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SOME KEY QUESTIONS
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Has DIII-D observed the ideal-wall limit (at B >> pno-walh?
What are the observed characteristics that prove this?

How did DIII-D achieve these results?

Can RWM stabilization be sustained near the ideal-wall limit?

How do we extrapolate these results to a reactor?



IDEAL n=1 KINK OBSERVED AT TWICE THE NO-WALL 3N LIMIT

e Rapid growth rate and rotation suggest little or no effect from resistive wall
e Very reproducible disruption
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CALCULATIONS INDICATE INSTABILITY OCCURS AT IDEAL-WALL 3 LIMIT

e Growth rate is consistent with ideal-wall stability limit
Ideal MHD mode driven slowly (T, >> Tyxp) through stability limit:
Tg =T, 43 113 O Typp =4ps (. Callen, etal., Phys. Plasmas, 1999)

Resistive wall mode destabilized at ideal-wall stability limit

n=1 ideal MHD stability (GATO)
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e Ideal MHD calculations find the equilibrium <10% away from pigea! Wl
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IDEAL n=5 KINK OBSERVED NEAR PREDICTED n=1 IDEAL-WALL 3 LIMIT
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IDEAL n=5 KINK LOCALIZED NEAR THE FOOT OF
AN INTERNAL TRANSPORT BARRIER

CerFit: Tivsrho shot: 106535 time: 2040.0000
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OBSERVATION OF n=5 KINK PROVIDES USEFUL HINTS
TOWARDS NUMERICAL RECONSTRUCTION OF EQUILIBRIUM

e Spline fitting of profile data is normally
carried out using smallest number of knots
Stability of n=1 kink is not affected by
small scale features of internal profiles

e Presence of an ITB justifies additional knots
for the core profiles

e New equilibrium reconstruction is
marginally stable to n=5 mode,
localized near the ITB
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RWM STABILIZATION SUSTAINED FOR >1.5 s WITH OPTIMIZED
ERROR FIELD CORRECTION
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e Optimal EFC {blue) removes the decay of 1| observed 2 Ccoil current (kA)

when By exceeds pyno-wal 0
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OPTIMAL ERROR FIELD CORRECTION (BLUE) REMOVES
THE DECAY OF 1, OBSERVED WHEN B, EXCEEDS pN* YAl

2.0

{1) In plasmas with different EFC (red vs. blue), 15
the evolution of |_starts to differ when By~ py0-Wal, ,I]jg
0.0

{2) In plasmas with non-optimal error field correction
(red & green), low plasma rotation leads to RWM-induced
B collapse when By > B0 Wal,
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{(3) In plasmas with different EFC (blue vs. green),
non-optimal EFC and By < By ¥l yield same 1|
as case with optimal EFC and > pymo-wall
(Garofalo, et al., Phys. Rev. Lett., 2002)
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SHOT-TO-SHOT SCAN OF APPLIED n=1 FIELD YIELDS
CORRECTION FIELD WHICH MINIMIZES PLASMA ROTATION DECAY RATE

@ Optimal correction ~2x standard correction determined for lower-3 plasmas
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@ Assume a REFERENCE, INTRINSIC ERROR FIELD, amplitude=B, phase=0¢
— RESULTING error field= REFERENCE + C-COIL field
— Associate rotation decay rate at t=tp with RESULTING error field
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PLASMA ROTATION DECAY RATES DO NOT CORRELATE WITH
ANY m/n=3/1 INTRINSIC ERROR FIELD
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PLASMA ROTATION DECAY RATES CORRELATE WITH
A ~7 gauss m/n=2/1 INTRINSIC ERROR FIELD

-10 F —_— o
dfy/dt (kHzls) (b}
at q=2 >

e Varying the assumed amplitude and phase of the
REFERENCE, INTRINSIC error field yields a
contour plot of X2 with a very deep minimum
for a 2/1 field

e Best fit to model suggests relevant intrinsic error
field is m/n=2/1, with By/1 ~ 7 gauss
(Garofalo, La Haye, and Scoville, Nucl. Fusion, 2002)
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RESISTIVE WALL MODE STABILIZED BY ROTATION IS WEAKLY DAMPED -
HAS STRONG RESPONSE TO RESONANT PERTURBATIONS
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e RWM is closer to marginal stability at higher

By U resonant response increases as By
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RWM FEEDBACK CAN WORK AS
DYNAMIC ERROR FIELD CORRECTION SYSTEM
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PHYSICS OF RWM AND PLASMA ROTATION TRANSLATES WELL
TO ADVANCED TOKAMAK PLASMAS

o RWM feedback finds same error field correction obtained by rotation optimization
Dominant error field is m/n=2/1 field
e Sustained plasma rotation allows 3y >> 4l; in negative central shear plasma
with 85% noninductive current (65% bootstrap current), and B > 4%

e Large (2,1) tearing mode limits duration of high performance phase
106795
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OBSERVED SCALING OF CRITICAL PLASMA ROTATION FOR ONSET
OF RESISTIVE WALL MODE IS CONSISTENT WITH MHD THEORY

o Consistent with inverse of ALFVEN TIME: QT ~2% (Bondeson and Ward, 1994)
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e MARS (Bondeson, Liu, Chu) calculations for ITER predict plasma rotation
would be marginal for RWM stabilization
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RWM STABILIZATION UP TO THE IDEAL-WALL LIMIT PREDICTED WITH
NEW INTERNAL CONTROL COILS, WITHOUT PLASMA ROTATION

o Off-midplane coils allow better matching to poloidal spectrum of error field or RWM

o Feedback stabilization is calculated to open high beta wall-stabilized regime to
plasma without rotation
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SUMMARY

o Ideal-wall By limit observed at By = 2x[3,\r|‘°'wa” in DIII-D

e Sustained operation at 3y just below the ideal-wall limit is possible by correction of
intrinsic m/n=2/1 error field

e Projected plasma rotation in ITER may not be sufficient for RWM stabilization

e New internal control coils and poloidal field sensors in DIlI-D should allow
RWM stabilization near the ideal-wall 3 limit in absence of plasma rotation
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