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Statistics using the FFT and Correlation Analysis. The FFT (in IDL) takes a time series, and
attempts to decompose it into a sum of sine and cosine functions. This monograph investigates
the FFT as implemented in the programming language IDL. The simple FFT is then extended to
looking at ensemble spectra, cross coherence, etc . . . The Correlation function is also examined in
relation to the time series created by spatially separated diagnostics.

I. INTRODUCTION

Fourier Analysis is the most standard signal processing technique. It transforms a function via an integral (or
sum) of sine and cosine function which can represent the function in an orthogonal basis. A periodic function can be
represented by

f(x) =
A0

2
+

∞∑
m=1

Am cos mkx +
∞∑

m=1

Bm sinmkx (1)

The coefficients are computed using

Am =
2
λ

∫ λ

0

f(x) cos mkx dx (2)

Bm =
2
λ

∫ λ

0

f(x) sinmkx dx (3)

The Discrete Fourier Transform of an N-element, one-dimensional function is given by

F (u) =
1
N

N−1∑
x=0

f(x) exp[−j2πux/N ] (4)

and is the method most often used numerically.

II. THE FFT

The FFT is one of the crowning achievements of computational mathematics. It allows a fast, accurate method of
extracting the dominant frequencies of a time series. Classically, the Fourier Transform of a signal signal=SIN(2 *
!PI * f0) will give a delta function in frequency space. The delta function exists at ± f0 with an amplitude of 0.5
at each peak, and the spectrum is symmetric. The FFT method will be implemented as follows in the IDL language.

• The time series will be represented by the variable signal with corresponding time vector time

• The number of points in the time series will be denoted by nt

• The time step will be defined as dt=time(1)-time(0)

• The Digitizing Frequency is df=1.0/dt

• The Nyquist Frequency is Nyquist=df/2.0

• The signal must have a zero mean, accomplished by signal=signal-MEAN(signal)

• The signal will be windowed using a simple triangular window, which is like [0,. . . ,1,. . . ,0], to eliminate edge
effects
window=[FINDGEN(nt/2)/(nt/2),REVERSE(FINDGEN(nt/2-1))/(nt/2)]

Then signal=signal*window
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Now the FFT is taken, and this is where is gets tricky. The function result=FFT(X) in IDL returns a complex
valued array, with a real and complex part. The real part has a peak of 0.25 at ± f0, while the imaginary part is
antisymmetric. So, one quarter of the power is in each part. One quarter in the real part at + f0, one quarter in the
real part at − f0,. . . etc. Because the function is symmetric we only take the positive half. Then we take the absolute
value ABS(Z)≡SQRT(Z*CONJ(Z)). This function is multiplied by 4.0 to achieve power of 1.0 at the peak.

It is of note that we are defining the amount of power at one frequency for a pure, infinite sinusoid with amplitude
on [-1,1] to be 1.0. If the sinusoid amplitude is different, then the power will reflect that.

Also, because we are not working with an infinite time series, the FFT cannot resolve frequencies lower than 1/∆t
where ∆t is the length of the time sample, and these values are thrown out.

III. ABSOLUTE VALUE FFT CODE

The code for this function is included:

FUNCTION MY ABS FFT,signal,time,FVALS=fvals,FATMAXP=fatmaxp
; Returns the absolute value of the FFT in kHz
; called by
; fspec=MY ABS FFT(sig,nt,dt,FVALS=fvals,FATMAXP=fmax)
nt=N ELEMENTS(time)
delT=time(nt-1)-time(0)
dt=time(1)-time(0)
lowFreqCutoff=1.0/delT/1000.0 ;in kHz
window=[FINDGEN(nt/2)/(nt/2),REVERSE(FINDGEN(nt/2-1))/(nt/2)]
fvalues=FINDGEN(nt/2)/(dt*nt)/1000.0 ;in kHz
fsignal=signal-MEAN(signal)
fsignal=signal*window
ff=FFT(fsignal,-1)
ff=ABS(ff) ;Comment out this line for MY FULL FFT
ff2=4.0*ff(0:nt/2-1)
ff2(WHERE(fvalues LE lowFreqCutoff))=0.0*ff2(WHERE(fvalues LE lowFreqCutoff))
fatmaxp=fvalues(WHERE(ff2 eq MAX(ff2))) ;in kHz
return,ff2
END

IV. ENSEMBLE AVERAGES

When one is interested in the statistics of a fluctuating quantity over a long period of time, it can be advantageous
to examine ‘Ensemble Averages’ of functions like the FFT. An ensemble average of a quantity A (usually denoted as
< A >) can be expressed as

< A >=
1
M

M∑
i=1

A (5)

where A can be a function of one or more variables. An ensemble can be calculated ‘in place’, or ’after the fact’. I
prefer the latter, because it allows contour plots on the function in time.

For example, the ensemble spectrum of a time series can be performed two equally valid ways. Say we have a time
series on [0,1] seconds. We could perform 100 FFTs, add them up, and divide by 100. This would be accomplished
by the following code.

delT=0.01
tStart=0.0
tStop=delT

FOR i=0,99 DO BEGIN

frameTime=time(WHERE(time GE tStart AND time LE tStop))
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frameSignal=signal(WHERE(time GE tStart AND time LE tStop))

frameFFT=MY ABS FFT(frameSignal,frameTime,FVALS=fvals)

IF i EQ 0 THEN ensembleFFT=frameFFT/100.0 ELSE ensembleFFT+=frameFFT/100.0

tStart=tStart+delT
tStop=tStop+delT
ENDFOR
END

This is a completely valid method, but I prefer to store each FFT in a rectangular grid rather than adding to a
vector. Storing each FFT and contour plotting creates a spectrograph, or TFD (time-frequency domain plot), where
the power is the z-axis of the contour. The spectrograph (Fig.1) will reveal any frequency-sweeping, which is a time
evolution of the frequency where the power of the signal resides. One example of such a phenomena is a Hot Electron
Interchange burst in a dipole confined plasma. The mode creates quickly rising tones, which the ensemble spectrum
would ‘smear out’ when adding.

Once the TFD grid has been formed, the ensemble spectrum can be formed by taking the mean of each FFT at the
specific frequency, i.e., integrating in time. Furthermore, the grid can be refined by taking small steps in time, less
than the time window delT, and create quite beautiful plots.
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FIG. 1: A time-frequency domain (TFD) contour plot, consisting of individual FFTs placed in a rectangular array.

V. PHASE INFORMATION

When one wishes to extract phase information when comparing two signals, the full FFT is needed. The phase
between two signals is defined as

α = tan−1(=(Z)/<(Z)) (6)

Numerically, Z is a function, and not a simple ordered pair of values. Therefore α is a function in frequency
space. In order to extract the phase difference between two signals, we need a way to pick out which values of ϕ(f)
correspond to a high correlation in the frequency domain. This is accomplished as follows.

Two signals, signal1 and signal2 are needed to extract phase information. We also need the full FFT spectra for
each signal, which means taking out the ABS( ) in the FFT code. This retains the real and imaginary part of each
spectrum.

Next the cross power frequency spectrum (Z) is formed by specCorr=spectrum1*CONJ(spectrum2).
The phase function is formed by phaseFun=ATAN(IMAGINARY(specCorr),REAL PART(specCorr))
The code for extracting the phase information from two signals is given below
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VI. PHASE CODE

FUNCTION GET PHASE,signal1,signal2,time,$
FVALS=fvals,$
ABSSPECCORR=AbsPowerCorr,$
PHVAL=phaseValue,$
PHASEVALX=phaseValueX,$
PHASEVALAMP=phaseValueAmp,$

dt=time(1)-time(0)
delT=time(N ELEMENTS(time)-1)-time(0)
lowFreqCutoff=1.0/delT/1000.0 ;In kHz

spec1=MY FULL FFT(signal1,time,FVALS=fvals)
spec2=MY FULL FFT(signal2,time,FVALS=fvals)

spec1(WHERE(fvals LE lowFreqCutoff))=0.0*spec1(WHERE(fvals LE lowFreqCutoff))
spec2(WHERE(fvals LE lowFreqCutoff))=0.0*spec2(WHERE(fvals LE lowFreqCutoff))

powerCorr=spec1*CONJ(spec2)
AbsPowerCorr=ABS(powerCorr)
phaseFun=-ATAN(IMAGINARY(powerCorr),REAL PART(powerCorr))
gdIndex=WHERE( AbsPowerCorr EQ MAX(AbsPowerCorr) )
phaseValue=phaseFun(gdIndex)
phaseValueX=fvals(gdIndex)
phaseValueAmp=MAX(powerCorr)

RETURN,phaseFun
END

The code will return the value of the phase between the signals, in radians, to the value phaseValue, occurring at
frequency phaseValueX, named so for plotting purposes, with cross power amplitude phaseValueAmp. These are the
three variables to track phase shifts in time, and record their relative strengths.

In practice, when signals are not pure sinusoids, an average needs to be taken of the phase values near where the
power correlation is a maximum. Therefore, one could grab the phase values where powerCorr is grater than 90% of
it’s maximum value, and use and average of those values to define the phase.

If the process being analyzed is quasi-stationary, then new, more sophisticated tools need to be used to extract the
phase shift and other relevant statistics in time. We define the following notation and statistical quantities:

Fast Fourier Transform S(t) →FFT→ Ŝ(ω) (7)

Power Correlation Ĉ1,2(ω) ≡ Ŝ1Ŝ
∗
2 (8)

Cross Phase α1,2 ≡ tan−1

(
=[Ĉ1,2(ω)]
<[Ĉ1,2(ω)]

)
(9)

Power Weighted Ensemble Cross Phase < α1,2 >≡
∫

α1,2(ω)|Ĉ1,2(ω)|dω∫
|Ĉ1,2(ω)|

(10)

Power Weighted Ensemble Cross Coherence < γ2
1,2 >≡

< |Ĉ2
1,2| >

< |Ŝ1| >< |Ŝ2| >
(11)

Bispectrum B̂(ω1, ω2) = Ŝ(ω1)Ŝ(ω2)Ŝ∗(ω1 + ω2) (12)

Bicoherence b̂2(ω1, ω2) =
< |B(ω1, ω2)|2 >

| < Ŝ(ω1)Ŝ∗(ω1) > |2| < Ŝ(ω1, ω2) > |2
(13)
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VII. CORRELATION ANALYSIS

The Correlation Function is a function of one signal (auto) or between signals (cross) which allows extraction of
lag time and correlation time. The method integrates one signal (the refrence signal), and another signal shifted
in time. The ‘shift’ parameter is defined as τ , and is the variable which the function C1,2 is plotted against. The
equation is

C1,2 =
∫

S1(t)S2(t− τ)dt (14)

and can be normalized, bounding C1,2(τ) ∈ [−1, 1], via

C1,2 =
∫

S1(t)S2(t− τ)dt√∫
S2

1(t)dt
∫

S2
2(t)dt

(15)

Here we have defined the ‘Cross Correlation Function’, where the ‘Auto Correlation Function’ is defined as C1,1(τ).
Consider the following illustrative example: If one wished to measure the velocity of a light source moving in a

straight line, and one only had two photodiodes, how would one accomplish the task?
Placing the photodiodes in the path of the light source and recording the light intensity in time, together with

correlation analysis could yield the velocity. Two photodiodes, placed ∆x apart, and two light intensity traces with
lag time τLag from cross correlation, gives the velocity of the source as ∆x/τLag. The sample principle can be applied
to any sensors separated in space.

The correlation time τCorr defines the time over which the correlation function decays in amplitude by half, and
can determine the ‘lifetime’ of an ‘event’ in an oscillating time series.

The method for creating the correlation function is defined as follows:

• Two signals are read into the routine, using signal1 as the ‘refrence’ signal.

• The middle half (from nt/2 to 3*nt/2) of signal1 times the middle half of signal2 is integrated over the time
window which signal1 exists. This is the correlation coefficient.

• Now, signal2 is shifted forward and backward in time, by the digitizing time step, and integrated at each shift.

• It is of note that this is not a circular shifting routine, because we cannot assume that the function is circular
or strictly periodic. We are ‘padding’ the function with more real data, hence the oversampling by ×2

• Because only the middle half of the signal sample is used, the time width must be much longer than the
characteristic frequency of fluctuations (1/delT> few × characteristic frequency). If the fluctuations reside
near 1kHz, than a time window of 5-10ms would be sufficient not to ‘miss’ the event.

As an example of auto and cross correlation, consider the oscillatory, enveloped functions

S1(t) = cos[2πf1t] exp[−50(t− 0.5)2]
S2(t) = cos[2πf1(t− 0.05)] exp[−50((t− 0.05)− 0.5)2] (16)

where S2(t) has been shifted forward in time 0.05 time units, i.e. there is a lag time between S1 and S2. If S1 is taken
as reference, then S2 lags S1, and τLag > 0. This is a very important definition, because it can determine direction
of propagation. The signals (Fig.2) and correlation functions (Fig.3) are plotted below.

The correlation analysis, just as the Fourier Spectrum, can be extended to examine fluctuations in time. Included
in Fig.4 are plots of the auto and cross correlation for two probes spatially separated measuring floating potential in
a plasma device. The correlation functions are for the same instability bursts seen in the above TFD Fig.1.

∗ Electronic mail: bag2107@columbia.edu; http://www.ap.columbia.edu/ctx/ctx.html; We gratefully acknowledge the sup-
port of your mom.
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FIG. 2: S1(t) and S2(t): S1 is overplotted against S2 in red. The green bars determine the middle half of the time window. It
can be seen from the plot that S2 lags S1, i.e. occurs at a later time.
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FIG. 3: Correlation Functions: The autocorrelation lag time τA
Lag ≡ 0, whereas the cross correlation lag time τC

Lag ≈ +0.05, as

expected. Furthermore, τC
Lag < τA

Corr, τ
C
Corr, which guarantees we are looking at the same ‘event’.
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FIG. 4: Auto (left) and Cross (right) Correlation functions in time. It can be seen in the second figure that there exists a
peak(red) which evolves in time, but maintains a positive τC

Corr for the duration of the instability burst. The second probe was
located ‘downstream’ of the first probe, and the positive lag time confirms the direction of ‘propagation’.
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