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● Has DIII-D observed the ideal-wall limit (at β >> βno-wall)? 

● What are the observed characteristics that prove this?  

● How did DIII-D achieve these results?

● Can RWM stabilization be sustained near the ideal-wall limit?

● How do we extrapolate these results to a reactor?

SOME KEY QUESTIONS
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IDEAL n=1 KINK OBSERVED AT TWICE THE NO-WALL βN LIMIT

● Rapid growth rate and rotation suggest little or no effect from resistive wall 
● Very reproducible disruption
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● Ideal MHD calculations find the equilibrium <10% away from βN
ideal wall

● Growth rate is consistent with ideal-wall stability limit
  Ideal MHD mode driven slowly (τh >> τMHD) through stability limit: 
    τg = τMHD

2/3 τh
1/3  ⇒  τMHD = 4µs  (J. Callen, et al., Phys. Plasmas, 1999)

  

  Resistive wall mode destabilized at  ideal-wall stability limit

Ideal-Wall Dimension/DIII-D vessel
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CALCULATIONS INDICATE INSTABILITY OCCURS AT IDEAL-WALL β LIMIT
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CerFit:  Ti vs rho  shot: 106535 time: 2040.0000
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● Ion temperature and rotation 
data show n=5 mode is NOT 
an edge mode

Normalized ρ
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● Spline fitting of profile data is normally 
carried out using smallest number of knots
  Stability of n=1 kink is not affected by 

     small scale features of internal profiles

● Presence of an ITB justifies additional knots
for the core profiles

● New equilibrium reconstruction is 
marginally stable to n=5 mode,
localized near the ITB

OBSERVATION OF n=5 KINK PROVIDES USEFUL HINTS 
TOWARDS NUMERICAL RECONSTRUCTION OF EQUILIBRIUM 

 

Thomson Data, shot: 106535,  time: 2040.0000
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● Induction motor model of the plasma rotation
predicts a linear relationship between the 
rotation decay rate and the RESULTING error field 

● Varying the assumed amplitude and phase of the 
REFERENCE, INTRINSIC error field yields a 
contour plot of χ2 with a very shallow minimum 
for a 3/1 field

PLASMA ROTATION DECAY RATES DO NOT CORRELATE WITH 
ANY m/n=3/1 INTRINSIC ERROR FIELD
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● Best fit to model suggests relevant  intrinsic error 
field is m/n=2/1, with  B2/1 ~ 7 gauss 
(Garofalo, La Haye, and Scoville, Nucl. Fusion, 2002)

● Varying the assumed amplitude and phase of the 
REFERENCE, INTRINSIC error field yields a 
contour plot of χ2 with a very deep minimum 
for a 2/1 field

PLASMA ROTATION DECAY RATES CORRELATE WITH 
A ~7 gauss m/n=2/1 INTRINSIC ERROR FIELD
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RESISTIVE WALL MODE STABILIZED BY ROTATION IS WEAKLY DAMPED - 
HAS STRONG RESPONSE TO RESONANT PERTURBATIONS
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βN● RWM is nearly stationary n = 1 mode 
⇒  can resonate with n = 1 INTRINSIC error field

● RWM is closer to marginal stability at higher
βN  ⇒  resonant response increases as βN 
increases above the no-wall limit

● "Error field amplification" clearly demonstrated
using external n=1 field pulses

(A. Garofalo, et al., Phys. Plasmas, 2002)
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● RWM feedback finds same error field correction obtained by rotation optimization
 Dominant error field is m/n=2/1 field

● Sustained plasma rotation allows βN  >> 4li  in negative central shear plasma 
with 85% noninductive current (65% bootstrap current), and βT > 4%

● Large (2,1) tearing mode limits duration of high performance phase

βN 
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PHYSICS OF RWM AND PLASMA ROTATION TRANSLATES WELL
TO ADVANCED TOKAMAK PLASMAS
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OBSERVED SCALING OF CRITICAL PLASMA ROTATION FOR ONSET 
OF RESISTIVE WALL MODE IS CONSISTENT WITH MHD THEORY
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● Consistent with inverse of ALFVEN TIME: ΩcτA ~2% (Bondeson and Ward, 1994)

● MARS (Bondeson , Liu, Chu) calculations for ITER predict plasma rotation 
would be marginal for RWM stabilization
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12-coil internal set available for
experiments 2003

● Off-midplane coils allow better matching to poloidal spectrum of error field or RWM

● Feedback stabilization is calculated to open high beta wall-stabilized regime to
plasma without rotation
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RWM STABILIZATION UP TO THE IDEAL-WALL LIMIT PREDICTED WITH 
NEW INTERNAL CONTROL COILS, WITHOUT PLASMA ROTATION
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SUMMARY

● Ideal-wall βN limit observed at βN = 2xβN
no-wall in DIII-D

● Sustained operation at βN just below the ideal-wall limit is possible by correction of 

intrinsic m/n=2/1 error field

● Projected plasma rotation in ITER may not be sufficient for RWM stabilization

● New internal control coils and poloidal field sensors in DIII-D should allow

RWM stabilization near the ideal-wall βN limit in absence of plasma rotation




