Rotation profile modifications by RWMs and rotation control with RWM feedback

H. Reimerdes¹, A.M. Garofalo¹, R.J. La Haye², G.A. Navratil¹, M. Okabayashi³, J.T. Scoville², E.J. Strait²

> ¹Columbia University, New York NY ²General Atomics, San Diego CA ³Princeton Plasma Physics Laboratory, Princeton NJ

Workshop on Active Control of MHD Stability, New York, Nov 18-20, 2002

Motivation

- Minimizing the drag essential for sustained rotational stabilization of the RWM. Key discovery: 'Error field amplification' [Boozer, PRL 86 (2001) 5059]
 - Effect of finite amplitude RWM on rotation profile.
 - Compare rotation decay with 'transit time magnetic pumping'.
- Use additional drag to access a low-rotational regime for feedback control of the RWM without the stabilizing effect of plasma rotation.
 - Combine RWM braking with RWM feedback control.

Finite amplitude RWM slows plasma across entire profile

 Use external n=1 field to excite marginally stable RWM (resonant field amplification - RFA).

Drag of external non-resonant field described by "Transit Time Magnetic Pumping"

Rotation decay for "transit time magnetic pumping"

$$\frac{df}{dt} = \frac{f_0 - f}{\tau_L} - C_{ttmp} \left(\frac{B_r}{B_T}\right)^2 f$$

Fit results:

 $f_0 = 3.9 \text{KHz}$

 $C_{\rm ttmp} = 8.7 \cdot 10^5 \, {\rm s}^{-1}$

Calculate C_{ttmp} from profiles [La Haye et al, PP 9 (2002) 2051]:

$$C_{\rm ttmp} = 3.1 \cdot 10^5 \, {\rm s}^{-1}$$

Predicted value **just** three times smaller.

Drag of finite amplitude RWM too large to be explained by TTMP

Can we use a finite amplitude RWM to access a low rotational regime for direct feedback control?

Feedback control on a finite amplitude RWM

Apply C-coil field B_{ext} , if detected error B_{err} is not equal to a requested B_{offset} . $B_{\text{ext}} = -P/D(B_{\text{err}} - B_{\text{offset}})$

PCS (choose proportional gain G_P and a pre-programmed C-coil offset I_{offset} , neglect derivative and integral gain):

$$B_{\rm ext} = M_{\rm c} I_{\rm offset} - G_{\rm P} B_{\rm err}$$

Plasma response described by resonant field amplification of a marginally stable RWM (phenomenological):

$$B_{\rm RWM} = A_{\rm RFA} B_{\rm ext}$$

Using "mode-control" ($B_{err} = B_{RWM}$) the resulting equilibrium RWM amplitude is:

$$\mathcal{B}_{\rm RWM} = \frac{\mathcal{A}_{\rm RFA}}{1 + \mathcal{A}_{\rm RFA} \mathcal{G}_{\rm P}} \cdot \mathcal{M}_{\rm c} \mathcal{I}_{\rm offset}^{*}$$

**I*_{offset} defined with respect to the optimum correction currents of the intrinsic error field.

Feedback with a pre-programmed current offset excites marginally stable RWM

In the presence of RFA the feedback system will partially compensate I_{offset} ,

$$I_{\rm C} = \frac{1}{1 + A_{\rm RFA}G_{\rm P}} \cdot I_{\rm offset}$$

Experiment: Apply a pre-programmed offset to the optimum C-coil currents at $\beta > \beta_{no-wall}$:

- Partial correction of the C-coil offset corresponds to A_{RFA}~0.15.
- Consistent with an observed A_{RFA}~0.17 measured by magnetic probes.

RWM feedback finds optimum correction current

Optimize C-coil currents to minimize the RFA amplitude and, hence, drag.

• Feedback reduces the difference between pre-programmed and optimum correction currents,

$$I_{\rm C} = \frac{1}{1 + A_{\rm RFA} G_{\rm P}} \cdot I_{\rm offset}$$

- The improvement is typically ~50% (G_P~5, A_{RFA}~0.2)
- Several iterations improve the correction currents.

Extension of feedback model to an unstable RWM shows that an applied offset does not change the condition for stability

Assume,

$$\delta \mathcal{W}_{\rm RWM} \propto \mathcal{B}_{\rm RWM}^2$$

and

$$F_{\rm ext} \propto B_{\rm ext}$$

Then, the condition for stability,

$$\omega^{*2} = \omega^2 + \frac{G_{\rm P}\alpha}{\kappa} > 0$$

is independent of the offset.

 $B_{\rm RWM}$, however, increases continuously with decreasing RWM stability \rightarrow **nonlinear** effects more likely to become important.

RWM braking at low rotation can generate magnetic islands

- RFA of marginally stable RWM → global braking.
- Large external n=1 field at low rotation creates magnetic islands → local braking and bad confinement.

Avoid large external field at low rotation with a rotation dependent $I_{C,offset}$

External field at low rotation causes magnetic islands

- RWM braking $\rightarrow T_e$ profile shows no islands.
- Large external n=1 field at low rotation $\rightarrow T_e$ profile shows signature of 2/1 and 3/1 islands.

Effect of RWM on rotation profile

- The RWM causes a rotation decay across the entire profile.
- The RWM drag is too large to be explained by 'transit time magnetic pumping' alone.

Combine RWM braking with RWM feedback

- Pre-program C-coil current offset is only partially corrected by RWM feedback and excites marginal stable RWM for additional drag.
- RWM feedback can iteratively improve correction of intrinsic error field.
- RWM braking at low rotation prone to island generation → need to maintain rotation above a critical value.

