Workshop on Active Control of MHD Stability: Extension of Performance Columbia University, November 18-20,2002

Niigata University

Flowing Two-Fluid Equilibria of ST and CT

Akio Ishida

Ishida@sc.niigata-u.ac.jp

This work was performed in collaboration with **K.Kanai, H.Yamada¹, L.C.Steinhauer², Y.-K.M.Peng³**

Niigata University, ² University of Washington, ¹ Kyoto University ³ Oak Ridge National Laboratory

Outline

Niigata University

Purpose of Our Study:

To generalize Grad- Shafranov equation to describe well the following effects

- 1) the ion temperature and electric field,
- 2) the toroidal flow,
- 3) the poloidal flow,
- 4) the steep pressure gradient.

Outline:

Here I will present the topics related to the above items 1) and 2).

Why is two-fluid model required? **Niigata University**

Difference between Single- and Two-fluid Models:

$$m_i n (\partial \mathbf{u}_i / \partial t + \mathbf{u}_i \bullet \nabla \mathbf{u}_i) = -\nabla (p_i + p_e) + \frac{1}{4\pi} (\nabla \times \mathbf{B}) \times \mathbf{B}$$

- the same for both models $\mathbf{E} + \frac{1}{c} \mathbf{u}_i \times \mathbf{B} + \mathbf{F}_{2F} = 0$ - \mathbf{F}_{2F} represents the difference.

$$\mathbf{F}_{2F} \equiv \frac{1}{en} \left[\nabla p_e - \frac{1}{4\pi} (\nabla \times \mathbf{B}) \times \mathbf{B} \right] = \frac{-1}{en} \nabla p_i - \frac{m_i}{e} \left[\frac{\partial \mathbf{u}_i}{\partial t} + \mathbf{u}_i \bullet \nabla \mathbf{u}_i \right]$$

Single-fluid model is valid only for $\mathbf{E} \approx \frac{1}{2} \mathbf{u}_i \times \mathbf{B} >> \mathbf{F}_{2F}$.

Therefore the single-fluid model requires no ∇p_i for static equilibrium.

Why is two-fluid model required? (Cont.) Niigata University

If the two-fluid model is used, the length scale of $|_i \equiv c/\omega_{pi}$ appears naturally.

So the ratio $L/|_i$, where L is the characteristic length of equilibria, may characterize the two-fluid effect.

- For the single-fluid model, $L/I_i \rightarrow \infty$.
- For the H-mode region, $L \approx \rho_{i,p}$, $L/I_i \approx 1$.

Other examples.

More quantitatively, we will measure the two-fluid effect using the term \mathbf{F}_{2F} .

Assume that the density is constant. $\nabla \bullet \mathbf{u}_{\alpha} = 0$

The equations of motion:

$$\frac{\partial \mathbf{P}_{\alpha}}{\partial t} = \mathbf{u}_{\alpha} \times \mathbf{\dot{U}}_{\alpha} - \nabla H_{\alpha}$$

Here $\mathbf{P}_{\alpha} \equiv m_{\alpha} \mathbf{u}_{\alpha} + (q_{\alpha}/c)\mathbf{A}$: generalized momentum $\dot{\mathbf{U}}_{\alpha} \equiv \nabla \times \mathbf{P}_{\alpha}$: generalized vorticity $H_{\alpha} \equiv T_{\alpha} + (1/2)m_{\alpha}u_{\alpha}^{2} + q_{\alpha}\phi_{E}$: generalized enthalpy \mathbf{A}, ϕ_{E} : vector and scalar potentials

Axisymmetric Equilibrium

Niigata University

$$\mathbf{u}_{\alpha} \times \dot{\mathbf{U}}_{\alpha} = \nabla H_{\alpha}$$
 for $\alpha = i$ and $\alpha = e$
 $\nabla \times \mathbf{B} = 4\pi enc^{-1}(\mathbf{u}_{i} - \mathbf{u}_{e})$

Introduce the five stream functions as $\nabla \bullet \mathbf{B} = 0 \quad \mathbf{B}(r, z) = \nabla \psi(r, z) \times \hat{\theta} / r + B_{\theta} \hat{\theta}$

$$\nabla \bullet \mathbf{u}_{\alpha} = 0 \quad \mathbf{u}_{\alpha}(r, z) = \nabla \psi_{\alpha}(r, z) \times \hat{\theta} / nr + u_{\alpha\theta} \hat{\theta}$$

$$\nabla \bullet \dot{\mathbf{U}}_{\alpha} = 0 \, \underline{\dot{\mathbf{U}}}_{\alpha}(r,z) = (q_{\alpha}/c) \nabla \Psi_{\alpha}(r,z) \times \hat{\theta}/r + \Omega_{\alpha\theta} \hat{\theta}$$

Axisymmetric Equilibrium (Cont.) Niigata University

Since $\dot{\mathbf{U}}_{\alpha} = (q_{\alpha}/c)\mathbf{B} + m_{\alpha}\nabla \times \mathbf{u}_{\alpha}$,

$$\Psi_{\alpha}(r,z) = \psi(r,z) + (m_{\alpha}c/q_{\alpha})ru_{\alpha\theta}$$

$$\dot{\mathbf{U}}_{\alpha} \bullet \nabla H_{\alpha} = 0 \quad H_{\alpha} = H_{\alpha}(\Psi_{\alpha})$$
$$\mathbf{u}_{\alpha} \bullet \nabla H_{\alpha} = 0 \quad \psi_{\alpha} = \psi_{\alpha}(\Psi_{\alpha})$$

Equilibria are described by the coupled equations for the vorticity stream functions Ψ_i and Ψ_e .

Coupled Equations for Ψ_i and Ψ_e

Niigata University

$$\frac{d\psi_i}{d\Psi_i}r^2\nabla \bullet \left(\frac{d\psi_i}{d\Psi_i}\frac{1}{r^2}\nabla\Psi_i\right) = S_*^2(\psi_i - \psi_e)\frac{d\psi_i}{d\Psi_i} - S_*^2(\Psi_i - \Psi_e) + r^2\frac{dH_i}{d\Psi_i}$$
$$\underline{\qquad} \Delta^*\Psi_e = S_*^2(\psi_i - \psi_e)\frac{d\psi_e}{d\Psi_e} - S_*^2(\Psi_i - \Psi_e) - r^2\frac{dH_e}{d\Psi_e}$$

Here $S_* = r_s/|_i$. Every quantity is normalized by r_s , $B_s = B_p(r = r_s, z = 0)$, $V_A = B_s/\sqrt{4\pi m_i n}$

$$T_e - e\phi_E = H_e(\Psi_e) \quad ; \quad T_i + u_i^2/2 + e\phi_E = H_i(\Psi_i)$$

$$rB_\theta = S_*(\psi_i(\Psi_i) - \psi_e(\Psi_e)) \quad ; \quad ru_{i\theta} = S_*(\Psi_i - \Psi_e)$$

By choice of arbitrary functions, the coupled equations can be reduced to

 $\Delta^* \Psi_e + (C_{He0} + C_{Hi0})r^2 = 0 \qquad (C_{He0}, C_{Hi0} \text{ are constant})$

Sol.
$$\Psi_e(r,z) = \psi(r,z) = -(r^2/2) - r^2 - (z/E)^2$$
: Hill's vortex
($C_{He0} + C_{Hi0} = -4 - E^{-2}$)
 $\mathbf{u}_i = \hat{\theta}(C_{Hi0}/S_*)r$; $\mathbf{u}_e = -\hat{\theta}(C_{He0}/S_*)r$: Rigid rotations

$$\phi_{E}(r,z) = \left[-\frac{\gamma_{T}(C_{He0} + C_{Hi0})}{\gamma_{T} + 1} + C_{Hi0} \right] \Psi_{e}(r,z) + \frac{(C_{Hi0}/S_{*})^{2}}{2(\gamma_{T} + 1)} r^{2}$$

$$T_{i}(r,z) = \gamma_{T}T_{e}(r,z) = \frac{\gamma_{T}(C_{He0} + C_{Hi0})}{\gamma_{T} + 1} \Psi_{e}(r,z) + \frac{\gamma_{T}(C_{Hi0}/S_{*})^{2}}{2(\gamma_{T} + 1)} r^{2}$$

For no ion rotation, $T_{i}(r,z) = \phi_{E}(r,z)$

= Normalization & Geometry =

Normalization

Geometry for the numerical computation

- r_s :radius of the outer boundary on a symmetry plane (r=rs,z=0)
- B_R :poloidal field at (r=rs,z=0)

$$V_A = B_R \big/ \sqrt{4\pi m_i n}$$

 $S_* = \frac{r_s}{\Gamma_i}$ is adopted.

2D ST Equilibrium_(S*=30)

2D ST Equilibrium (Cont.) Niigata University

When the following NSTX values are allocated $r_s = 1.52[m]$: the outer radius at mid-plane $n = 0.4 \times 10^{20} [m^{-3}]$: the average density $S_* = 30$ $B_{\theta}^{(vacuum)} = 0.4[T]$ at the magnetic axis,

then
$$I_{\theta} = 1.1[MA]$$
, $u_{i\theta \max} = 142[km/s]$,
 $T_{i\max} = 1.5[KeV]$, $\langle \beta_T \rangle_M = 0.17$

These are in agreement with the 1MA, NB driven NSTX.

Other Characteristics of Computed Equilibrium:

$$\langle \beta_T \rangle_M = 0.17$$
; $\langle \beta \rangle_M = 0.09$ where $\langle \beta \rangle_M \equiv \frac{\langle n(T_i + T_e) \rangle_M}{\langle n(T_i + T_e) + B^2 / 8\pi \rangle_M}$
 $\langle p_i \rangle_M \approx 0.04 \langle B_{\theta}^{(vacuum)^2} \rangle_M$
 $\langle u_{i\theta}^2 \rangle_M \approx 0.01 \langle B_{\theta}^{(vacuum)^2} \rangle_M$:
- Rotation energy is 1/4 of the ion thermal energy and 1/100 of energy of the external magnetic field.
 $\langle B_{self}^2 \rangle_M \approx 0.1 \langle B_{\theta}^{(vacuum)^2} \rangle_M$:
_ Energy of the self magnetic field is 1/10 of energy of the external

magnetic field.

2D ST Equilibrium (Cont.)

Two-Fluid Effect:

$$f_{2F} = 0.31 \cong T_{i\max} / \phi_{E\max}$$
, where $f_{2F} \equiv \frac{\langle [\mathbf{F}_{2F} \times \mathbf{B}] \rangle_M}{\langle [\mathbf{E} \times \mathbf{B}] \rangle_M}$,

- _ Two-fluid effect is fairly large.
- _ the second relation results form a fact that the ion flow velocity is smaller than the ion thermal velocity.

Current Ratio:

$$I_{i\theta}/I_{\theta} = 1.2$$
 and $I_{e\theta}/I_{\theta} = -0.2$

The almost entire current carried by the ion fluid.

The electron current flows in the opposite direction to the total current.

Measurement of the two-fluid effect

1-D STs with S*=30 1-D CTs with S*=5

Each symbol represents an equilibrium with corresponding beta value <_>M and maximum value of ion flow (_) _

The two-fluid effect is significant for plasmas with...

Smaller S* Higher beta value Ion rotation closer to the ion diamagnetic drift

Summary Niigata University

- To generalize Grad-Shafranov equation to describe well the effects of
 - 1) the ion temperature and electric field,
 - 2) the toroidal flow,
 - 3) the poloidal flow,
 - 4) the steep pressure gradient,

the reason was explained why the two-fluid model is necessary.

@ Assuming constant density, the coupled equations are derived for the stream functions of the ion and electron generalized vorticities.

Summary (Cont.) Niigata University

@ Analytic CT solution and numerical ST solution are shown. Some properties are discussed.

@ Criteria were shown for when the single-fluid model is adequate and when the more general two-fluid model is necessary.

For more detail, see our recent paper: "Equilibrium analysis of a flowing two-fluid plasma" H.Yamada, T.Katano, K.Kanai, A.Ishida, L.C.Steinhauer Phys. Plasmas, November issue of 2002

Summary (Cont.) Niigata University

For Future Plan:

- To study the effect of poloidal flow and the steep pressure gradient.
- To release the constant density assumption.