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New Understanding of Onset Mechanism
Can Lead to Avoidance of NTMs

NTMs are linearly stable but nonlinearly unstable, ie. Metastable
e Need “seed” or triggering event

Onset mechanism explains two common puzzles:
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A Comprehensive Model of NTM Onset Emerges
From a Combination of Theories

Classical . .
. Neoclassical Nonlinear
LInear .
. Effects Coupling
Drive

All three components are necessary to explain the onset and evolution



A Comprehensive Model of NTM Onset Emerges
From a Combination of Theories

Classical
Linear
Drive

Time Dependence
Accurate Treatment
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A' is free energy
for mode

All three components are necessary to explain the onset and evolution



Outline

Thesis: A'(t) depends strongly on the equilibrium
parameters near ideal limit _ key physics for NTM onset
In some cases _this is a key to avoidance.

Island Evolution Equation : essential physics of nonlinear evolution
Analytic model : the basic physics of the time dependence of A’

Sawtooth Seeding of 3/2 NTM : DIII-D discharge which encompasses

nonlinear, neoclassical and classical effects is comprehensively
analyzed showing the critical time dependence in A'.

Pole Experiment : theoretical predictions of the effects of time
dependence in A" are compared to results from a DIII-D experiment to

Isolate these effects.

Open Questions on Avoidance: implications on control of NTMs



Island Evolution Equation Captures Essential Physics
Necessary to Describe Onset and Early Evolution

Coupling not included

A' often assumed
constant negative

With accurate time
dependence and
weak coupling,
onset and early
evolution can be
predicted
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Analytic Models of Linear Tearing Stability Show Strong
Variation of A’ Near Ideal Instability

10
Small change in equilibrium and/or conducting .
wall dramatically affects A" near ideal limit due to
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Slight Increase in Core Pressure Destabilizes a Seed Island
from a Sawtooth and Causes the Onset of a 3/2 NTM

Equilibrium reconstructions
between sawteeth

Most pronounced profile variation is
core pressure just before onset.
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Slight Increase in Core Pressure Destabilizes a Seed Island
from a Sawtooth and Causes the Onset of a 3/2 NTM

Equilibrium reconstructions
between sawteeth

Most pronounced profile variation is
core pressure just before onset.
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Slight Increase in Core Pressure Destabilizes a Seed Island
from a Sawtooth and Causes the Onset of a 3/2 NTM

Equilibrium reconstructions
between sawteeth

Most pronounced profile variation is

core pressure just before onset.
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Slight Increase in Core Pressure Destabilizes a Seed Island
from a Sawtooth and Causes the Onset of a 3/2 NTM

Equilibrium reconstructions
between sawteeth

Most pronounced profile variation is
core pressure just before onset.

0361 66

E-E SEIEH::l Islanl::ls
oy F‘ ﬂ

Y1 ¥

LA 4
11 Sawteeth |

3200 3600
Time (ms)

)

KHz
)N
o

S
il

Frequency (

0b———
2800

14000

12r 3
E 3‘ n=1 n=2 3
S 4F —y o]
@ B - bl _J_,.‘\,,’_Jﬁ""L ‘H-«'
2800 3000 3200 3400 3600 3800
Time (ms)
Boa. T 5
™ : e E
“Eﬂﬂl] ; S
S100F— = S
< | S
4 F 2990 3280
T 2 _/__‘____/
0k R .
0.0 0.2 0.4 D 0.6 0.8 1.0
Dﬂl—ﬂ

uuuuu



Slight Increase in Core Pressure Destabilizes a Seed Island

from a Sawtooth and Causes the Onset of a 3/2 NTM

Equilibrium reconstructions
between sawteeth

Most pronounced profile variation is
core pressure just before onset.
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Slight Increase in Core Pressure Destabilizes a Seed Island
from a Sawtooth and Causes the Onset of a 3/2 NTM

Equilibrium reconstructions
between sawteeth

Most pronounced profile variation is
core pressure just before onset.
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Slight Increase in Core Pressure Destabilizes a Seed Island
from a Sawtooth and Causes the Onset of a 3/2 NTM

Equilibrium reconstructions
between sawteeth

Most pronounced profile variation is
core pressure just before onset.
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Slight Increase in Core Pressure Destabilizes a Seed Island
from a Sawtooth and Causes the Onset of a 3/2 NTM

Equilibrium reconstructions
between sawteeth

Most pronounced profile variation is
core pressure just before onset.
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Slight Increase in Core Pressure Destabilizes a Seed Island
from a Sawtooth and Causes the Onset of a 3/2 NTM

Point is to answer: why did
the last sawtooth set off the
3/2 NTM while the several
preceding similar sawteeth
did not.
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Neoclassical Terms Remain Constant Between Sawtooth
Periods, While A’ Increases Sharply

Destabilization of seed island

and transition to NTM state is
driven primarily by change in A'

By approaches no-wall limit at
onset of 3/2 NTM _ A’ pole is

underlying mechanism for
destabilization
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To Test This Proposition Island Evolution is Reconstructed
From Experiment and Compared to Theory

16rR,| B, )1/2
msBg,

w = (

" 1 b "y
|B,| = E{F}m'wﬁﬂ

w from Magnetic
Probe Signals
used to compare
dw/dt from theory
and experiment
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dw/dt from Island Evolution Equation Agrees with dw/dt
from Experimental Data

Island Evolution 12
Equation gives right 8
answer even without 4
nonlinear coupling ant 8
. : N 10

with axisymmetric A'.

£0

.50
D, . determined from o
X2 minimization 0.5
agrees in sign with g
analytic value, but is
smaller. 0.5
D,,=-2.3e-5

B (Gauss)
I

Ilulnl""-'l w“wﬁ“_‘f‘f H-" '.1
E dwidt(3r2) 2 ;
: periods /f :rmrm
?_\,\__\J___'V__“__\’IL _____ E
C d(wia)idt .
Bt Theur',.r (MRE) ff__ﬁ:ﬁr\a 7
£ D/,;L S s A .
i Experiment .




Increase in Core Pressure Causes A' to Sharply Increase
Due to Approach of Ideal Limit

14

Pressure profile at 2990 was 12|

gradually modified to approximate 10|
profile at 3600, showing transition. 8.
Approach to n=2 ideal limit a8
increases 3/2 A\'. =
2
Pole causes rapid change in A'(3) 0
as [3 changes slightly )
-4
3,

Nonlinear coupling between n=1 and n=

modes not addressed by this model
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How will this affect the stability and evolution?
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A Comprehensive Model of NTM Onset Emerges
From a Combination of Theories

Classical . .
. Neoclassical Nonlinear
LInear .
. Effects Coupling
Drive

Time Dependence
Accurate Treatment

dp

1x
A = L]

W

A' is Free energy
for mode

All three components are necessary to explain the onset and evolution



A Comprehensive Model of NTM Onset Emerges
From a Combination of Theories

Classical
Linear
Drive

Neoclassical
Effects

Nonlinear
Coupling

Time Dependence
Accurate Treatment
i
A= L]
e

A' is Free energy
for mode

NIMROD Simulations

All three components are necessary to explain the onset and evolution



Studying the structure and nonlinear evolution of these modes
with NIMROD can lead to new intuition and new physics




NIMROD Simulations of two discharge times show unstable n=1
mode and driven n=2 mode, in agreement with experiment
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At later times, after saturation of n=1, the m=3 component
of n=2 is dominant

3/2 decays in simulation of 2990ms

3/2 is larger and grows to saturation in

simulation of 3600ms

Eigenfunctions show m=3 to be dominant n=2

component.

m=1 is dominant n=1.
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Dynamics of NIMROD Simulations Indicate That Linear A’
Drive Affects Islands Of Finite Width
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DIII-D Experiment was Designed and Performed to
Determine Effect of Poles in A’ on Tearing Stability

Experiment designed to isolate A’ pole mechanism

avoid other modes
vary df3,/dt on approach to onset of 2/1

Prediction was made that for spontaneous NTMs,
evolution should depend on rate of approach to ideal

boundary.
Measure 3 at point where w~w, as a function of df3/dt

Forced reconnection gives random w at random t, and
should not show a correlated function like A'(3)



Spontaneous/Seedless NTMs were Generated to Isolate
Effect of A’ Pole Onset Mechanism
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m/n=2/1 amplitude

Experimental data indicates
spontaneous onset in many
cases.
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Spontaneous/Seedless NTMs were Generated to Isolate
Effect of A’ Pole Onset Mechanism

12

- 109144 m/n=2/1 'Amplitude
g 109145
- 109151

Neutral beam injection

applied at increasing rates up E
to B limit for 2/1 NTM onset. :

Experimental data indicates
spontaneous onset in many
cases.
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Experimental Data Confirms New Theoretical Prediction
from A" Pole Model

Model uses B (t) from experiment and A'(3,) In
Island evolution equation.

Pressure profiles modified in model equilibria
and A’ at 2/1 surface calculated. Result is a
function A'(f3,).

D, Is single constant free parameter fit to find
By vs. d3,/dt at mode onset.

Results support hypothesis that

A' is increasing rapidly in time, consistent
with theoretical pole model.
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Modeling of A" Pole Experiment Reproduces dw/dt Lull
Shortly After Onset

D, term negligible at small island width. A
model for D, is assumed which decays at
W<Wb

d(w/a)/dt

dw . w Dy w Ly
A* By ()] + 5 + 22
dt L,D wy + w wy + w

Resulting phase space plots have a Dip in

growth rates. 0 0.2 0.4 0.6
w/a
By (t) driving 6. |
_ - Lull - R £
function 6 1 [”N A L e
reproduces &, ) 02 A
Lull in | h—eastm”
2 V
growth | 0
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1 (ms) At (s)
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Modeling of A" Pole Experiment Reproduces dw/dt Lull
Shortly After Onset

D, term negligible at small island width. A
model for D, is assumed which decays at
W<Wb

d(w/a)/dt

dw . w Dy w Ly
A* By ()] + 5 + 22
dt L,D wy + w wy + w

Resulting phase space plots have a Dip in
growth rates.
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Modeling of A" Pole Experiment Reproduces dw/dt Lull
Shortly After Onset

D, term negligible at small island width. A
model for D, is assumed which decays at

W<W,, 5

. o
dw n* . w Dy w Dyl =
Q0 _ M Av By (t)] 4 —Ptet_ WD 2
dt ki ( B ()] u.'j + w? wg + w o

Resulting phase space plots have a Dip in
growth rates.

By(t) driving - | SO e
function 1 /‘/\ > o
B i o d N
" : P b i kS

E
reproduces 2, WU)
Lull'in )
growth _Mw»f"”)

Pl 0 01
tims) At (s)

'30 CENERAL ATOMICS Dii-oD



Onset Model Reproduces Trace Elements and dw/dt Lull

Shortly After Onset
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Summary of Results

@ Increasing B sharply increases A' near ideal limit, due
to approaching a pole, destabilizing NTMs

@® In a sawtooth seeding a NTM case, eventual onset was
caused by increased A’ due to approach of a pole

@ Nonlinear NIMROD simulations confirm that axisymmetric A’
is meaningful for nonlinearly coupled finite islands

e® DIII-D experiment confirmed effect of poles in A’ on
NTM stability with varying rates of df3/dt causing

spontaneous NTMs

@ Data from early evolution are in agreement with prediction,
both as function of df3,/dt and detailed time evolution.

'§o GENERAL ATOMICS DiN-pD

lelelelelele



Future Plans and Open Questions

@ Predict the onset of spontaneous NTMs in the
presence of an ECCD current peak

@® Address the important physics model for D, and D, at w<w,

pol

@ Can the lull phase and the trace elements be used as
real-time indicators for avoidance of NTM transition
@ Size of trace elements, slight 3 reduction during Lull phase

@® Experiment on DIII-D

@ Burning plasma projection

® Seeded NTMs as ideal limit is approached, determine
smaller threshold in burning plasma model
@ Seeding in burning plasmas less sensitive to changes in A'?

'§o GENERAL ATOMICS DiN-pD

lelelelelele



