Analysis of control schemes for resistive wall modes in tokamaks

Y.Q. Liu, A. Bondeson, D. Gregoratto Department of Electromagnetics, EURATOM/VR Fusion Association Chalmers University of Technology, S-412 96 Göteborg, Sweden

C.M. Fransson, B. Lennartson, C. Breitholtz Department of Signals and Systems, Control and Automation Laboratory Chalmers University of Technology, S-412 96 Göteborg, Sweden

Y. Gribov

Plasma and Field Control Division, ITER Naka Joint Work Site, Naka, Ibaraki, JAPAN

Workshop on Active Control of MHD Stability: Extension of Performance November 18, 2002, Columbia University

1. Plasma Response Model

- Cylindrical Model
- Toroidal Model

3. MIMO Control

4. MISO Control

5. RWM Control in ITER

2. SISO Control and Robust Control

6. Conclusions

1. Plasma Response Model	3. MIMO Control		
• Cylindrical Model	4. MISO Control		
• Toroidal Model	5. RWM Control in ITER		

RWM Feedback Control Diagram

- Input signal: current I_f or voltage V_f
- Output signal: flux Ψ_s or voltage V_s
- Plasma dynamics: $P_1(s)$ frequency dependent transfer function
- $\lambda \equiv$ fraction of poloidal width subtended by active coil

• Current control: $I_f = -K\Psi_s/M_{sf}$

Frequency response of the plasma-wall system to feedback currents is determined by a nondimensional transfer function $P_1(s)$.

Characteristic equation of closed loop $1 + K(s)P_1(s) = 0$.

• Voltage control: $V_f = -KV_s$

Introduce non-dimensional transfer function $P_2(s)$ for the (normalized) loaded self-inductance of the active coils.

Characteristic equation of closed loop $1 + K(s)P_1(s)/[P_2(s) + 1/s\tau_f]$, where $\tau_f = L_f/R$.

• Plasma response model $\{P_1(s), P_2(s)\}$ can be constructed analytically for cylindrical equilibria, and computationally for 2D toroidal hight- β equilibria using the MARS-F code.

Cylindrical Plasma Response Model

Assume the equilibrium is ideally unstable for some *m* without the wall and stable with an ideal wall at $r = r_1$.

At a resistive wall
$$\frac{r(b'_{r+} - b'_{r-})}{b_r} = 2s\tau_w$$

Stability index
$$\Gamma_m = -\frac{1}{2}\left(\frac{rb'_{rm}}{b_{rm}} + \mu + 1\right), \quad \mu = |m|$$

Outside the wall
$$b_{rm} = b_{cm}\left(\frac{r_{>}}{r_{<}}\right)^{-\mu}\frac{r_f}{r}I_f + D_m\left(\frac{r}{r_2}\right)^{-\mu-1}$$

direct field from coil wall and plasma

Cylindrical Plasma Response Model

Algebraic equations for vacuum + walls give fields on the first wall

$$\{b_{1m}, b_{pm}^{-}, b_{pm}^{+}\} = \{M_{rm}(s), M_{pm}^{-}(s), M_{pm}^{+}(s)\}b_{cm}$$
$$= \{1, (2\Gamma_m + \mu)/m, (2\Gamma_m + \mu - 2s\tau_1)/m\}M_{rm}(s)b_{cm}$$

where

$$M_{rm}(s) = \frac{m^2 (r_1/r_f)^{\mu-1}}{s^2 \tau_1 \tau_2 (1 - x^{-2\mu}) - s[\Gamma_m \tau_2 (1 - x^{-2\mu}) - \mu(\tau_1 + \tau_2 x^{-2\mu})] - \mu \Gamma_m}$$

and $x = r_2/r_1$.

Poles for M_{rm} correspond to growth-rates for RWM without feedback.

Single poloidal coil
$$b_{cm} = \frac{\mu_0 I_f}{2\pi r_f} \sin \mu \theta_c \equiv I_f c_m$$

Thin sensors at $\theta = 0$ $b_{\{r,p^{\pm}\},\text{sens}}(s) = \sum_m b_{\{r,p^{\pm}\},m}(r_1) = I_f \sum_m M_{\{r,p^{\pm}\}m}(s) c_m$
Transfer function $P_{1\{r,p^{\pm}\}m}(s) = \frac{\mu_0}{2\pi r_f b_{sf}} \sum_m M_{\{r,p^{\pm}\}m}(s) \sin \mu \theta_c$

 $P_1(s)$ = rational function.

 Γ_m can be constructed analytically for Shafranov equilibria. Unstable when

$$m - 1 < nq_0 < nq_a < m$$

Cylindrical Plasma Response Model

Poles and residues for cylinder with poloidal and radial sensors.

- For radial sensors, $\pm m$ modes add constructively to P_1 . Convergence is slow and the stable modes can add to change the sign of $P_1(0)$.
- For poloidal sensors $\pm m$ almost cancel in P_1 , which is less influenced by other *m*'s.
- Related to mutual inductances between sensor and feedback coils.
- Result: for radial sensors, P₁ is much more influenced by the stable modes ⇒ difficulties to control with radial sensors.

$$P_1(s) = \sum_{i=0}^{\infty} \frac{R_i}{s - \gamma_i}$$

$$K(s) = -1/P_1(s) \Rightarrow R_i = -ds_i/dK|_{K=0}$$

Poles and residues for high-beta tokamak. 'o' - true toroidal modes, 'x' - third order Padé.

1. Plasma Response Model

- Cylindrical Model
- Toroidal Model

3. MIMO Control

4. MISO Control

5. RWM Control in ITER

SISO Controller Design

- Controller design as optimization problem with constraints.
- Guarantee good control performance is by constraining the stability margins

$$J_S \equiv ||S||_{\infty} \equiv \sup_{\omega \in \Re} |S(j\omega)| \le c_S \text{ and } J_T \equiv ||1 - S||_{\infty} \le c_T.$$

 $S \equiv 1/(1 + KP)$ is the sensitivity to disturbances at the output and *T* is the sensitivity to measurement errors.

- We minimize either the control activity $J_u \equiv ||KS||_{\infty}$, or the maximum voltage V_f^{max} of the amplifier time response, typically with $||S||_{\infty} < 2.5$ and $||T||_{\infty} < 2.5$.
- Can optimize, e.g., the parameters of a PID controller $K_{PID} = (K_p + K_i/s)(1 + T_d s)/(1 + T_d s/\xi)$.

SISO System With Poloidal & Radial Sensors

- Internal poloidal sensors give superior performance to radial sensors.
- External poloidal sensors have large phase lag, derivative action needed to achieve good control.
- Double wall also increases the phase lag, especially at high-frequency.

Robust Control w.r.t. Plasma Current Variation

- RWM can be stabilized for a wide range of plasma current by:
 - Single feedback coil placed at the outboard midplane
 - Internal poloidal sensor
 - Optimal coil width about 20% of total poloidal circumference, i.e. $\lambda_{opt} \simeq 0.2$.
- Reason: similarity of mode structures for different plasma currents strongly ballooning.

Robust Control w.r.t. Toroidal Flow

- $\omega_0/\omega_A = 0, 0.02, 0.04, 0.05 \Longrightarrow \arg(K_p^{\text{opt}}) = 0^o, -20^o, -31^o, -51^o.$
- Strong synergy when rotation and feedback push RWM in the same direction.
- A simplified cylindrical theory (single harmonic) with feedback + rotation shows very similar results.

1. Plasma Response Model

• Cylindrical Model

• Toroidal Model

3. MIMO Control

4. MISO Control

5. RWM Control in ITER

MIMO Control Diagram

- In a MIMO (Multiple Input Multiple Output) system, several pairs of active and sensor coils are placed along the poloidal angle. Each pair is connected by an independent controller.
- Consider three identical controllers with PID structure \implies diagonal controller matrix.
- $\Lambda \equiv$ poloidal distance between centers of two neighboring coils.
 - $\Lambda > \lambda \rightarrow$ gap between coils; $\Lambda < \lambda \rightarrow$ coils overlap; $\Lambda = 0 \rightarrow$ SISO system.

- Cylindrical theory with multiple harmonics & multiple coils.
- With poloidal sensors, single coil configuration (Λ = 0) works better than multiple coils (Λ > 0).
- With radial sensors, MIMO system improves feedback control. Good results obtained when three active coils are well separated ($\Lambda > \lambda$) \Longrightarrow reduced coil coupling.

• Toroidal plasma response model for MIMO system (transfer function matrix) can also be constructed from MARS results: $\mathbf{P} = [P_{jk}(s)]_{i=1,...,3}^{k=1,...,3}$

$$P_{jk}(s) = \sum_{i} \frac{a_{ji}b_{ik}}{s - s_i}$$

- Controller optimization performed for a JET-shaped equilibrium.
- With poloidal sensors, SISO control outperforms MIMO control.

	k_p	T_d	ξ	J_S	J_T	J_u
MIMO	0.62	1.17	1.43	2.11	2.50	1.32
SISO	1.35	0.62	0.73	1.00	1.73	0.98

• With radial sensors, no controllers satisfying performance criteria were found for both SISO and MIMO systems.

1. Plasma Response Model

• Cylindrical Model

• Toroidal Model

3. MIMO Control

4. MISO Control

5. RWM Control in ITER

MISO Control for Cylindrical Plasmas

- In a MISO (Multiple Input Single Output) system, several active coils along the poloidal angle are connected to a single sensor loop at the midplane. We consider simple cases, where all the controllers are identical.
- With internal poloidal sensors, a SISO system ($\Lambda = 0$) with a single coil array at midplane outperforms MISO ($\Lambda = 0.4$) with two off-midplane coil arrays.
- With radial sensors, both MISO and SISO work only when the active coils are close to the plasma surface, and MISO works better.

• Various configurations of MISO control studied. For all cases, sensor loops placed just inside/on the wall at the poloidal midplane.

- Internal poloidal sensors give feedback system which is not sensitive to the MISO coil configurations.
- Radial sensors give better control if two off-midplane coils placed inside the wall.

MISO Control for Toroidal Plasmas

- Toroidal computations for a JET-shaped advanced equilibrium show similar results.
- Poloidal sensors work well for all configurations, but SISO system requires less total gain.
- With radial sensors, two internal off-midplane coils + one external midplane coil give stabilization with reasonable performance.

1. Plasma Response Model

• Cylindrical Model

• Toroidal Model

3. MIMO Control

4. MISO Control

5. RWM Control in ITER

RWM Control for ITER Advanced Scenario

- ITER steady state Scenario 4 with 9MA current
- Up-down symmetrized equilibrium & conformal walls (solid lines)
- β_N 15% above no-wall limit (~ half way between no-wall & ideal wall limits), $r_1 = 1.375a, r_2 = 1.725a, \tau_1 = \tau_2 = 0.15$ [s], $r_f = 3.0a$, design coil width $\lambda = 0.125$
- Present design works with poloidal sensors. Slightly smaller coil ($\lambda = 0.1$) gives better control.

Time Response of Feedback Controlled RWM in ITER

- With internal poloidal sensor, RWM in ITER is controlled with stability margin $J_S = 5$.
- RWM is stabilized with voltage saturation level at 40 V/turn and detection limit at 1mT.
- Faster controller (i.e. smaller J_S) gives worse control with voltage saturation.

Possible Improvement of Feedback Design

- Place the active coil closer to the outer wall and use coil with larger width λ .
- In the simulation: $r_1 = 1.3a, r_2 = 1.55a, r_f = 1.75a, \lambda = 0.2$
- Optimal controller with good performance requires less than 10 V/turn.

Conclusions

- Large gain in n = 1 ideal-MHD beta limit with SISO control is possible.
- SISO control with internal poloidal sensors is robust with respect to plasma pressure, current and toroidal rotation. Dynamic tuning is not necessary.
- Multiple coils along poloidal direction (MIMO/MISO) improve performance for radial sensors, but not for internal poloidal sensors.
- PID voltage control can handle RWM in present ITER advanced scenario. Improvement can be achieved by moving active coil closer to the wall or reducing its size.