniform j_{EC} is generated in the current hole, it should be detected by MSE (green curve).
- Absence of this current suggests that j is clamped to zero in the current hole.
- Absence of the ECCD current in the current hole is also true for the case of counter ECCD.

Issues: The mechanism of the current clamp. (No clear negative and positive currents are observed.)