Burning Plasma Physics Advisory Committee

ATLAS Collaboration Issues

Jim Pilcher
University of Chicago
Introduction

- Real US ATLAS organization and management work by
 - Bill Willis (Columbia), Project Manager
 - Howard Gordon (BNL), Deputy Project Manager
 - Have done an outstanding job!
 - Lots of challenges

- My role
 - Former Convener US ATLAS Institutional Board (2 years)
 - Former Chair/Deputy Chair ATLAS Collaboration Board (4 years)
 - Participated in monthly ATLAS Executive Board meetings
Background Info

- US ATLAS experience may or may not be relevant to ITER
 - US University groups plus national labs
 - 3 national labs, 30 universities
 - ~20% of the international effort on ATLAS
 - Both for physicists and hardware costs
 - Experimental site is “off-shore”
 - CERN, Geneva, Switzerland
 - Non-US host laboratory
 - unlike previous large US HEP projects
 - Many funding agencies involved (37)
 - US construction funds outside normal HEP base program funding of institutions
The ATLAS Detector
US ATLAS Responsibilities

- **ATLAS Common Projects**
 - ~45% of detector costs
 - Magnets, shielding, cryostats, etc. (heavy industrial items)
 - Shared by partners in proportion to detector deliverables
 - Cash or in-kind (55%) contributions

- **ATLAS detector systems (US part of all systems)**
 - Inner detector
 - Pixels
 - Silicon strip detector
 - Transition radiation detector
 - Liquid Argon electromagnetic calorimeter
 - Scintillating tile hadronic calorimeter
 - Muon detector
 - Trigger/Data Acquisition system
Cost Allocations

- All costs estimates reviewed by a CERN oversight team prior to project approval
 - 475 MCHF in ’95 (CORE costs)
 - Materials only (by European tradition)
 - Became the “official” cost of the detector
 - Basis for cost sharing
 - No contingency included
 - Traditions vary with funding agency
 - Agency may hold contingency rather than project manager

- MOUs written between CERN and all national groups
 - 34 countries (37 funding agencies)
US ATLAS Responsibilities

- Detector commitments are for deliverables
 - These are the primary need of the experiment
 - VERY useful concept
 - Places cost responsibility at the national level
 - Closer to where costs are incurred
 - Closer to the source of funding
 - US costs larger than corresponding CORE costs
 - Used own cost estimates
 - Included labor costs
 - Included contingency
 - Allows US ATLAS to control its own destiny
 - Some initial tension with ATLAS management since US funding level was known
 - $165M bought ~81MCHF CORE costs
ATLAS Organization

Collaboration Board
(Chair: K. Smith
Deputy: S. Bethke)

CB Chair Advisory Group

ATLAS Plenary Meeting
(Spokesperson
(P. Jenni
Deputy: T. Akesson)

Technical Co-ordinator
(M. Nessi)

ATLAS Organization
(March 2003)

Executive Board

Resources Co-ordinator
(M. Nordberg)

Inner Detector
(S. Stapnes,
L. Rossi, M. Tyndel,
F. Dietz)

Resource Co-ordinator
(H. Oberlack,
D. Fournier,
J. Parsons)

Tile Calorimeter
(R. Leitner)

Muon Instrum.
(G. Mikenberg,
G. Herten,
R. Santonico)

Magnet System
(II. ten Kate)

Physics Co-ordination
(F. Gianotti)

Electronics Co-ordination
(F. Farthouat)

Trigger/DAQ
(C. Bee, M. Ellis,
L. Mapelli)

Computing Co-ordination
(T. Barbera,
D. Quarrie)

Additional Members
(H. Gordon,
A. Zaitsev)
ATLAS Organization

- **Collaboration Board**
 - 1 representative from each institution
 - 151 institutions from 34 countries
 - Elects spokesperson
 - Must ratify spokesperson’s selection of executive team
 - Technical Coordinator
 - Financial Coordinator
 - Physics Coordinator
 - Computing Coordinator

- **Detector Systems**
 - Most technical work by physics groups done here
 - Deliverables divided among collaborating institutions
 - Part of national MOUs
 - Coordinated by a detector project leader
ATLAS Organization

- Resources Review Board (RRB)
 - Established and chaired by CERN
 - Includes representatives of all funding agencies
 - Meets twice per year
 - CERN reports to RRB on global issues
 - LHC construction status
 - Central computing
 - Experiments report to RRB
 - Status of construction
 - Financial status
 - Request budget approval for following year
ATLAS Organization

● Project tracking
 ● Monthly reports to central web-based system
 ○ Costs (fraction of allocation), technical progress
 ● Reviews (by Technical Coordination group)
 ○ Design reviews (all deliverables)
 – Preliminary
 – Final
 ○ Production Readiness Review (all deliverables)
 – Prior to letting contracts
 ○ Production Advancement Review (all deliverables)
 – At 15% and 50% completion levels
 ● System Overview Reviews
 ● Safety
ATLAS Integration

- Detector integration at CERN
 - Assembly of detector systems from sub-assemblies provided by collaborators
 - Done in surface buildings at CERN
 - Requires on-site manpower
 - Expensive for US
 - Pre-operation costs begin for testing assemblies
 - Cryogenics systems
 - Electrical power
 - Electronics cooling
ATLAS Integration

Barrel Toroid Integration

Integration 1: cold mass preparation

Goal: Put 2 double pancakes (DPCs) under pre-stress in coil coating

- Using resin injection and curing
- 3 cold masses ready, 2 more under preparation
- This phase will end, on schedule, in September '03

Barrel EM cylinder assembly

LAr EM barrel assembly in the vertical position

The first LAr EM half-barrel cylinder has been assembled and recently inserted into its final position in the barrel cryostat

LAr EM half barrel after insertion into the cryostat

LAr End-Cap Cryostats – C

LAr End-Cap cryostat during feedthrough installation

Crystal ready for detector installation
ATLAS Installation

• In underground area
 - Begins now and lasts ~3.3 years
 - 6 phases with ~1900 tasks per phase

• Coordination critical
 - Many complex constraints
 - Timing is tight
 - Collider expected to be available in April ’07
 - Cannot operate while detector installation is in progress
 - Components must be available on time
 - Manpower intensive
 - Adequate resources essential
ATLAS Installation

UX15 main cavern

First detector elements installed: TX1S shielding

TX1S: Shielding interface between LHC machine and ATLAS

7 April 2003
Other ATLAS Functions

- Outreach committee
 - Prepares PR and educational material
 - Movies
 - Photos
 - Posters
 - Web material
 - Brochures
 - Very important for public visibility

- Physics coordinator
 - Organize physics studies within collaboration
 - Ensure adequate representation at national and international conferences and meetings
U.S. ATLAS Organization

Project Office
BNL/Columbia
H. Gordon

Project Manager
W. Willis
Deputy: H. Gordon

Executive Committee
W. Willis, Chair

Institutional Board
J. Siegrist
Convener

Construction/M&O/
Upgrade R&D

1.1 Silicon
A. Seiden
UC-Santa Cruz

1.4 Tilecal
L. Price
ANL

1.7 Common
Projects
W. Willis

1.2 TRT
H. Ogren
Indiana

1.5 MUON
F. Taylor
MIT

1.3 Liquid Argon
R. Stroynowski
SMU

1.6 Trigger/
DAQ
R. Blair
ANL

1.8 Education
M. Barnett
LBNL

1.0 Technical
Coordination
D. Lissauer
BNL

Computing

Physics & Computing
J. Shank
Boston University
EAPM

J. Huth
Harvard
APM

2.1 Physics Manager
I. Hinchliffe, LBNL

2.2 Software
Manager
S. Rajagopalan
BNL

2.3 Facilities
Manager
B. Gibbard
BNL
US ATLAS

- **Counterparts to ATLAS functions**
 - Project manager instead of spokesperson
 - System managers
 - Institutional Board instead of Collaboration Board
 - Physics Coordinator
 - Outreach coordinator

- **Important difference between US ATLAS and ATLAS**
 - US ATLAS project manager controls all US funds
 - In ATLAS detector funds held by system groups
 - Common project funds held by ATLAS
Overview - what works?

- **US is a very welcome participant**
 - Funding has been flexible, reliable (but capped)
 - Has given ATLAS spokesman ability to respond to problems
 - Eg. Technical Coordination manpower
 - US has worked with ATLAS to decide allocation of contingency

- **Well organized structure and clear plan are critical**
 - Loss of independence for physicists but justified by physics return if efforts are well used

- **Transparency very very important**
 - To ensure support and confidence of science teams
Overview - what works?

- Avoid international partners on same deliverable
 - Blurs responsibility

- Clear definition of interfaces essential
 - So “pieces” fit together
 - Mechanical items
 - Electronics
 - Software
 - Formal and explicit documentation valuable

- Not too much flag waving
 - Work constructively with partners to solve technical problems
 - DOE and NSF very “enlightened” in this regard
Conclusions

- Construction of detector elements advancing well
 - Work done at individual institutions
- Integration at CERN is underway
 - A central effort
 - Manpower intensive (expensive for US)
- Installation will begin later this year
 - Will be a challenge
 - US contributing strongly to ATLAS Technical Coordination group
- This international project will allow us to do path-breaking science we couldn’t do otherwise