NTM Stabilization with ECCD in JT-60U

A. Isayama and JT-60 team presented by T. Ozeki

Japan Atomic Energy Research Institute
Naka Fusion Research Establishment

Workshop on Active Control of MHD Stability
18 - 20 November 2002
Columbia Univ. New York
Real-Time NTM Stabilization

Real-time NTM stabilization system has been developed.

1. Coarse estimation of mode location
2. Fine tuning using T_e profile
3. EC mirror steering

- Calculation: 10ms
- Mirror scan: $\Delta R_{dep}/\Delta t \sim 10\text{cm/s}$
A 3/2 NTM at high beta ($\beta_N=1.5$, $\beta_p=1.1$) has been completely stabilized with the real-time system.

- β_N increased by the stabilization, and even after the EC turn-off
 - Confinement improvement
 - (H89: 1.8 \rightarrow 1.9; HH$y2$: 1.0 \rightarrow 1.1)
Perturbation decreases asymmetrically during the stabilization.

- Just after the EC injection,
 - T_e at HFS: decrease
 - T_e at LFS: increase
 - Asymmetry ... future work

- Rapid decrease in island width at 8.3s:
 - Consistent with the modified Rutherford eq.

![Graph showing β_N, w vs. time, and $(\gamma R/\gamma) d\gamma/dt$ with and without EC injection.]

- T_e map with island width, peak, and center annotations.

- β_N vs. time graph with markers indicating w_{sat}: ~7.5s and ~8.3s.

- w vs. time graph showing w without and with EC.
Real-time NTM stabilization system has been upgraded and applied to experiment.
- Real-time plasma shape calculation & coarse estimation of mode location were implemented.
- Real-time NTM detection & mirror steering of EC injection were demonstrated.
- Complete stabilization of NTM in finite beta region was obtained.
- Increase in β_N and H-factor was achieved.

Stabilization process has been measured in detail.
- Rapid decrease in the island width after the slow decrease is consistent with the modified Rutherford equation.
- Asymmetry in electron temperature perturbation profile is remained as a future work.