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Overview
• Suppression of m/n=3/2 and 2/1 neoclassical tearing

modes (NTM) via electron cyclotron current drive (ECCD)
has been demonstrated  in the DIII-D tokamak;

• Realtime control has been successfully used in DIII-D to
detect the presence of 3/2 and 2/1 NTMs and align the
ECCD deposition with the island location;

• Simulation of island suppression dynamics and control
action are used to develop and improve the control
algorithms;

• The DIII-D 2003 campaign will see application of new
“Target Lock” algorithm, realtime Shafranov shift

compensation, gyrotron control to sustain increased βN.



NTM Islands Degrade Confinement and
Can Lead to Disruption

• NTM triggered by “seed”
island from other MHD;

• Sufficiently high β
destabilizes NTM, island
grows to saturated size;

• Loss of bootstrap current in
O-point ⇒  helically
perturbed bootstrap current;

• Pressure flattened inside O-
point, not in X-point;

• 3/2 typically degrades
confinement, 2/1 often
disruptive
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NTM Can Be Suppressed by Replacing
Lost Bootstrap Current with ECCD

• Localized deposition
of ECCD at island
replaces lost bootstrap
current

• Resonance layer must
be accurately located
at q=3/2 surface (with
correction for Doppler
shift)

• Accuracy required in
DIII-D < ~1 cm
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Accuracy Needed for ECCD Suppression of
NTM Requires Active Control

• No direct realtime measurement of correct location (q=3/2
surface + Doppler shift correction) for ECCD yet available;

• Measurement of MHD mode amplitude allows indirect
inference of proximity to correct deposition location;

• Deposition region and island must be aligned to within ~1 cm
for full suppression;

• “Search/Suppress” executed by realtime control system to
find best alignment in 1 cm steps: alignment detected by
effect on mode amplitude; dwell if sufficient mode decay rate

• DIII-D Plasma Control System provides flexible platform for
implementation of complex Search/Suppress logic, digital
filters, etc..



NTM Search/Suppress Algorithm Can Now
Vary One of Several Quantities to Align

ECCD & Island

• ∆R = plasma major radius varied with rigid shift (move

island itself relative to ECCD deposition) Used

successfully for NTM suppression

• ∆Bt = toroidal field varied (increase with positive voltage,

or decrease with L/R decay) to move location of deposition

with island ~fixed Used successfully for NTM suppression

• ∆Z = plasma vertical position with rigid shift (move island

relative to ECCD deposition) Basic function tested in

piggyback, but not yet used operationally with actual

NTM+ECCD



NTM Control Algorithm in PCS Will Include
Many Extensions Beyond Search/Suppress
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3/2 NTM Suppressed Using ∆∆∆∆R Search Initially
Off Optimum

• Control
algorithm and
ECH enabled
@3.0 sec

• Search pattern
starts > 1 dwell

• 50 msec dwell,
1 cm step size:
2 searches hit
“sweet spot”

• Mode fully
suppressed 400
msec after
enabling
search/suppress
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Rp Search/Suppress Finds Same Optimum
Location as Preprogrammed ∆∆∆∆R Scan

• Search/Suppress
follows several
dwell/search
steps to reach
full suppression

• Suppression
point (R~1.7)
same for both
blind search and
preprogrammed
scan of ∆R 1.675 1.68 1.685 1.69 1.695 1.7 1.705 1.71
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Search Histories Can Be Very Complex:
Wrong Initial Direction, Backtracking….

Eventually Suppressing Mode
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2/1 NTM Suppressed Using ECCD with
Search and Suppress Bt Variation
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Suppression of 3/2 NTM Allows ββββN to Increase

1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

n=
1 

M
od

e 
A

m
pl

107396 NTM  R
p
 Ctrl Summary

1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

E
C

H
 P

w
r[

M
W

]

1.5 2 2.5 3 3.5 4 4.5 5
1.68

1.7

1.72

R
p 

[m
]

1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

β N

t [sec]

3/2 NTM triggered
after βN increase

Beam power, βN

increased to trigger
mode

βN degraded by mode

ECCD turned on
(preprogrammed)

3/2 NTM suppressed
with initial ECCD

βN increases ~20%
above pre-NTM,
~60% above NTM-
degraded level



Detuning from Shafranov Shift Will be
Corrected by Realtime Tracking

• Raised β produces (Shafranov) shift in island R
• Realtime compensation for Shafranov shift after island suppression will maintain alignment

1 cm



Target Lock Algorithm Developed for Fast
Acquisition of Optimum Plasma Position

• The Target Lock algorithm compares variations in measured NTM growth rate

with those predicted due to radial displacements of the plasma

• Predicted variations are calculated using an approximation to the Modified

Rutherford Equation with multiple choices of optimum plasma position:
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Target Lock Finds Unique Value for
Optimum Plasma Position

• Smaller square sums
signify better fits between
predicted and measured
growth rates

• In every time slice there is
only one minimum in the
square sum

• The Target Lock algorithm
infers Ropt from this
minimum

• With more time and hence
more information the
minimum becomes clearer



Target Lock Algorithm Performs Well in
Simulation from Experimental Data

• A magnetic island
has grown to its
saturated size

• ECCD turned on 3
s into discharge

• The Target Lock
algorithm finds R
close to optimum
instantaneously

• Minor adjustments
occur during first
150 ms
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High Performance MHD Control Design Benefits
from Detailed Simulation of Integrated Systems
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Individual Blocks Can be Very Complex
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Simulations Allowed Design/Optimization of
Search/Suppress for Robust First-Time

Performance
• Mode suppressed in

< 1.5 sec

• Realistic
timescales..

• Simulation yielded
effective dwell time
50 ms, step size 1
cm, threshold
amplitude 0.1-0.2

• Search/Suppress
was successful in
first-time
experimental use!
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Simulations Show Target Lock Accuracy can
be improved by jitter in the plasma position

• This discharge displays a
higher fluctuation in
plasma position

• As a consequence the
Target Lock algorithm has
more information on how
suppression depends on R

• This makes the solution for
optimum plasma position
clearer (the minimum or
trench in the graph)

• Improved accuracy in Ropt
is obtained by a jitter of the
plasma



Fast Target Lock in All Simulated Cases
Plasma position R, Target Lock value Ropt,
and best guess of sweet spot (--)

• ECCD turned on at 3 s
with a 3/2 NTM mode
present in all of these
shots.

• Ropt is calculated at all
times when both the
mode and ECCD is
present

• Target lock in ~50-100
ms
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Summary

• Use of ECCD with realtime NTM “Search and

Suppress”  control was successful in suppressing

3/2 and 2/1 NTM using major radial and toroidal

field regulation (separately)

• Plasma βN increased through active (3/2) NTM

suppression

• Simulation of NTM suppression scenarios is used

extensively to test and optimize control schemes

prior to experimental execution



NTM Suppression Plans for 2003 Campaign

• Sustained increased βN through 3/2, 2/1 NTM
control

• Improvements to algorithm:
– Shafranov shift compensation (primarily due to βp

change)

– Target Lock algorithm to accelerate search

• Realtime gyrotron (power) control

• Direct feedback on R(q=3/2) error in concert with
reduced-displacement Search&Suppress+Target
Lock+Shafranov Compensation algorithms


