

Burning Plasma Physics Advisory Committee

ATLAS Collaboration Issues

Jim Pilcher University of Chicago

- Real US ATLAS organization and management work by
 - Bill Willis (Columbia), Project Manager
 - Howard Gordon (BNL), Deputy Project Manager
 - Have done an outstanding job!
 - ▲ Lots of challenges
- My role
 - Former Convener US ATLAS Institutional Board (2 years)
 - Former Chair/Deputy Chair ATLAS Collaboration Board (4 years)
 - ▲ Participated in monthly ATLAS Executive Board meetings

Background Info

- US ATLAS experience may or may not be relevant to ITER
 - US University groups plus national labs
 - ▲ 3 national labs, 30 universities
 - ~20% of the international effort on ATLAS
 - ▲ Both for physicists and hardware costs
 - Experimental site is "off-shore"
 - ▲ CERN, Geneva, Switzerland
 - ▲ Non-US host laboratory
 - unlike previous large US HEP projects
 - ▲ Many funding agencies involved (37)
 - US construction funds outside normal HEP base program funding of institutions

The ATLAS Detector

US ATLAS Responsibilities

- ATLAS Common Projects
 - ~45% of detector costs
 - ▲ Magnets, shielding, cryostats, etc. (heavy industrial items)
 - ▲ Shared by partners in proportion to detector deliverables
 - ▲ Cash or in-kind (55%) contributions
- ATLAS detector systems (US part of all systems)
 - Inner detector
 - ▲ Pixels
 - ▲ Silicon strip detector
 - ▲ Transition radiation detector
 - Liquid Argon electromagnetic calorimeter
 - Scintillating tile hadronic calorimeter
 - Muon detector
 - Trigger/Data Acquisition system

Cost Allocations

- All costs estimates reviewed by a CERN oversight team prior to project approval
 - ◆ 475 MCHF in '95 (CORE costs)
 - ▲ Materials only (by European tradition)
 - Became the "official" cost of the detector
 - Basis for cost sharing
 - No contingency included
 - ▲ Traditions vary with funding agency
 - Agency may hold contingency rather than project manager
- MOUs written between CERN and all national groups
 - 34 countries (37 funding agencies)

US ATLAS Responsibilities

• Detector commitments are for deliverables

- These are the primary need of the experiment
- VERY useful concept
 - ▲ Places cost responsibility at the national level
 - Closer to where costs are incurred
 - Closer to the source of funding
- US costs larger than corresponding CORE costs
 - ▲ Used own cost estimates
 - Included labor costs
 - ▲ Included contingency
 - ▲ Allows US ATLAS to control its own destiny
 - Some initial tension with ATLAS management since US funding level was known
 - ▲ \$165M bought ~81MCHF CORE costs

ATLAS Organization

ATLAS Organization

- Collaboration Board
 - 1 representative from each institution
 - ▲ 151 institutions from 34 countries
 - Elects spokesperson
 - Must ratify spokesperson's selection of executive team
 - Technical Coordinator
 - ▲ Financial Coordinator
 - ▲ Physics Coordinator
 - Computing Coordinator
- Detector Systems
 - Most technical work by physics groups done here
 - Deliverables divided among collaborating institutions
 - ▲ Part of national MOUs
 - Coordinated by a detector project leader

- Resources Review Board (RRB)
 - Established and chaired by CERN
 - Includes representatives of all funding agencies
 - Meets twice per year
 - CERN reports to RRB on global issues
 - ▲ LHC construction status
 - ▲ Central computing
 - Experiments report to RRB
 - ▲ Status of construction
 - ▲ Financial status
 - Request budget approval for following year

ATLAS Organization

- Project tracking
 - Monthly reports to central web-based system
 - ▲ Costs (fraction of allocation), technical progress
 - Reviews (by Technical Coordination group)
 - ▲ Design reviews (all deliverables)
 - Preliminary
 - Final
 - ▲ Production Readiness Review (all deliverables)
 - Prior to letting contracts
 - ▲ Production Advancement Review (all deliverables)
 - At 15% and 50% completion levels
 - ▲ System Overview Reviews
 - ▲ Safety

ATLAS Integration

- Detector integration at CERN
 - Assembly of detector systems from sub-assemblies provided by collaborators
 - Done in surface buildings at CERN
 - Requires on-site manpower
 - ▲ Expensive for US
 - Pre-operation costs begin for testing assemblies
 - ▲ Cryogenics systems
 - ▲ Electrical power
 - ▲ Electronics cooling

ATLAS Integration

Barrel Toroid Integration

Integration 1 : cold mass preparation

Gast: Put 2 double percense (DPCs) under pre-atress in coll casing

- using resin injection and ouring
 3 cold masses mady, 2 more under preparation
- This phase will end, on schedule, in September '03

ATLAS Installation

- In underground area
 - Begins now and lasts ~3.3 years
 - ▲ 6 phases with ~1900 tasks per phase
- Coordination critical
 - Many complex constraints
 - Timing is tight
 - ▲ Collider expected to be available in April '07
 - Cannot operate while detector installation is in progress
 - Components must be available on time
 - Manpower intensive
 - Adequate resources essential

ATLAS Installation

Other ATLAS Functions

- Outreach committee
 - Prepares PR and educational material
 - ▲ Movies
 - Photos
 - Posters
 - Web material
 - Brochures
 - Very important for public visibility
- Physics coordinator
 - Organize physics studies within collaboration
 - Ensure adequate representation at national and international conferences and meetings

U.S. ATLAS Organization

- Counterparts to ATLAS functions
 - Project manager instead of spokesperson
 - System managers
 - Institutional Board instead of Collaboration Board
 - Physics Coordinator
 - Outreach coordinator
- Important difference between US ATLAS and ATLAS
 - US ATLAS project manager controls all US funds
 - In ATLAS detector funds held by system groups
 - ▲ Common project funds held by ATLAS

- US is a very welcome participant
 - Funding has been flexible, reliable (but capped)
 - ▲ Has given ATLAS spokesman ability to respond to problems
 - Eg. Technical Coordination manpower
 - US has worked with ATLAS to decide allocation of contingency
- Well organized structure and clear plan are critical
 - Loss of independence for physicists but justified by physics return if efforts are well used
- Transparency very important
 - To ensure support and confidence of science teams

• Avoid international partners on same deliverable

- Blurs responsibility
- Clear definition of interfaces essential
 - So "pieces" fit together
 - Mechanical items
 - ▲ Electronics
 - ▲ Software
 - Formal and explicit documentation valuable
- Not too much flag waving
 - Work constructively with partners to solve technical problems
 - DOE and NSF very "enlightened" in this regard

- Construction of detector elements advancing well
 - Work done at individual institutions
- Integration at CERN is underway
 - A central effort
 - Manpower intensive (expensive for US)
- Installation will begin later this year
 - Will be a challenge
 - US contributing strongly to ATLAS Technical Coordination group
- This international project will allow us to do pathbreaking science we couldn't do otherwise