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Planetary Magnetospheres have Field-Aligned Currents

* Planetary magnetospheres have MRS ocas s
dipolar magnetic geometries.

e Solar wind drives steady
magnetospheric convection.

* Cross-field conductivity is much
higher in the ionosphere.

\ Region 1 Region 1 4

Region 2
€gion Field-aligned
Currents

Region 2

* Field aligned currents couple these |
Syst e m S . / Pederson

Currents

 Magnetospheric generator is
regulated by ionospheric load.

i
Pederson
Currents

Le, G.; J. A. Slavin; R. J. Strangeway (2010) J. Geophys. Res. 115 (A07202). 3



Laboratory Magnetospheres with No Field-Aligned Currents

LDX Levitated

* LDX has a levitated
superconducting coil with closed
field lines, no parallel currents

 CTX has insulating polar caps which
prevent field aligned currents.

 New Result: Controlled addition of
current to individual flux-tubes
allows us to explore the response
of global interchange motion.

Like a “controlled ionosphere”
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e Biased to collect ions lost to pole
* Full-plasma imaging




Characteristics of Quasi-Steady Interchange Turbulence
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Structure of the Turbulence

* Radially broad flute-like modes (k, = 0)

0.420025 seconds, Shot 10047

* Low azimuthal mode number, m=1, 2,3

* Mode rotate with the electron magnetic drift

m Temporal Mode Functions

v e Chaotically varying amplitude and phase

Electron magnetic drift direction
* Combined correlation length of 50-75°

B. Grierson, M. Worstell, and M. Mauel. Phys Plasmas. 16, 055902 (2009). 10



Current-Collection Feedback
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Current-Collection Feedback

Electrode

Sensor

 Two sensor locations

* Two electrode locations

Electrode Sensor
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Related Experiments with Feedback

 Feedback on Interchange Modes

— Prater applied narrow-band feedback with a biasing electrode
to suppress large growth rate flute modes.

(R. Prater, Phys. Rev. Lett. 27, 132 — July 1971)

e Feedback in Turbulent Plasmas

— TEXT group used biasing electrodes to suppress broadband drift
wave turbulence in tokamak edge.

(B. Richards, Phys. Plasmas 1, 1606 (1994))
(T. Uckan, Nucl. Fusion 35 487 (1995))

 The feedback in CTX is different from both of the above cases:
— Broadband feedback is applied to global interchange
turbulence in the magnetospheric configuration.



Current-Collection Experiments

1. Plasma responds to coherent current-collection (feedforward)

2. Triggering feedback on and off shows amplification and
suppression of fluctuations and a localized effect.

3. Varying the gain and phase of the current relative to the
floating potential significantly changes the spectrum.

4. Varying the separation between the sensor and electrode
shows the effect of decorrelation on feedback influence.



Driving a Coherent Current Oscillation

Electrode biased
@ < with 4 kHz sine

= wave, ¥40V

Downstream: Plasma has moved past electrode

Upstream: Plasma has yet to move past electrode
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Driving a Coherent Current Oscillation

" Floating Probe Power Spectra
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* Electrode biased with 4 kHz sine wave, 40 V
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Driving a Coherent Current Oscillation

Floating Probe Power Spectra
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* Electrode biased with 4 kHz sine wave, 40 V
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Driving a Coherent Current Oscillation

* Electrode biased with 4 kHz sine wave, +40 V

* Launches coherent wave in direction of mode rotatic

* Downstream influence significantly greater
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Current-Collection Experiments

2.

Plasma responds to coherent current-collection (feedforward)

Triggering feedback on and off shows amplification and
suppression of fluctuations and a localized effect.

Varying the gain and phase of the current relative to the
floating potential significantly changes the spectrum.

Varying the separation between the sensor and electrode
shows the effect of decorrelation on feedback influence.



Triggered Feedback Show Amplification and Suppression
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Influence Diminishes with Azimuthal Separation
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Influence of Feedback is Spatially Localized
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Feedback Increases or Decreases Correlation

Correlation

Peak Cross Correlation with Sensor
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Feedback Increases or Decreases Correlation

Correlation

Correlation stronger with positive feedback, reduced with negative feedback
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Current-Collection Experiments

3.

4.

Plasma responds to coherent current-collection (feedforward)

Triggering feedback on and off shows amplification and
suppression of fluctuations and a localized effect.

Varying the gain and phase of the current relative to the
floating potential significantly changes the spectrum.

Varying the separation between the sensor and electrode
shows the effect of decorrelation on feedback influence.



Turbulent Spectrum Shows Influence of Feedback

Ensemble Averaged Power Spectrum
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Turbulent Spectrum Shows Influence of Feedback

Ensemble Averaged Power Spectrum
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Turbulent Spectrum Shows Influence of Feedback
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Changing Turbulent Spectrum with Phase

| Fixed gain of 4
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Changing Turbulent Spectrum with Phase

| Fixed gain of 4
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Gain Scan: +G -> Amplification, -G -> Suppression

Phased for peak suppression Phased for peak amplification
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Defining Power and Conductance

I Time Average Power I

©

N \
\

<P> > () Power into plasma

Feedback Circuit

<P> < (0 Power out of plasma

\ Like the magnetosphere!

I Spectral Power Flow: Conductance I

Vp(w)*I(w) = V(Y Vp) =Y |Vp|*

% ~ Xk
p[ Vs 1
Admittance Y — > |0 = Re = Conductance
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Sign of Conductance Determines Power Flow
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Current-Collection Experiments

a4,

Plasma responds to coherent current-collection (feedforward)

Triggering feedback on and off shows amplification and
suppression of fluctuations and a localized effect.

Varying the gain and phase of the current relative to the
floating potential significantly changes the spectrum.

Varying the separation between the sensor and electrode
shows the effect of decorrelation on feedback influence.



Varying the Separation between the Sensor and Electrode

Electrode B

Electrode A

e

Sensor B

Adjust the toroidal separation
— Reposition sensor/electrodes

— Reverse mode direction
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Varying the Separation between the Sensor and Electrode
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Varying the Separation between the Sensor and Electrode
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e Shift in phase of peak amplification and suppression
* Reduced response, particularly in suppression
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Varying the Separation between the Sensor and Electrode
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Varying the Separation between the Sensor and Electrode
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Flux-Tube Averaged Gyro-Fluid Model

Electron diamagnetic and ion inertial currents

JJ_ — sz’a + Jinertz'al

b-J
( —?H Tonosphere
Flux-Tube @ | B 0 |
Average . / B (VL JJ.) = 4 No FACs; CTX LDX
\ 10(F—Te)  Feedback
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Flux-Tube Averaged Linear Model Shows Some Agreement
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Flux-Tube Averaged Linear Model Shows Some Agreement

Fixed gain of 4
360 Phase Scan
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Ongoing Work

* Current-collection feedback in a
nonlinear gyro-fluid simulation.

 Multiple independent feedback

systems, and multipoint FPGA
controlled feedback.

* Turbulence control on LDX with
levitated superconducting dipole.



Results and Conclusions

* Broadband current-collection feedback amplifies or
suppresses the interchange-turbulence.

e Current-collection feedback is localized and in the
direction of mode rotation.

 Depending on phase, feedback is a generator or a
load, either injecting or extracting power from the
fluctuations.

* Alinear flux-tube averaged gyro-fluid model
including a point current source shows some
agreement with experiment.
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Extra Slides

* Phase response and circuit
* Showing “current model”

* Showing full gyro-fluid model
* Experiments with parallel currents



Phase Shifting Circuit
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Phase Shifting Circuit
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Defining Current and Power
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Time Averaged Power in Frequency

P(t) — ](t)V(t) Instantaneous Power
1 T
<P(t)> = <I(t)V(t)> = f,/o [(t)V(t)dt Time Averaged Power (0 Hz)
+09 / 1o
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Time averaged power is the convolution with omega =0
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Flux-Tube Averaged Gyro-Fluid Model

--------------------------

-06 -04 -02 00 02 04 06

diamagnetic inertial warm electrons
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* Linear eigenmode, radially broad, low order toroidal structure

e Eigenvalue is mode growth rate and rotation

V-Jpp=10(h,0) 1= (Gle¥—1)L

J.F. Drake and T.M. Antonsen Jr, Physics of Fluids 27, 898 (1984). 52



Experiments with parallel currents

magnetospheric
generator

Fig. 3. Schematic location of plates on the dipole frame for
measuring the potential and current between the dawn and
dusk sides. The scheme of the magnetospheric generator is
also shown on the dusk side.

|.F. Shaikhislamov, 2014, Vol. 52,
No. 4, pp. 296-306, Cosmic Research

Kristian Birkeland, 1913
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