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1. Plasma Response Model
e Cylindrica Model

e Toroidal Mode



RWM Feedback Control Diagram
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e Input signal: current I+ or voltage V¢
e Output signal: flux W or voltage Vs
e Plasma dynamics: P;(s) — frequency dependent transfer function

e \ = fraction of poloidal width subtended by active coil
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e Current control: 1} = —KWs/Mss
Frequency response of the plasma-wall system to feedback currents is determined by a non-
dimensional transfer function P1(s).

Characteristic equation of closed loop 1+ K(s)P1(s) = 0.

e \Voltage control: Vi = —KVq
Introduce non-dimensional transfer function P,(s) for the (normalized) loaded self-inductance of
the active coils.
Characteristic equation of closed loop 1+ K(s)P1(s)/[P2(s) + 1/st¢], where Tt = L¢/R.

e Plasma response model {P1(s),P.(s)} can be constructed analytically for cylindrical equilibria,

and computationally for 2D toroidal hight-3 equilibria using the MARS-F code.



Cylindrical Plasma Response M odel
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Assume the equilibrium is ideally unstable for some m with-
out the wall and stable with an ideal wall at r = r.

r(by, —b;.)

At a resistive wall . = 2STy
o r 1/rbl,
Stability index m=—= +u+1), p=|m|
2 brm
—H —p-1
r r r
ro r ro

direct field from coil wall and plasma



Cylindrical Plasma Response M odel

Algebraic equations for vacuum + walls give fields on the first wall

{bam, 0o, bam} = {Mrm (), Mpi(s), Mgn(S) Hoem
={1,(2rm+u)/m, (2 n+ 1 —25T1) /M }Mim(S)bem

where

m?(ry/r¢)P-1

$2T1T2(1 = x=3) = S[MT2(1 — x72) — (T + T 2H)| — Ul

Mim(S) =

and X =ry/ry.
Poles for M, correspond to growth-rates for RWM without feedback.

Hol ¢
T ¢
Thin sensors at 6 =0 b{r,pi},sens(s) = Z b{r pt1, m(rl = |¢ z M{r’pi}m(S)Cm

z M{r pi}m( )Slnl.lec

Single poloidal coil bem = —— SINUB; = l¢Cpy

Transfer function Pifr ptym(S) = 2T[r b
fDsf

P1(s) = rational function.
[ can be constructed analytically for Shafranov equilibria.
Unstable when

m—1<ngp<nNgs<m



Cylindrical Plasma Response M odel
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Poles and residues for cylinder with
poloidal and radial sensors.

e For radial sensors, =m modes add constructively to P;. Conver-

gence is slow and the stable modes can add to change the sign of
P1(0).

e For poloidal sensors =£m almost cancel in P1, which is less influ-
enced by other m’s.

e Related to mutual inductances between sensor and feedback coils.

e Result: for radial sensors, P; is much more influenced by the stable
modes = difficulties to control with radial sensors.



Toroidal Plasma Response M odel

Py(s) = i:—v

K(S) = —l/Pl(S) = Ri = —dSi/dK|K:0
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Poles and residues for high-beta tokamak.
‘0’ - true toroidal modes, "X’ - third order Padé.
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2. SISO Control and Robust Control



SISO Controller Design
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e Controller design as optimization problem with constraints.

+

e Guarantee good control performance is by constraining the stability margins
Js = ||S||oo = SUPe |S(JOO)| < Csand Jr = ||1—S||oo < Cr7.
S =1/(1+ KP) is the sensitivity to disturbances at the output and T is the sensitivity to mea-

surement errors.

e \We minimize either the control activity J, = ||KS|

%, Or the maximum voltage V{"® of the amplifier

time response, typically with ||S||» < 2.5and ||T||. < 2.5.

e Can optimize, e.g., the parameters of a PID controller Kp;p = (K, +Ki/s)(1+Tgs)/(1+ Tas/§).



SISO System With Poloidal & Radial Sensors
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e Internal poloidal sensors give superior performance to radial sensors.

e External poloidal sensors have large phase lag, derivative action needed to
achieve good control.

e Double wall also increases the phase lag, especially at high-frequency.



Robust Control w.r.t. Plasma Current Variation
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e RWM can be stabilized for a wide range of plasma current by:
— Single feedback coil placed at the outboard midplane
— Internal poloidal sensor

— Optimal coil width about 20% of total poloidal circumference, i.e. Aqp >~ 0.2.

e Reason: similarity of mode structures for different plasma currents — strongly
ballooning.



Robust Control w.r.t. Toroidal Flow
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e (/wa = 0,0.02,0.04,0.05 = arg(Ky") = 0°, —20°, —31°, —51°.
e Strong synergy when rotation and feedback push RWM in the same direction.

e A simplified cylindrical theory (single harmonic) with feedback -+ rotation shows
very similar results.
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3. MIMO Control



MIMO Control Diagram

e In a MIMO (Multiple Input Multiple Output) system, several pairs of active and sensor coils are

placed along the poloidal angle. Each pair is connected by an independent controller.
e Consider three identical controllers with PID structure = diagonal controller matrix.

e /\ = poloidal distance between centers of two neighboring coils.
N\ > A — gap between coils; /A < A — coils overlap; A = 0 — SISO system.
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Cylindrical theory with multiple harmonics & multiple coils.

With poloidal sensors, single coil configuration (/A = 0) works better than multiple
coils (/A > 0).

With radial sensors, MIMO system improves feedback control.

Good results

obtained when three active coils are well separated (/A > A\) — reduced coil

coupling.



e Toroidal plasma response model for MIMO system (transfer function matrix) can

also be constructed from MARS results: P = [ij(s)]l}j’::’g
a;jibik
Pu(s)=§ =
Jk( ) Z S—s;

e Controller optimization performed for a JET-shaped equilibrium.

e With poloidal sensors, SISO control outperforms MIMO control.

Ko Td & J  Jr Jy
MIMO |0.62 1.17 1.43 2.11 2.50 1.32
SISO |1.35 0.62 0.73 1.00 1.73 0.98

e \With radial sensors, no controllers satisfying performance criteria were found for
both SISO and MIMO systems.
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4. M1SO Control



M1SO Control for Cylindrical Plasmas
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e In a MISO (Multiple Input Single Output) system, several active coils along the poloidal angle

are connected to a single sensor loop at the midplane. We consider simple cases, where all the
controllers are identical.

e With internal poloidal sensors, a SISO system (/A = 0) with a single coil array at midplane out-
performs MISO (/A = 0.4) with two off-midplane coil arrays.

e With radial sensors, both MISO and SISO work only when the active coils are close to the plasma
surface, and MISO works better.



M1SO Control for Cylindrical Plasmas

e Various configurations of MISO control studied. For all cases, sensor loops

placed just inside/on the wall at the poloidal midplane.
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e Internal poloidal sensors give feedback system which is not sensitive to the
MISO coil configurations.

e Radial sensors give better control if two off-midplane coils placed inside the wall.



MI1SO Control for Toroidal Plasmas
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e Toroidal computations for a JET-shaped advanced equilibrium show similar results.
e Poloidal sensors work well for all configurations, but SISO system requires less total gain.

e With radial sensors, two internal off-midplane coils + one external midplane coil give stabilization
with reasonable performance.
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5. RWM Control InITER



RWM Control for ITER Advanced Scenario
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e ITER steady state Scenario 4 with 9MA current
e Up-down symmetrized equilibrium & conformal walls (solid lines)

e By 15% above no-wall limit (~ half way between no-wall & ideal wall limits),
ri =1.375a,r, = 1.725a,11 = 1o = 0.15[s], r; = 3.0a, design coil width A = 0.125

e Present design works with poloidal sensors. Slightly smaller coil (A = 0.1) gives better control.



Time Response of Feedback Controlled RWM in ITER

e With internal poloidal sensor, RWM in ITER is controlled with stability margin
Js = 5.

e RWM is stabilized with voltage saturation level at 40 V/turn and detection limit at
ImT.

e Faster controller (i.e. smaller Js) gives worse control with voltage saturation.



Possible Improvement of Feedback Design
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e Place the active coil closer to the outer wall and use coil with larger width A.
e In the simulation: r{ = 1.3a,r, = 1.55a,r¢ = 1.75a,A = 0.2

e Optimal controller with good performance requires less than 10 V/turn.



Conclusions

e Large gain in n = 1 ideal-MHD beta limit with SISO control is possible.

e SISO control with internal poloidal sensors is robust with respect to plasma pres-
sure, current and toroidal rotation. Dynamic tuning is not necessary.

e Multiple coils along poloidal direction (MIMO/MISQO) improve performance for
radial sensors, but not for internal poloidal sensors.

e PID voltage control can handle RWM in present ITER advanced scenario. Im-
provement can be achieved by moving active coil closer to the wall or reducing
its size.



