RWM Feedback Control Experiments on HBT-EP

Cory Cates

and J. Bialek, Y. Liu, O. Katsuro-Hopkins, M.E. Mauel, D.A. Maurer, G.A. Navratil, T.S. Pedersen, M. Shilov, N. Stillits

MHD Mode Control Workshop - Columbia University - November 18, 2002

HBT-EP Tokamak Properties

Nominal Performance Parameters

Major Radius:R = 0.92 mMinor Radius:a = 0.15 mToroidal Field: $B_{\varphi} = 0.35 \text{ T}$ Plasma Current: $I_p <= 20 \text{ kA}$ Pulse Length: $\tau \sim 10 \text{ ms}$ Temperature: $< T_e > = 50 - 100 \text{ eV}$ Density: $< n_e > \sim 10^{19} \text{ m}^{-3}$

Adjustable Conducting Shells

- •20 Independently adjustable sections
- •1.07 < *b/a* < 1.52
- •Poloidally and toroidally segmented
- •Shells cover 78% of outboard plasma surface
- •Plasma radius fixed by independent limiters

10 nickel plated aluminum shells Thickness: $\delta = 2$ cm Wall time: $\tau_w = 65$ ms

> 10 stainless steel shells Thickness: $\delta = 2 \text{ mm}$ Wall time: $\tau_w = 400 \text{ }\mu\text{s}$

HBT-EP RWM Control Experiments: Smart Shell Feedback

- Radial position control for each Aluminium and Stainless Steel passive plate segment
- Ideal beta limit and effective wall time constant (and hence mode stability) controllable through passive plate radial position
- Three control and sensor coils
 per SS passive plate as shown
- Thirty independent control/sensor pairs for radial flux cancelation

Stainless Steel Shell Coils

HBT-EP RWM Feedback Gain

Active feedback suppresses current driven RWM disruption

•The external m/n =3/1 RWM grows as the edge q drops below 3.

•When feedback is applied the amplitude of the RWM remains at the noise level.

• Without feedback, the RWM leads to disruption of the discharge.

COLUMBIA UNIVER

Disruption Rates for Resistive Wall Mode Feedback

COLUMBIA UNIVER

Measurement of RWM Response in the case of Rapid Formation, "High Beta" Discharges

Image of the poloidal field fluctuation

with

measured

Shell Mounted Probes

Typical Plasma Parameters

COLUMBIA UNIVERS

45

4.5

RWM Growth in Rapid Formation, "High Beta" Discharges

Stabilized RWM Grows when Feedback Switched Off

COLUMBIA UNIVERS

Conclusions

- Active feedback control of the resistive wall mode (RWM) has been achieved and RWM induced disruptions have been suppressed with an in-vessel array of 30 sensor-loop and control-coil pairs each of which is connected through an independent feedback circuit in a "smart shell" configuration, capable of suppressing up to 95% of the mode radial flux through the resistive wall.
- This system effectively stabilized the RWM in HBT-EP when applied to a series of current-ramp experiments $(dI/dt\sim 2 MA/s)$ that produce disruptive RWM activity at the q* ~ 4 and q* ~ 3 transitions.

3/1 modes

- The disruption rate for discharges which reach a given value of q* was reduced by 40% when full feedback was applied
- Feedback with a partial coverage using only 10 midplane coils was equally effective at suppressing disruptions.
- Reducing the feedback gain by a factor of 10 was observed to have no effect on the disruption rate.

4/1 modes

- The disruption rate for discharges which reach a given value of q* was reduced by over 60% when full feedback was applied
- A reduction in gain or coverage completely reduced the effectiveness of the feedback in disruption suppression.
- Active feedback control of RWM demonstrated during rapid formation, high beta discharges. When the feedback is switched off the mode amplitude grows and the mode frequency decreases.

HBT-EP RWM Feedback Coil Characteristics

External Kink and RWM Instabilities Observed During Two Types of Discharges on HBT-EP

during these types of discharges. (Ivers, et al, Phys Plasmas, 1996)

Valen Calculations for 3/1 Feedback with varying Gain and Coverage

