PROSPECTS AND DESIGN REQUIREMENTS FOR ADVANCED TOKAMAK OPERATION OF ITER

F. W. Perkins

ITER Forum, University of Maryland

May 2003

THE ITER FACILITY

- Overall programmatic goal: "Demonstrate the scientific and technological feasibility of fusion energy for peacefull purposes."
 - International cost sharing is also a goal.
- Can the ITER facility play a double role? Argue answer is **YES**
 - Support demonstration of a reliable thermonuclear power source.
 - Investigate steady-state operation of higher β plasmas with ITBs
- Strategy: Identify capabilities which must be built into the design.
 - Assure that design specifics support foreseen ugrades and do not unintentionally preclude Advanced Tokamak operation
 - Defer other expenses for upgrades until opportunity warrants

ITER SCHEDULE

- Evolution of goals (Inductive \rightarrow AT) leads to evolution of facility.
 - -2 yrs. Construction Agrement, ILE, Host nuclear license
 - Exploit anticipated Design Review to assure AT needs
 - 8 yrs Construction of the ITER facility
 - 3 yrs Proton plasmas: no activation, disruptions, divertor, H-mode
 - 1 yr Deuterium operation and recovery of vessel inventory
 - 2 yrs –Full DT operation, Q=10, τ= 400s; Define design upgrade requirements for tokamak optimization investigations
 - 3yrs- Tokamak optimization studies; Full non-inductive current

INITIAL OPERATIONAL PLAN

* The burn time of 440 s includes 400 s flat top, and equivalent time which additional flux is counted during ramp-up and ramp down.
** Average Fluence at First Wall (Neutron wall load is 0.56 MW/m2 in average and 0.77MW/m2 at outboard midplane.)

QUESTIONS/ISSUES FOR ITER OPERATIONS

- Experiments on existing devices motivate AT operation of ITER
 - Conceptual pictures (intellectual building blocks) established
- Questions for investigation on DIII-D and C-MOD bearing on ITER
 - Role of H-mode pedestal in confinement
 - $\beta > \beta_{no-wall}$ in steady-state
 - Role of rotation in confinement and MHD stability
 - Control of thermonuclear burn
 - Recovery of tritium from co-deposited layers
 - Principles and Practice of exploiting Internal Transport Barriers
 - SN vs DN divertors and accomodation of power and particle fluxes

UPGRADES FOR TOKAMAK OPERATION ITER-1

ITER UPGRADE	PLASMA	AT PHYSICS	DESIGN IMPACT
More gyrotrons (up to 70 MW)	AT	ECCD supress NTMs Heating &burn control ECCD for non-inductive	Minimal
Pancake Solenoid	Inductive, AT, ¹ H	Controls shape Optimizes confinement, β Controls ELMs	Major Key element of base design
Positive ion neutral beams	Inductive, AT, ¹ H	Angular momentun source Plasma rotation stabilizes resistive wall mode; improves confinement	Major, Not in base design Multiplex with negative ion neutral beam
Negative ion beam	Inductive, AT, ¹ H	Heating near center	Already in design
Fast Wave Heating	Inductive, AT, ¹ H	FWCD Heating localization ITB Trigger TAE simulation High bootstrap	Minimal; FW Antennas in ports are readily exchanged; Antenna engineering needed

UPGRADES FOR TOKAMAK OPERATION ITER-2

ITER UPGRADE	PLASMA	AT PHYSICS	DESIGN
			IMPACI
Lower Hybrid	AT	Efficient edge CD	Modest: Depends on SOL plasma which is TBD
Pellet launch from transformer core	¹ H, HiQ, AT	Maximize pellet velocity and fuelling efficiency	Modest but crucial hole through TF magnet; Trial with ¹ H plasmas
N=1 error field and feedback coils	AT	Control resistive wall kink mode,	Large, actuator coils must be near plasma, Perhaps between VV
		Required for $\beta > \beta_{no-wall}$	shells
Internal TAE mode antenna	¹ H, HiQ, AT	TAE frequency and decrements indicate MHD state of core; disruption indicator	Moderate; antennas inside VV but low power
Long divertor legs	¹ H, HiQ, AT	Flexibility in divertor operation, strike points; Attached vs detached plasmas	Already in existing design

UPGRADES FOR TOKAMAK OPERATION ITER-3

ITER UPGRADE	PLASMA	AT PHYSICS	DESIGN
			IMPACT
Cold trap divertor	HiQ, AT	Recovers unburned tritium from walls; Demonstrates control of tritium inventory	Modest rework of present divertor cassette; installation of laser,etc to heat codeposition layer
Double Null divertor configuration	¹ H, HiQ, AT	Increases shaping ability	Major revision of VV, blanket, diveror cassette
		Localizes heat flux to outside strike points	Plans
Divertor sweeping	¹ H, HiQ, AT	Spreads divertor heat load, ameiliorating hot spots due to surface roughness caused by disruptions	Requires investigation of a/c losses in superconducting magnets.
Heat flux margin for first wall	HiQ, AT	Supports exploitation of success, increasing β_N to β_N =2.7 and P=1000MW	1000 MW operation is close to limit for present design.

CONCLUSIONS

• The ITER facility can support all the modifications and upgrades presently forseen as requirements for AT operation.

- Cost-capability tradeoffs remain to be carried out.

• Inductive operation at $\beta = \beta_{no-wall} = 2.7$ will produce 1000 MW for 400s

 Research on steady-state, noninductive discharges with upgrades will suffice to determine viability of steady-state operation for a First Fusion Reactor