Overview of Recent Activities of the ITPA Topical Group
on “Steady State Operations and Energetic Particles”*

Cynthia K. Phillips
PPPL
Chair, U.S. SSO&EP Topical Group

* Originally called “Energetic Particles, Heating and Steady State Operation”
Who?

• **U.S. membership:**
 – *International participants:*
 – C.K. Phillips - Leadeer (PPPL), R. Prater - Co-Leader (GA),
 – P. Bonoli (MIT), C. Forest (U.W.-Madison), W. Heidbrink (UC-Irvine)
 – *Additional U.S. group members:*
 D. Batchelor (ORNL), B. Breizman (IFS), D. Darrow (PPPL),
 N. Gorelenkov (PPPL), T. Luce (GA), R. Nazikian (PPPL),
 P. Politzer (GA), D. Swain (ORNL), J.R. Wilson (PPPL), M. Zarnstorff (PPPL)

• **International SSO&EP Group chaired by C. Gormezano (EU) and S. Ide (Japan)**
 – 5 participants each from EU, Russian Federation, Japan, and U.S.

• *Attendance at meetings has been open to interested parties - your participation is welcome!*
What and Where?

• **What**: focus international collaborations in the area of steady-state operation and energetic particle behaviour for burning plasmas

• **Where**:
 – First meeting in Naka, Japan in February 2002
 – Second meeting in Cadarache, France in October 2002
 – Upcoming meetings:
 • St. Petersburg, Russia in July 2003
 – emphasis on steady-state scenarios; current drive modeling
 • San Diego (General Atomics) in October 2003
 – emphasis on energetic particles and optimization of ECCH system
 – in conjunction with 8th IAEA Technical Meeting on "Energetic Particles in Magnetic Confinement Systems."
Focus of group is on steady-state scenarios for ITER and Burning Plasmas

Group serves to focus international collaborations in the area of steady-state operation and energetic particle behaviour for burning plasmas by:

- encouraging international collaboration on experiments, code developments and modelling activities;
- identifying and formulating Research Priorities for Physics R&D;
- evaluating and documenting the scientific progress and providing an annual written report to the ITPA Coordinating Committee;
- promoting publications and presentations.

Scope includes:

- validate the heating and current drive systems foreseen for ITER;
- active control tools needed for current and plasma control (pellets as well if needed)

[but general control systems foreseen for an ITER discharge are in TG MHD]
Three candidate schemes for steady-state operations have been identified

- Hybrid scenarios with very long high fusion yield pulses:
 - high beta, high confinement, high bootstrap, steady current profile but not full current drive.

- Steady state scenario for ITER:
 - high confinement, high beta, $f_{BS}=50\%$, full current drive with well-aligned currents.

- Real advanced scenario:
 - high confinement, high beta, $f_{BS}=80\%$ and full current drive with well-aligned currents.
High Priority Research Objectives: 2003

- Multi-machine assessment of candidate steady state and hybrid scenarios;
- Install steady state scenario development data base;
- Explore and develop plasmas with very high bootstrap content;
- H&CD code benchmarking on FWCD, NBCD, LHCD and ECCD;
- Start assessment of reversed shear operational space;
- Modelling of EP collective modes and experiments including quantitative measurements.
- Assess effects on EP of proposed q-profiles for steady state and hybrid scenarios.
Medium Priority Objectives: 2003 and beyond

- Coordinated modelling of ITER scenarios (continuous updates as appropriate);
- Identify an approach to estimate uncertainties in projecting H/CD systems to Burning Plasmas (Develop self-consistent integrated modelling capability for H/CD systems)
- Evaluate ITER H/CD systems in terms of relevance to standard operating scenarios and global Steady-State requirements
- Continue the assessment of ECCD and LHCD system both for NTM stabilization and current profile control
- Need to understand RF-driven rotation
- Assess energetic particles and H/CD diagnostics requested for ITER.
- Continue analysis of ripple induced losses in deeply reversed magnetic shear scenarios;
- Develop global non-perturbative gyro-kinetic models for linear stability of MHD collective effects.
Some ongoing studies by the SSO & EP Group

- P. Bonoli and E. Barbato (FT-U / EU) are coordinating lower hybrid code benchmarking activities.
- T. Luce is providing candidate steady-state and hybrid discharges from DIII-D and is supporting ECCD studies.
- D. Swain has been coordinating the writing of a white paper on the ICRF system for ITER.
- P. Bonoli and C. Forest have been developing a white paper on lower hybrid current drive for ITER.
- C. Gormezano has been coordinating efforts to develop predictive simulation studies using existing transport models and “benchmarked” current drive codes.
Summary

• SSO & EP group has begun internationally coordinated studies of steady state scenarios and supporting heating, current drive and energetic particle physics for burning plasmas, such as ITER

• The group meets twice per year

• Your input and participation is welcome