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where we have introduced the symbols ξ and h for the internal energy and the
enthalpy, respectively. Assuming that the surface integral vanishes at infinity, the
above equation simplifies to

∂

∂t

∫

V

(
1
2
ρmU 2 + ξ+

B2

2µ0

)
d3x = 0, (6.4.18)

which can be written in the form of an energy conservation equation

K +W = constant, (6.4.19)

where

K =
∫

V

1
2
ρmU 2 d3x (6.4.20)

is the kinetic energy, and

W =
∫

V

(
P

γ− 1
+

B2

2µ0

)
d3x (6.4.21)

is the potential energy. These energy conservation equations will be useful later
when we consider the stability of various MHD systems.

6.5 Magnetohydrodynamic Waves

Next we consider the propagation of small-amplitude waves in a homogeneous
ideal (infinitely conducting) MHD fluid. The relevant equations are Faraday’s law
(6.1.30), the mass continuity equation (6.1.31), the momentum equation (6.1.32),
and an equation of state, which we take to be the adiabatic equation of state
(6.1.34). Since waves usually occur on time-scales sufficiently short that no heat
flows, the adiabatic equation of state is expected to be a good approximation. The
equations are linearized in the usual way by assuming that U,ρm,B, and P are
the sum of a spatially uniform time-independent zero-order (0) quantity plus a
small first-order (1) perturbation, i.e., U = U1, ρm = ρm0 + ρm1, B = B0 +B1, and
P = P0 +P1. The linearized first-order equations of motion then become

∂ρm1

∂t
+ ρm0∇ ·U1 = 0, (6.5.1)

ρm0
∂U1

∂t
=

1
µ0

(∇×B1)×B0 −∇P1, (6.5.2)

∂B1

∂t
=∇× (U1 ×B0), (6.5.3)

8C D 9 D8 4 4 45 8 4 D- 64 5C 7:8 C: 6 C8 8C D D- 7 C: , , ,
/ 4787 9C D- 64 5C 7:8 C: 6 C8 2846 8CD . 8:8 1 5C4C  . 5 4 3 8CD 04 4 - - D 5 86 8 .4 5C 7:8 . C8

206 Magnetohydrodynamics

where we have introduced the symbols ξ and h for the internal energy and the
enthalpy, respectively. Assuming that the surface integral vanishes at infinity, the
above equation simplifies to

∂

∂t

∫

V

(
1
2
ρmU 2 + ξ+

B2

2µ0

)
d3x = 0, (6.4.18)

which can be written in the form of an energy conservation equation

K +W = constant, (6.4.19)

where

K =
∫

V

1
2
ρmU 2 d3x (6.4.20)

is the kinetic energy, and

W =
∫

V

(
P

γ− 1
+

B2

2µ0

)
d3x (6.4.21)

is the potential energy. These energy conservation equations will be useful later
when we consider the stability of various MHD systems.

6.5 Magnetohydrodynamic Waves

Next we consider the propagation of small-amplitude waves in a homogeneous
ideal (infinitely conducting) MHD fluid. The relevant equations are Faraday’s law
(6.1.30), the mass continuity equation (6.1.31), the momentum equation (6.1.32),
and an equation of state, which we take to be the adiabatic equation of state
(6.1.34). Since waves usually occur on time-scales sufficiently short that no heat
flows, the adiabatic equation of state is expected to be a good approximation. The
equations are linearized in the usual way by assuming that U,ρm,B, and P are
the sum of a spatially uniform time-independent zero-order (0) quantity plus a
small first-order (1) perturbation, i.e., U = U1, ρm = ρm0 + ρm1, B = B0 +B1, and
P = P0 +P1. The linearized first-order equations of motion then become

∂ρm1

∂t
+ ρm0∇ ·U1 = 0, (6.5.1)

ρm0
∂U1

∂t
=

1
µ0

(∇×B1)×B0 −∇P1, (6.5.2)

∂B1

∂t
=∇× (U1 ×B0), (6.5.3)

8C D 9 D8 4 4 45 8 4 D- 64 5C 7:8 C: 6 C8 8C D D- 7 C: , , ,
/ 4787 9C D- 64 5C 7:8 C: 6 C8 2846 8CD . 8:8 1 5C4C  . 5 4 3 8CD 04 4 - - D 5 86 8 .4 5C 7:8 . C8

6.5 Magnetohydrodynamic Waves 207

and

P1 = γ

(
P0

ρm0

)
ρm1. (6.5.4)

In the above equation, it is convenient to introduce the speed of sound VS, which
is defined by the equation

V 2
S = γ

P0

ρm0
=
γκ T0

m
, (6.5.5)

where T0 is the zero-order temperature, and m is the average molecular mass.
Next, we Fourier-analyze the above equations by making the usual operator
substitutions, ∇→ ik and ∂/∂t → −iω. At this point we also drop the subscript
1 on the first-order terms, which can be distinguished from the zero-order terms by
the subscript 0 on the zero-order terms. The resulting equations are

−iωρ̃m + iρm0k · Ũ = 0, (6.5.6)

−iωρm0Ũ =
i
µ0

(k× B̃)×B0 − ikP̃, (6.5.7)

−iωB̃ = ik× (Ũ×B0), (6.5.8)

P̃ = V 2
S ρ̃m. (6.5.9)

Eliminating ρ̃m from the above equation by using Eq. (6.5.6), we obtain the
following equation for the first-order pressure perturbation:

P̃ = V 2
S
ρm0

ω
k · Ũ. (6.5.10)

Using the above equation, the pressure P̃ can be eliminated from Eq. (6.5.7),
which, after multiplying by iω/ρm0, becomes

ω2Ũ =
−ω
µ0ρm0

(k× B̃)×B0 +V 2
Sk(k · Ũ) . (6.5.11)

Finally, B̃ can be eliminated from the above equation by using Eq. (6.5.8), which
gives the homogeneous equation for the fluid velocity:

ω2Ũ =
1
µ0ρm0

{k× (k× [Ũ×B0])}×B0 +V 2
S k(k · Ũ). (6.5.12)

With no loss in generality, we can assume that B0 = (0,0,B0) and k =
(k sinθ,0,k cosθ), as shown in Figure 6.6. Working out the cross-products in
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k B0
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θ

Figure 6.6 The coordinate system used to analyze MHD wave propagation.

Eq. (6.5.12), dividing by k2, and factoring out B2
0 , we obtain the equation

(ω
k

)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= V 2

A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy cos2 θ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+V 2

S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x sin2 θ+ Ũz sinθcosθ

0
Ũ x sinθcosθ+ Ũz cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.5.13)

where the quantity

VA = B0/
√
µ0ρm0 (6.5.14)

has units of velocity and is called the Alfvén velocity, after Alfvén (1942).
Substituting υp = ω/k for the phase velocity, the homogeneous equation (6.5.13)
can be written in matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ2
p−V 2

S sin2 θ−V 2
A 0 −V 2

S sinθcosθ

0 υ2
p −V 2

A cos2 θ 0

−V 2
S sinθcosθ 0 υ2

p−V 2
S cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (6.5.15)

This equation has non-trivial solutions for Ũ if and only if the determinant of the
matrix is zero, which gives the dispersion relation

Ð(k,ω) =
(
υ2

p−V 2
A cos2 θ

) [
υ4

p−υ2
p

(
V 2

A +V 2
S

)
+V 2

AV 2
S cos2 θ

]
= 0. (6.5.16)

It can be shown that the dispersion relation has three roots:

υ2
p =

1
2

(
V 2

A +V 2
S

)
− 1

2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
, (6.5.17)

υ2
p = V 2

A cos2 θ, (6.5.18)

υ2
p =

1
2

(
V 2

A +V 2
S

)
+

1
2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
. (6.5.19)

The roots, Eqs. (6.5.17), (6.5.18), and (6.5.19), are called the slow magnetosonic
mode, the transverse Alfvén mode (also called the shear Alfvén mode), and the fast
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Ũ x

Ũy
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V 2

A−V 2
S

)2
+ 4V 2

AV 2
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]1/2
, (6.5.17)
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p = V 2

A cos2 θ, (6.5.18)
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1
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A +V 2
S

)
+

1
2
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V 2

A−V 2
S

)2
+ 4V 2

AV 2
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]1/2
. (6.5.19)

The roots, Eqs. (6.5.17), (6.5.18), and (6.5.19), are called the slow magnetosonic
mode, the transverse Alfvén mode (also called the shear Alfvén mode), and the fast
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Eq. (6.5.12), dividing by k2, and factoring out B2
0 , we obtain the equation
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k

)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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Ũy

Ũz

⎤
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A
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S
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Ũ x sin2 θ+ Ũz sinθcosθ

0
Ũ x sinθcosθ+ Ũz cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.5.13)

where the quantity

VA = B0/
√
µ0ρm0 (6.5.14)

has units of velocity and is called the Alfvén velocity, after Alfvén (1942).
Substituting υp = ω/k for the phase velocity, the homogeneous equation (6.5.13)
can be written in matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ2
p−V 2

S sin2 θ−V 2
A 0 −V 2

S sinθcosθ

0 υ2
p −V 2

A cos2 θ 0

−V 2
S sinθcosθ 0 υ2

p−V 2
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (6.5.15)

This equation has non-trivial solutions for Ũ if and only if the determinant of the
matrix is zero, which gives the dispersion relation
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(
υ2

p−V 2
A cos2 θ

) [
υ4

p−υ2
p

(
V 2

A +V 2
S

)
+V 2

AV 2
S cos2 θ

]
= 0. (6.5.16)

It can be shown that the dispersion relation has three roots:
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)
− 1
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[(
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)2
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AV 2
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]1/2
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A cos2 θ, (6.5.18)

υ2
p =

1
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S

)
+
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2

[(
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A−V 2
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)2
+ 4V 2

AV 2
S sin2 θ

]1/2
. (6.5.19)

The roots, Eqs. (6.5.17), (6.5.18), and (6.5.19), are called the slow magnetosonic
mode, the transverse Alfvén mode (also called the shear Alfvén mode), and the fast
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where we have introduced the symbols ξ and h for the internal energy and the
enthalpy, respectively. Assuming that the surface integral vanishes at infinity, the
above equation simplifies to

∂

∂t

∫

V

(
1
2
ρmU 2 + ξ+

B2

2µ0

)
d3x = 0, (6.4.18)

which can be written in the form of an energy conservation equation

K +W = constant, (6.4.19)

where

K =
∫

V

1
2
ρmU 2 d3x (6.4.20)

is the kinetic energy, and

W =
∫

V

(
P

γ− 1
+

B2

2µ0

)
d3x (6.4.21)

is the potential energy. These energy conservation equations will be useful later
when we consider the stability of various MHD systems.

6.5 Magnetohydrodynamic Waves

Next we consider the propagation of small-amplitude waves in a homogeneous
ideal (infinitely conducting) MHD fluid. The relevant equations are Faraday’s law
(6.1.30), the mass continuity equation (6.1.31), the momentum equation (6.1.32),
and an equation of state, which we take to be the adiabatic equation of state
(6.1.34). Since waves usually occur on time-scales sufficiently short that no heat
flows, the adiabatic equation of state is expected to be a good approximation. The
equations are linearized in the usual way by assuming that U,ρm,B, and P are
the sum of a spatially uniform time-independent zero-order (0) quantity plus a
small first-order (1) perturbation, i.e., U = U1, ρm = ρm0 + ρm1, B = B0 +B1, and
P = P0 +P1. The linearized first-order equations of motion then become

∂ρm1

∂t
+ ρm0∇ ·U1 = 0, (6.5.1)

ρm0
∂U1

∂t
=

1
µ0

(∇×B1)×B0 −∇P1, (6.5.2)

∂B1

∂t
=∇× (U1 ×B0), (6.5.3)
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Eq. (6.5.12), dividing by k2, and factoring out B2
0 , we obtain the equation

(ω
k

)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= V 2

A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy cos2 θ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+V 2

S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x sin2 θ+ Ũz sinθcosθ

0
Ũ x sinθcosθ+ Ũz cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.5.13)

where the quantity

VA = B0/
√
µ0ρm0 (6.5.14)

has units of velocity and is called the Alfvén velocity, after Alfvén (1942).
Substituting υp = ω/k for the phase velocity, the homogeneous equation (6.5.13)
can be written in matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ2
p−V 2

S sin2 θ−V 2
A 0 −V 2

S sinθcosθ

0 υ2
p −V 2

A cos2 θ 0

−V 2
S sinθcosθ 0 υ2

p−V 2
S cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (6.5.15)

This equation has non-trivial solutions for Ũ if and only if the determinant of the
matrix is zero, which gives the dispersion relation

Ð(k,ω) =
(
υ2

p−V 2
A cos2 θ

) [
υ4

p−υ2
p

(
V 2

A +V 2
S

)
+V 2

AV 2
S cos2 θ

]
= 0. (6.5.16)

It can be shown that the dispersion relation has three roots:

υ2
p =

1
2

(
V 2

A +V 2
S

)
− 1

2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
, (6.5.17)

υ2
p = V 2

A cos2 θ, (6.5.18)

υ2
p =

1
2

(
V 2

A +V 2
S

)
+

1
2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
. (6.5.19)

The roots, Eqs. (6.5.17), (6.5.18), and (6.5.19), are called the slow magnetosonic
mode, the transverse Alfvén mode (also called the shear Alfvén mode), and the fast
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Eq. (6.5.12), dividing by k2, and factoring out B2
0 , we obtain the equation

(ω
k

)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= V 2

A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy cos2 θ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+V 2

S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x sin2 θ+ Ũz sinθcosθ

0
Ũ x sinθcosθ+ Ũz cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.5.13)

where the quantity

VA = B0/
√
µ0ρm0 (6.5.14)

has units of velocity and is called the Alfvén velocity, after Alfvén (1942).
Substituting υp = ω/k for the phase velocity, the homogeneous equation (6.5.13)
can be written in matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ2
p−V 2

S sin2 θ−V 2
A 0 −V 2

S sinθcosθ

0 υ2
p −V 2

A cos2 θ 0

−V 2
S sinθcosθ 0 υ2

p−V 2
S cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (6.5.15)

This equation has non-trivial solutions for Ũ if and only if the determinant of the
matrix is zero, which gives the dispersion relation

Ð(k,ω) =
(
υ2

p−V 2
A cos2 θ

) [
υ4

p−υ2
p

(
V 2

A +V 2
S

)
+V 2

AV 2
S cos2 θ

]
= 0. (6.5.16)

It can be shown that the dispersion relation has three roots:

υ2
p =

1
2

(
V 2

A +V 2
S

)
− 1

2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
, (6.5.17)

υ2
p = V 2

A cos2 θ, (6.5.18)

υ2
p =

1
2

(
V 2

A +V 2
S

)
+

1
2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
. (6.5.19)

The roots, Eqs. (6.5.17), (6.5.18), and (6.5.19), are called the slow magnetosonic
mode, the transverse Alfvén mode (also called the shear Alfvén mode), and the fast
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Eq. (6.5.12), dividing by k2, and factoring out B2
0 , we obtain the equation

(ω
k

)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= V 2

A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy cos2 θ

0
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+V 2

S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x sin2 θ+ Ũz sinθcosθ

0
Ũ x sinθcosθ+ Ũz cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.5.13)

where the quantity

VA = B0/
√
µ0ρm0 (6.5.14)

has units of velocity and is called the Alfvén velocity, after Alfvén (1942).
Substituting υp = ω/k for the phase velocity, the homogeneous equation (6.5.13)
can be written in matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ2
p−V 2

S sin2 θ−V 2
A 0 −V 2

S sinθcosθ

0 υ2
p −V 2

A cos2 θ 0

−V 2
S sinθcosθ 0 υ2

p−V 2
S cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (6.5.15)

This equation has non-trivial solutions for Ũ if and only if the determinant of the
matrix is zero, which gives the dispersion relation

Ð(k,ω) =
(
υ2

p−V 2
A cos2 θ

) [
υ4

p−υ2
p

(
V 2

A +V 2
S

)
+V 2

AV 2
S cos2 θ

]
= 0. (6.5.16)

It can be shown that the dispersion relation has three roots:

υ2
p =

1
2

(
V 2

A +V 2
S

)
− 1

2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
, (6.5.17)

υ2
p = V 2

A cos2 θ, (6.5.18)

υ2
p =

1
2

(
V 2

A +V 2
S

)
+

1
2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
. (6.5.19)

The roots, Eqs. (6.5.17), (6.5.18), and (6.5.19), are called the slow magnetosonic
mode, the transverse Alfvén mode (also called the shear Alfvén mode), and the fast
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where we have introduced the symbols ξ and h for the internal energy and the
enthalpy, respectively. Assuming that the surface integral vanishes at infinity, the
above equation simplifies to

∂

∂t

∫

V

(
1
2
ρmU 2 + ξ+

B2

2µ0

)
d3x = 0, (6.4.18)

which can be written in the form of an energy conservation equation

K +W = constant, (6.4.19)

where

K =
∫

V

1
2
ρmU 2 d3x (6.4.20)

is the kinetic energy, and

W =
∫

V

(
P

γ− 1
+

B2

2µ0

)
d3x (6.4.21)

is the potential energy. These energy conservation equations will be useful later
when we consider the stability of various MHD systems.

6.5 Magnetohydrodynamic Waves

Next we consider the propagation of small-amplitude waves in a homogeneous
ideal (infinitely conducting) MHD fluid. The relevant equations are Faraday’s law
(6.1.30), the mass continuity equation (6.1.31), the momentum equation (6.1.32),
and an equation of state, which we take to be the adiabatic equation of state
(6.1.34). Since waves usually occur on time-scales sufficiently short that no heat
flows, the adiabatic equation of state is expected to be a good approximation. The
equations are linearized in the usual way by assuming that U,ρm,B, and P are
the sum of a spatially uniform time-independent zero-order (0) quantity plus a
small first-order (1) perturbation, i.e., U = U1, ρm = ρm0 + ρm1, B = B0 +B1, and
P = P0 +P1. The linearized first-order equations of motion then become

∂ρm1

∂t
+ ρm0∇ ·U1 = 0, (6.5.1)

ρm0
∂U1

∂t
=

1
µ0

(∇×B1)×B0 −∇P1, (6.5.2)

∂B1

∂t
=∇× (U1 ×B0), (6.5.3)
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Eq. (6.5.12), dividing by k2, and factoring out B2
0 , we obtain the equation

(ω
k

)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= V 2

A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy cos2 θ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+V 2

S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x sin2 θ+ Ũz sinθcosθ

0
Ũ x sinθcosθ+ Ũz cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.5.13)

where the quantity

VA = B0/
√
µ0ρm0 (6.5.14)

has units of velocity and is called the Alfvén velocity, after Alfvén (1942).
Substituting υp = ω/k for the phase velocity, the homogeneous equation (6.5.13)
can be written in matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ2
p−V 2

S sin2 θ−V 2
A 0 −V 2

S sinθcosθ

0 υ2
p −V 2

A cos2 θ 0

−V 2
S sinθcosθ 0 υ2

p−V 2
S cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (6.5.15)

This equation has non-trivial solutions for Ũ if and only if the determinant of the
matrix is zero, which gives the dispersion relation

Ð(k,ω) =
(
υ2

p−V 2
A cos2 θ

) [
υ4

p−υ2
p

(
V 2

A +V 2
S

)
+V 2

AV 2
S cos2 θ

]
= 0. (6.5.16)

It can be shown that the dispersion relation has three roots:

υ2
p =

1
2

(
V 2

A +V 2
S

)
− 1

2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
, (6.5.17)

υ2
p = V 2

A cos2 θ, (6.5.18)

υ2
p =

1
2

(
V 2

A +V 2
S

)
+

1
2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
. (6.5.19)

The roots, Eqs. (6.5.17), (6.5.18), and (6.5.19), are called the slow magnetosonic
mode, the transverse Alfvén mode (also called the shear Alfvén mode), and the fast
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where we have introduced the symbols ξ and h for the internal energy and the
enthalpy, respectively. Assuming that the surface integral vanishes at infinity, the
above equation simplifies to

∂

∂t

∫

V

(
1
2
ρmU 2 + ξ+

B2

2µ0

)
d3x = 0, (6.4.18)

which can be written in the form of an energy conservation equation

K +W = constant, (6.4.19)

where

K =
∫

V

1
2
ρmU 2 d3x (6.4.20)

is the kinetic energy, and

W =
∫

V

(
P

γ− 1
+

B2

2µ0

)
d3x (6.4.21)

is the potential energy. These energy conservation equations will be useful later
when we consider the stability of various MHD systems.

6.5 Magnetohydrodynamic Waves

Next we consider the propagation of small-amplitude waves in a homogeneous
ideal (infinitely conducting) MHD fluid. The relevant equations are Faraday’s law
(6.1.30), the mass continuity equation (6.1.31), the momentum equation (6.1.32),
and an equation of state, which we take to be the adiabatic equation of state
(6.1.34). Since waves usually occur on time-scales sufficiently short that no heat
flows, the adiabatic equation of state is expected to be a good approximation. The
equations are linearized in the usual way by assuming that U,ρm,B, and P are
the sum of a spatially uniform time-independent zero-order (0) quantity plus a
small first-order (1) perturbation, i.e., U = U1, ρm = ρm0 + ρm1, B = B0 +B1, and
P = P0 +P1. The linearized first-order equations of motion then become

∂ρm1

∂t
+ ρm0∇ ·U1 = 0, (6.5.1)

ρm0
∂U1

∂t
=

1
µ0

(∇×B1)×B0 −∇P1, (6.5.2)

∂B1

∂t
=∇× (U1 ×B0), (6.5.3)
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component disappears completely is also a special case that only occurs at
θ = 0.)

For θ = π/2 the homogeneous equation is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ2
p − (V 2

A +V 2
S) 0

0 υ2
p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0. (6.5.27)

In this case, the dispersion relation has only one non-trivial root, υ2
p = V 2

A + V 2
S.

The eigenvectors corresponding to this root are Ũ = (Ũx,0,0), B̃ = (0,0, B̃z), Ẽ =
(0, Ẽy,0), and ρ̃m = ρm0(Ũx/υp). These eigenvectors share features of both an
electromagnetic wave and a sound wave.

For intermediate wave normal angles, the two magnetosonic modes have both
longitudinal (i.e., sound wave) and transverse (i.e., electromagnetic) components.
Further insight into the nature of the magnetosonic waves at intermediate wave
normal angles can be gained by considering the limit V 2

S ≪ V 2
A. Under this

condition it can be shown that the magnetosonic part of the dispersion relation
is approximately

Ð(k,ω) = (υ2
p −V 2

A) (υ2
p −V 2

S cos2 θ) = 0. (6.5.28)

As shown in Figure 6.10, the isotropic root υ2
p =V 2

A has eigenvectors corresponding
to a nearly transverse electromagnetic wave with only a small longitudinal (i.e.,
sound wave) component, and the anisotropic root υ2

p = V 2
S cos2 θ has eigenvectors

corresponding to a sound wave with only a small electromagnetic component
(Ẽ≃0 and B̃≃0).

Since the plasma pressure is much smaller than the magnetic field pressure when
V 2

S ≪ V 2
A, the fluid motion for the slow magnetosonic wave is constrained to be

nearly parallel to the static magnetic field. The group velocity and wave energy
flow are also nearly parallel to the static magnetic field. The particle motions and

k k
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Figure 6.10 The eigenvectors for the fast and slow magnetosonic modes.
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Figure 6.8 The eigenvectors for the transverse Alfvén mode.

along the static magnetic field, independent of the wave normal angle. From the
dispersion relation for this mode (6.5.18), it can be shown that the group velocity
is given by

vg =∇kω = VAẑ, (6.5.24)

which is parallel to the static magnetic field, consistent with the fact that the
Poynting flux is parallel to the magnetic field.

The propagation of the transverse Alfvén wave has an interesting analogy with
the propagation of waves on a taut string. From the magnetic pressure tensor we
have seen that the magnetic pressure can be thought of as an isotropic pressure
plus a tension force per unit area, B2/µ0, along the magnetic field. It is well known
that the velocity of propagation of a wave along a taut string is given by

υp =
√

T/λm, (6.5.25)

where T is the tension and λm is the mass per unit length. If we substitute
T = (B2/µ0)∆A for the tension force and λm = ρm∆A for the mass per unit length
(where ∆A is the cross-sectional area), the velocity of propagation is given by
υp = B/

√
µ0ρm, which is just the Alfvén velocity. Thus, the propagation of the

transverse (or shear) Alfvén wave can be thought of as being analogous to
the propagation of a wave on a taut string with the magnetic field providing the
tension and the MHD fluid providing the mass per unit length. This analogy also
suggests that waves on different magnetic field lines propagate independently, as
though they were on separate strings. Thus, even though the wave vector makes
a substantial angle to the magnetic field, as illustrated in Figure 6.9, the wave
energy is transported along the magnetic field lines, just as though the wave were
propagating on a system of taut strings.
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where we have introduced the symbols ξ and h for the internal energy and the
enthalpy, respectively. Assuming that the surface integral vanishes at infinity, the
above equation simplifies to

∂

∂t

∫

V

(
1
2
ρmU 2 + ξ+

B2

2µ0

)
d3x = 0, (6.4.18)

which can be written in the form of an energy conservation equation

K +W = constant, (6.4.19)

where

K =
∫

V

1
2
ρmU 2 d3x (6.4.20)

is the kinetic energy, and

W =
∫

V

(
P

γ− 1
+

B2

2µ0

)
d3x (6.4.21)

is the potential energy. These energy conservation equations will be useful later
when we consider the stability of various MHD systems.

6.5 Magnetohydrodynamic Waves

Next we consider the propagation of small-amplitude waves in a homogeneous
ideal (infinitely conducting) MHD fluid. The relevant equations are Faraday’s law
(6.1.30), the mass continuity equation (6.1.31), the momentum equation (6.1.32),
and an equation of state, which we take to be the adiabatic equation of state
(6.1.34). Since waves usually occur on time-scales sufficiently short that no heat
flows, the adiabatic equation of state is expected to be a good approximation. The
equations are linearized in the usual way by assuming that U,ρm,B, and P are
the sum of a spatially uniform time-independent zero-order (0) quantity plus a
small first-order (1) perturbation, i.e., U = U1, ρm = ρm0 + ρm1, B = B0 +B1, and
P = P0 +P1. The linearized first-order equations of motion then become

∂ρm1

∂t
+ ρm0∇ ·U1 = 0, (6.5.1)

ρm0
∂U1

∂t
=

1
µ0

(∇×B1)×B0 −∇P1, (6.5.2)

∂B1

∂t
=∇× (U1 ×B0), (6.5.3)
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Figure 6.7 Plots of the phase velocities for the three MHD modes as a function
of the wave normal angle for two cases, VA > VS and VA < VS.

magnetosonic mode, respectively. In the low-temperature, low-frequency limit, it
can be shown that for θ = 0 the transverse Alfvén mode corresponds to the n2 =

L mode, and the fast magnetosonic mode corresponds to the n2 = R mode (see
Section 4.4.1). The slow magnetosonic mode disappears completely in the limit of
zero temperature (i.e., VS = 0). The phase velocities of the three modes are shown
as a function of the wave normal angle in Figure 6.7. Two cases, VA > VS and
VA < VS, must be considered. For VA > VS, the transverse Alfvén mode connects
with the fast magnetosonic mode at θ = 0, whereas for VA < VS the transverse
Alfvén mode connects with the slow magnetosonic mode at θ = 0.

Next, we discuss the eigenvectors associated with each of these modes.

6.5.1 The Transverse (or Shear) Alfvén Mode

It can be verified that the root for the transverse Alfvén mode, given by
Eq. (6.5.18), has eigenvectors

Ũ = (0, Ũy,0), (6.5.20)

B̃ = (0, B̃y,0), B̃y = −B0(Ũy/VA) Sign(cosθ), (6.5.21)

Ẽ = (Ẽx,0,0), Ẽx = −B0Ũy, (6.5.22)

ρ̃m = 0. (6.5.23)

These eigenvectors are shown in Figure 6.8.
As can be seen, the fluid motions for this mode are entirely transverse, with no

compressional component (i.e., k · Ũ = 0). This is the reason the mode is called
the transverse Alfvén mode. The propagation velocity is controlled entirely by the
Alfvén speed. Since there is no compression, the fluid pressure and temperature
play no role in the propagation of this mode. From the direction of the electric and
magnetic field, it is easy to see that the Poynting flux, S = (1/µ0) E×B, is parallel
to the static magnetic field B0. The electromagnetic energy flow is then exactly
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Figure 6.6 The coordinate system used to analyze MHD wave propagation.

Eq. (6.5.12), dividing by k2, and factoring out B2
0 , we obtain the equation

(ω
k

)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= V 2

A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy cos2 θ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+V 2

S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x sin2 θ+ Ũz sinθcosθ

0
Ũ x sinθcosθ+ Ũz cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.5.13)

where the quantity

VA = B0/
√
µ0ρm0 (6.5.14)

has units of velocity and is called the Alfvén velocity, after Alfvén (1942).
Substituting υp = ω/k for the phase velocity, the homogeneous equation (6.5.13)
can be written in matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ2
p−V 2

S sin2 θ−V 2
A 0 −V 2

S sinθcosθ

0 υ2
p −V 2

A cos2 θ 0

−V 2
S sinθcosθ 0 υ2

p−V 2
S cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (6.5.15)

This equation has non-trivial solutions for Ũ if and only if the determinant of the
matrix is zero, which gives the dispersion relation

Ð(k,ω) =
(
υ2

p−V 2
A cos2 θ

) [
υ4

p−υ2
p

(
V 2

A +V 2
S

)
+V 2

AV 2
S cos2 θ

]
= 0. (6.5.16)

It can be shown that the dispersion relation has three roots:

υ2
p =

1
2

(
V 2

A +V 2
S

)
− 1

2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
, (6.5.17)

υ2
p = V 2

A cos2 θ, (6.5.18)

υ2
p =

1
2

(
V 2

A +V 2
S

)
+

1
2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
. (6.5.19)

The roots, Eqs. (6.5.17), (6.5.18), and (6.5.19), are called the slow magnetosonic
mode, the transverse Alfvén mode (also called the shear Alfvén mode), and the fast
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currents are present. An example of a series of current-driven electrostatic ion
cyclotron waves detected in a laboratory Q machine is shown in Figure 10.18.

10.3 Electromagnetic Waves

Since an electromagnetic wave has both an electric field and a magnetic field, it
is not possible to describe the electric field by an electrostatic potential, as was
done in the previous section. Instead, the full set of Maxwell’s equations must
be used. The basic procedure used to analyze electromagnetic wave propagation
in a dielectric medium has been described in Chapter 4, and is based on finding
non-trivial solutions to the homogeneous equation

k× (k× Ẽ)+
ω2

c2

↔
K · Ẽ = 0, (10.3.1)

where Ẽ is the electric field of the wave and
↔
K is the dielectric tensor. Non-trivial

solutions of this system of linear equations are possible only when the determinant
of the matrix in the homogeneous equation (10.3.1) is zero, which gives the
dispersion relation. Before we can proceed further, we must compute the dielectric
tensor. The procedure used to compute the dielectric tensor consists of first solving
the linearized Vlasov equation for the first-order distribution function, f̃s, for some
given electric field, Ẽ, and then using f̃s to compute the current density

J̃ =
∑

s

es

∫ ∞

−∞
v f̃s d3υ. (10.3.2)

By expressing the current density in the form J̃ =
↔
σ · Ẽ, the conductivity tensor

↔
σ

can be identified. Once the conductivity tensor is known, the dielectric tensor can

be computed using
↔
K =

↔
1 −↔σ/(iωϵ0); see Eq. (4.2.6).

10.3.1 The Dispersion Relation

Following the above procedure, the first step in deriving the dispersion relation is
to solve the linearized Vlasov equation (10.1.13) for the first-order distribution, f̃s,
for an arbitrary wave electric field, Ẽ. The procedure is basically the same as for
the electrostatic waves described in the previous section. However, the solution is
more complicated because of the v× (k× Ẽ) term introduced by the magnetic wave
field. This term can be expanded using the BAC minus CAB rule, which gives

v× (k× Ẽ) = k(v · Ẽ)− (v ·k)Ẽ. (10.3.3)
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The homogeneous equation for the electric field is obtained by substituting the
dielectric tensor elements into Eq. (10.3.1), which becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kxx −
c2k2

ω2 cos2 θ Kxy Kxz +
c2k2

ω2 sinθcosθ

Kyx Kyy −
c2k2

ω2 Kyz

Kzx +
c2k2

ω2 sinθcosθ Kzy Kzz −
c2k2

ω2 sinθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẽx

Ẽy

Ẽz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0. (10.3.28)

The dispersion relation is then given by the determinant of the matrix. Although
the determinant can, in principle, be evaluated, the resulting equation is too
complicated to be usefully displayed, since each term consists of an infinite
series of integrals involving Bessel functions. To evaluate the dispersion relation
it is usually necessary to use either numerical methods or highly specialized
assumptions. However, one special case that can be analyzed analytically is when
the wave vector is parallel to the magnetic field (θ = 0). Since parallel propagation
illustrates many of the important features that occur for arbitrary wave normal
angles, we will analyze this case in some detail.

10.3.2 Parallel Propagation

From inspection of the homogeneous equation (10.3.28), it is evident that the
dispersion relation simplifies considerably if the wave vector is parallel to the
magnetic field (i.e., θ = 0). There are three such simplifications. First, it is easy
to see that the terms involving sin θ are all zero. Second, since βs = k⊥υ⊥/ωcs = 0
for parallel propagation, it is also easy to see that the Kxz and Kzx terms are zero,
since all of the Bessel function terms, nJ 2

n (βs), go to zero as βs→ 0. Third, it turns
out that the Kyz and Kzy terms are also zero. That these terms are zero can be seen
by noting that, as βs goes to zero, all of the Jn(βs)J ′n(βs) terms go to zero (note that
J0(βs) ≃ 1 and J ′0(βs) = −J1(βs) ≃ −βs/2, as βs→ 0). The homogeneous equation
(10.3.28) then simplifies to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kxx −
c2k2

ω2 Kxy 0

Kyx Kyy −
c2k2

ω2 0

0 0 Kzz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẽx

Ẽy

Ẽz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0. (10.3.29)
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and noting that

∫ 2π

0
ei(m− n)φ dφ = 2πδm,n and

∫ 2π

0
ei(m− n± 1)φ dφ = 2πδm,n±1, (10.3.17)

where δm,n is the Kronecker delta.
The Kronecker deltas have the effect of collapsing the double sum over m and

n into a single sum over n, very similar to the procedure used to derive the Harris
dispersion relation equation (10.2.20). The conductivity tensor is then found to be

↔
σ = i

∑

s

e2
sns

msωcs

∑

n

∫ ∞

−∞

∫ ∞

0

2πυ⊥dυ⊥dυ∥
αs + n

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

As
n2υ⊥
β2

s
J 2

n iAs
nυ⊥
βs

JnJ ′n Bs
nυ⊥
βs

J 2
n

−iAs
nυ⊥
βs

JnJ ′n Asυ⊥J ′nJ ′n −iBsυ⊥JnJ ′n

As
nυ∥
βs

J 2
n iAsυ∥JnJ ′n Bsυ∥J 2

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10.3.18)

where the Bessel function identities given in Eq. (10.3.13) have been used.
Having computed the conductivity tensor, it is then easy to compute the

dielectric tensor, which is given by
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and noting that

∫ 2π

0
ei(m− n)φ dφ = 2πδm,n and

∫ 2π

0
ei(m− n± 1)φ dφ = 2πδm,n±1, (10.3.17)

where δm,n is the Kronecker delta.
The Kronecker deltas have the effect of collapsing the double sum over m and

n into a single sum over n, very similar to the procedure used to derive the Harris
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Abstract. Kinetic Alfven waves have been invoked in association with auroral currents and 
particle acceleration since the pioneering work of Hasegawa [1976]. However, to date, no 
work has considered the dispersion relation including the full kinetic effects for both electrons 
and ions. Results from such a calculation are presented, with emphasis on the role of Landau 
damping in dissipating Alfven waves which propagate from the warm plasma of the outer 
magnetosphere to the cold plasma present in the ionosphere. It is found that the Landau 
damping is not important when the perpendicular wavelength is larger than the ion acoustic 
gyroradius and the electron inertial length. In addition, ion gyroradius effects lead to a reduc-
tion in the Landau damping by raising the parallel phase velocity of the wave above the elec-
tron thermal speed in the short perpendicular wavelength regime. These results indicate that 
low- frequency Alfven waves with perpendicular wavelengths greater than the order of 1 0 km 
when mapped to the ionosphere will not be significantly affected by Landau damping. While 
these results, based on the local dispersion relation, are strictly valid only for short parallel 
wavelength Alfven waves, they do give an indication of the importance of Landau damping for 
longer parallel wavelength waves such as field line resonances. 

Introduction 
The kinetic Alfven wave was introduced into space plasma 

physics by Hasegawa [1976] (see also Hasegawa and Chen 
[1975]) to include the effects of finite electron pressure and 
finite ion gyroradius on the ideal l\1HD shear Alfven wave, 
m = Hasegawa [1976] suggested that mode conversion 
from a swface wave on the plasma sheet boundary could ex-
cite the kinetic Alfven wave and lead to particle acceleration 
on auroral field lines. By assuming a regime where 
m. I m, « p « 1, Hasegawa [1976] used Boltzmann elec-
trons and included the first-order finite ion gyroradius correc-
tion to find the dispersion relation: 

(1) 

where the term involving the 314 comes from an expansion of 
Bessel functions and the term involving T. I T, represents the 
effect of electron pressure. Note that in the present paper, the 
plasma p will be defined as p = 41tn:Z:, I B2 

. Heating of elec-
trons, as well as other effects of the wave-particle interaction 
between electrons and the kinetic Alfven wave, were consid-
ered by Hasegawa and Mirna [1978). 

Shortly thereafter, Goertz and Boswell [1979] realized that 
just above the auroral ionosphere, the plasma was cold 
enough so that p « m, I m; and that in this regime, electron 
inertia rather than pressure or finite ion gyroradius was the 
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dominant effect. In this situation, the dispersion relation for 
the shear Alfven wave takes on the form 

2 ev; 
(J) = 2 2 2 l+k.Lc ImP' 

(2) 

This type of wave has sometimes been called the inertial 
Alfven wave, to distinguish it from the warm plasma result 
given by equation (1). Comparing equations (1) and (2), it 
can be seen that the effect of electron pressure and ion gyro-
radius is to increase the parallel phase velocity of the wave, 
while the electron inertial effect decreases the parallel phase 
velocity. It was shown by Lysak and Carlson [1981] that for 
typical parameters along auroral field lines, the inertial limit 
was appropriate below about 4-5 R8 , while the kinetic limit 
was more appropriate above that altitude. Both of these limits 
of the Alfven wave dispersion relation were discussed in de-
tail by Hasegawa and Uberoi [1982) and Goertz [1984]. 

The inei1ial limit of the Alfven wave has been considered 
in connection with small-scale auroral currents. A model of 
the evolution of auroral currents in the inertial regime was de-
veloped by Lysak and Dum [1983] (see also Lysak [1990]). 
Seyler [1988] performed three-dimensional nonlinear simula-
tions of Alfven waves in the inertial regime and showed that a 
tearing mode could exist which was destabilized by the iner-
tial parallel electric field. Particle acceleration due to this 
paTallel electric field was considered by Temerin eta!. [1986], 
who included the finite frequency effect for waves close to the 
oxygen gyrofrequency, and more recently by Thompson and 
Lysak [1995], who showed that electron conics could be pro-
duced by waves near 1Hz. Hui and Seyler [1992] performed 
hybrid simulations and showed that large amplitude, short 
perpendicular wavelength Alfven waves could accelerate 
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electrons to velocities greater than the Alfven speed. ObseJVa-
tional support for the existence of small perpendicular wave-
length Alfven waves has been obtained from soWlding rockets 
[Boehm et a!., 1990] and the Freja satellite [Wahlund et al. , 
1994; Louarn et al., 1994; Boehm et at., 199.5]. The reso-
nance of the kinetic Alfven wave in the h.igher-13 regime is an 
essential ingredient of the thermal catastrophe model of sub-
storms [Goertz and Smith, 1 989]. 

Recently, attention has turned to the role of small perpen-
dicular wavelenbrth in the evolution of field line resonant 
Alfven waves. Wei eta!. [1994] considered the inertial effect 
in a model of field line resonances and foWld that inertia can 
limit the width of the field line resonance and produce a dis-
persive wave train on one side of the resonance. These results 
have been extended by Streltsov and Lotko [1995], who con-
sidered a model in which the equatorial part of the field line 
was in the kinetic regime, while the lower-altitude parts of the 
field line were inertially dominated. This model is based on a 
two-fluid description of the plasma, in which the Alfven dis-
persion relation takes the form 

(3) 

where we have introduced the ion acoustic gyroradius 
P.: = c; I o; = T, I m,o; (here 0, is the ion gyrofrequency and 
c, is the ion acoustic speed). It is worth noting that 
p; = J3( m, I m, )c" I ffi and so in the l3 » m, I m, regime, the 
denominator of equation (3) may be set to Wlity when 
kips - 1, while in the opposite limit, the numerator is Wlity 
when k J.. c I ffi - 1. Thus equation (3) reduces to equation ( 1) 
in the kinetic regime (if the ion temperature is taken to be 
zero) and to equation (2) in the inertial regime. It is also in-
teresting to note that for very short perpendicular wave-
lengths, equation (3) describes an electrostatic wave with a 
parallel phase velocity equal to the electron thermal speed. It 
may be noted that the ion gyforadius correction in equation 
(2) can be included in a fluid model by a careful consideration 
of the ion gyroviscous stress tensor (V. A. Marchenko et al., 
An MHD model of kinetic Alfven waves with finite ion gyro-
radius, submitted to Journal of Geophysical Research, 1995). 
In this situation, equation (3) is replaced by 

(4) 

which is consistent with equation (1) when the electron iner-
tial effect is neglected. 

Streltsov and Lotko [1995] pointed out that the perpendicu-
lar group velocity has opposite signs in the two 13 regimes, 
since the frequency increases with increasing k J.. in the kinetic 
regime while it decreases in the inertial regime, as can be seen 
from differentiating equation (3). Thus a wave propagating 
between the two 13 regimes will undergo a figure eight type of 
motion which may propagate in either direction, depending on 
the relative size of the kinetic and inertial regions. For the 
special case in which the perpendicular propagation in the two 
regimes is equal, the wave closes back on itself, and large 
amplitude field line resonances can occur. 

This fluid model does not take Landau damping into ac-
coWlt and does not describe the dispersion relation accurately 
in the transition region between the two regimes. Thus it is 
the purpose of this paper to examine the full kinetic Alfven 
wave dispersion relation and to attempt to evaluate the impor-
tance of the kinetic effects on the propagation of the wave. 
The next section will evaluate the full kinetic Alfven wave 
dispersion relation in a homogeneous plasma, while the fol-
lowing section will attempt to use these results to assess the 
importance of the full kinetic effects on the propagation of 
Alfven waves between these regions. 

Kinetic Alfven Wave Dispersion Relation 
The starting point for any linear kinetic theory of electro-

magnetic waves in a plasma begins with finding the determi-
nant of the 3x3 matrix equation which arises from the coupled 
Vlasov-Maxwell system. For low-frequency (ffi «: 0;) 
waves in an isotropic plasma in which kip; « 1 and 

« 1, the solution to this equation yields the three MHD 
wave modes, which in a low-P plasma can be WI·itten as the 
fast mode, (J) 

2 = e V} + k 1 c; , the shear Alfven mode, 
w = and the slow, or ion acoustic mode, w = k1c, . When 
large perpendicular wave number is assumed, the fast mode 
decouples from the others, since the fast mode frequency 
ffi r,, > k = ki p,n,W. I cJ , which is greater than the ion 
gyrofrequency when k.J..p, >cs/ V,1 =(3 1

'
2 [Hruegawa and 

Uberoi, 1982]. The kinetic Alfven wave is then the result of 
the coupling between the shear Alfven mode and the ion 
acoustic mode. Considering only the regime J3 « 1 , we find 
to first order that the ion response is primarily perpendicular 
to the backgroWld magnetic field, while the electron response 
is predominantly paralleL Then the dispersion relation for the 
kinetic Alfven wave is given by the detenninant of the 2x2 
matrix 

2 

In this dispersion relation, it has been assumed that 
c2 I v; » 1 and that kr A2

De « 1' so that the Wlit terms in the 
diagonal elements can be dropped. Here n;

1 
= k

11
c I ffi , 

ni=k.J..c / w,. 
a, = (2Z: I m,r, T'0 is the modified Bessel function 

= and Z is the usual plasma dispersion func-
tion [Fried and Conte, 1961]. Definitions of other symbols in 
equation (5) and a detailed derivation of this equation are 
given in the appendix. 

The solution to this dispersion relation can be written as 

Note that for small ion gyroradius, we have 
1- + and so we have 

"" 1 (7) 
1- 4 ' 

Also note that for hot electrons, S « 1, and for small electron 
gyroradius, 1; thus, the denominator of the second 
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term of equation (6) is approximately unity. Therefore, in the 
hot electron and small ion gyroradius limits, we have r 1+ki(P; (8) 

in agreement with equation ( 1 ). 
For cold electrons, the electron gyroradius can again be ig-

nored, and we can write 1 + SZ(s) -1121;2 = -(k
11
v. I w )2

, 

where we define = T. I m. =a; I 2. Thus, we can write (6) 
as 

(9) 

which becomes 

The real part of the dispersion relation for the kinetic 
Alfven wave has been plotted in Figure 1 as contours of the 
parallel phase velocity w I as a function of the normal-
ized perpendicular wave number k l. c I w and a parameter 

. 2 proportional to the electron pressure v. I VA = pm; I m • . Note 

(10) 

that the value p = m, I m, denotes the boundary between the 
kinetic and the inertial regimes. Figure la shows the results 
based on the fluid theory given by equation (3) with zero ion 
temperature, while the other three panels of the figure show 
results from solutions of the full dispersion relation given by 
(6) for ion-to-electron temperature ratios of 0, 1, and 10. It 
can be seen from these figures that the basic topology of the 
fluid dispersion relation is preserved by the kinetic dispersion 
relation, with the boundary between kinetic and inertial type 
of dispersion occurring approximately at the point where 
v; (1 + 3 7; I 4 T.) Vj. At this point, the numerator and de-
nominator in the fluid dispersion relation given by equation 
( 4) are equal, and the phase velocity is exactly the Alfven 
speed. Note that the phase velocity increases more strongly 
with increased perpendicular wave munber for higher ion 
temperature, as would be expected from equation (l ). This 
result is consistent with the fluid model with finite ion gyro-
radius corrections as given by equation (4). 

This result reduces to equation (2) when the ion gyroradius is 
taken to be zero, in which case the first factor is 1. Thus the 
usual hot and cold limits follow from equation (6). 

{ 
c:o.. 
Nil 
< 

10 

1 

0.1 

0.01 
0.1 

Figure 2 shows the Landau damping rates, normalized to 
the wave frequency, for the three kinetic cases considered (of 
course, the damping in the fluid model is zero). It is interest-
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Figure 1. Contours of the phase velocity Re ro I kfA for (a) the fluid model; and for the kinetic model with 
the ion-to-electron temperature ratio of (b) 0; (c) 1; and (d) 10. The contour interval is 0.1 for values less than 
3. 0 and is 1. 0 for larger values. Note that lines of constant k 1.P 3 slope downward at 45° in this figure, and so 
it can be seen that the phase velocity depends on k l.Ps when the electron thermal speed is greater than the 
Alfven speed and on k l. c I ro pe when it is smaller. 
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the photon energy, and AI the bandwidth. In many cases, S/ 
N is limited not by the available laser power but by satura-
tion of the detectors by the local oscillator power 110 = Y 10 , 

i.e., constraining Eq. (10) by the condition Io<y-2Isat. 
Thus, in practice, sensitivity limits for if; scale like y- I; thus 
the interest ofthe contrast enhancement achieved by reduc-
ing the transmittance of the conjugate area. 

II. OPTICAL ARRANGEMENT ON THE TCA 
TOKAMAK 

The optical system shown in Fig. 3 can be divided into 
three parts: the beam production optics mounted on the rear 
of the vertical optical table (PL), the beam transport optics 
consisting of flat relay mirrors (MR) and composite NaCI 
vacuum windows!! (F), and the imaging and detection op-
tics on the front side of PL. The beam from an 8-W CO2 
waveguide laser (A = 10.6 fL) is expanded to a width of 23 
em ( 1/ e of intensity), then relayed to the plasma and imag-
ing optics (Fig. 4) by six mirrors MR (45X7 em in size) 
mounted three by three at right angles to each other in two 
rigid boxes. The upper box is mounted to the tokamak sup-
port structure, whereas the lower one stands on the floor. 
The boxes and the optical plate are independently vibration 
isolated with simple rubber or foam pads. Thanks to the 
corner-cube arrangement of the relay mirrors, the system is 
insensitive to rigid body movements of any of these three 
subunits. This ascertains stable focusing onto the phase mir-
ror (MP) by the paraboloid P (f = 190.5 cm) even in the 
presence of strong mechanical perturbations during plasma 
discharges. 

Phase mirrors were made by coating flat steel mirrors 
with a 1.4-fL-thick Al layer, while thin brass ribbons of suit-
able width (12G--1030 fL for a spot size of about 120 fL) were 
stretched across them as masks. At an incidence of 20· they 
produce the desired 1I /2 phase shift between undiffracted 
light reflected from the bottom of the groove and diffracted 

FlO. 3. Optical arrangement on the TCA tokamak. PL: optical table; P: 
parabolic mirror if = 190.5 cm); M: flat mirror; MP: phase mirror; MR: 
relay mirror; F: NaCI vacuum window; CV: vacuum chamber; BT: toroidal 
field coil; GA: major axis; object plane at plasma midplane; image 
plane (imaging optics simplified). 

1546 Rev. Sci.lnstrum., Vol. 59, No.8, August 1988 

FIG. 4. Imaging optics. MP: phase mirror; MI: imaging mirror if = 27 ern); 
M: mirror; };': first image plane; L,: field lens if = 35 cm); L.: second 
imaging lens if = 10 cm); H: second image and detection plane; DW: de-
tector and Dewar; PA: preamplifiers (>< 30, gain = 4(00); MIX: eight-
channel mixers for synchronous detection. 

light reflected from the coating. The conjugate area is orient-
ed to allow detection of perturbations having a wavenumber 
component perpendicular to the toroidal magnetic field 
(k 1 > kc ). To further reduce the absorption of the direct 
beam, the mirrors were overcoated with a layer of gold. Re-
cently phase mirrors produced on ZnSe BaF2 substrates 
have been introduced to enhance the contrast (y = 0.16 
and 0.04, respectively; Fig. 5). 

The configuration and magnification of the imaging op-
tics can be chosen very flexibly according to the specific 
tasks and the detectors available. In most of the earlier work 
single-element HgCdTe detectors of sizes 0.25, 0.5, and 1 
mm were used with magnifications in the range 1/5 to 1 and 
a resolution of the order of 1 mm. 5•6 ,10 The full potential of 
the diagnostic is, however, only exhausted with a detector 
array with tens of elements covering the available aperture. 
Figure 4 shows the arrangement of imaging optics used 
for Alfven wave studies using a linear array of 30 photocon-
ductive HgCdTe elements (250 X250 fL, 50-fL spacing). The 
overall magnification is 1119, for a full coverage of the outer 

FIG. 5. Phase mirror. UD: undiffracted light component; D: diffracted light 
component. 

Collective scattering, Interferometry 1546 



Measurement of KAW Excitation
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FIG. 2. Examples of observed profiles of line density Auc-
tuations in the (—1,—1) and (2,0) continua.

sixth-order ordinary diff'erential equation and includes
Landau damping, transit-time magnetic pumping, cer-
tain equilibrium gradient terms, and uses the formula-
tion of Vaclavik and Appert' for the local power ab-
sorption. The profiles of plasma parameters were as for
Fig. 1(a).
Although there is a striking similarity between the

wave fields observed and predicted by kinetic theory, ex-
act matching of the two should not be expected because
(a) we have compared the line-integrated density fluc-
tuation from the experiment with the point function den-
sity from the code and (b) the details of the wave fields
depend sensitively on the profiles of plasma parameters
which are only coarsely modeled in the code. The gen-
eral features of the wave fields, however, are insensitive
to details in the plasma profiles. Absolute amplitudes for
a given power agree within a factor of 2. In the case of
(n, m) (2,0) direct excitation is poor. As a result the
KAW amplitude in Figs. 3(c) and 3(d) is not much
larger than the fast-wave amplitude from which it mode
converts. The profiles are therefore not representative of
those obtained in a tokamak where (2,0) waves are excit-

Examples of calculated density fluctuations in the
(—1,—1) and (2,0) continua. The resonance layer positions
were chosen to match those of Fig. 2. The broken lines of (c)
and (d) for the (2,0) KAW represent the remaining wave field
after subtraction of the fast-wave mode.

ed efficiently by a (2, 1) antenna structure as a result of
toroidal coupling. ' The experimental results should
therefore be compared with the wave profiles shown as
broken lines, where the fast wave has been subtracted to
obtain the (2,0) KAW component.
In conclusion, we have observed and identified the ki-

netic Alfven wave resulting from linear mode conversion
at the shear Alfven wave resonance layers. Our experi-
mental results agree with the KAW dispersion relation
and the observed wave fields are accurately modeled by
our kinetic calculations. The attenuation of the wave
amplitude is consistent with electron Landau damping.
We would like to acknowledge stimulating discussions
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We report on the first measurements of the tokamak-safety-factor profile by means of Alfven waves.
The waves were launched by use of the TCA tokamak Alfven-wave heating antennae. The associated
density oscillation profiles provided the Alfven-wave resonance layer positions which depend on the local
value of the safety factor, q. Our results show a time-averaged q profile with a Aat central region with q
close to unity.

PACS numbers: 52.55.Fa, 52.70.Kz

The use of resonant Alfven waves to measure the
safety-factor profile in a tokamak has been suggested
previously. ' These waves may be launched by an exter-
nal antenna structure, which defines the toroidal mode
number n. The poloidal mode number of the excited
wave m is not uniquely defined by the antenna because
of toroidal coupling. An Alfven resonance is excited
wherever the local Alfven velocity matches the externally
imposed wave velocity, co/k~~. In the large-aspect-ratio
cylindrical approximation, k~~ =[n+m/q(r)]R ', where
q(r) is the local safety factor and R is the major radius.
The resulting resonance condition can be written as

co'p(0) =K[n+m/q(r)]'/[p(r)/p(0)],

resonance condition is satisfied at a given radius are
known for two identical discharges, with, for example,
(n, m) =(1,1) and (2,0) excitation, the local value of q
can be obtained directly. The (2,0) resonance effectively
provides the mass-density profile. To see this, we rewrite
the resonance condition [Eq. (1)] as

co pop*(r) ee [n+m/q(r)] (3)
where po is the central mass density and p*(r) is the
mass-density profile normalized to its value at r =0. We
assume that q(r) and p*(r) do not change differently
for the (1,1) and (2,0) cases during the density rise.
This allows us to write Eq. (3) with (n, m) =(1,1) and
(2,0) and solve for the safety factor to obtain

where p(r) is the local mass density. The constant K is
given by q(r) = [2(poi/po~) '"—1] (4)

K =(8,'/poR ') (1—co'/co,';), (2)
where 8& is the static toroidal magnetic field and co„ is
the ion-cyclotron frequency.
If the driving frequency is held fixed, Eq. (1) defines a

threshold density above which a given (n, m) mode can
be resonant. Any density higher than this threshold will
move the resonance to a different radial position. The
resonance layer position can be measured by observing
the strong density oscillation which is excited in the re-
gion of the resonance layer by kinetic effects. This oscil-
lation was first described by Hasegawa and Chen, who
showed that mode conversion from the magnetosonic
wave launched by the antenna produces a radial propa-
gating wave, the kinetic Alfven wave (KAW). The ex-
istence of this wave has been experimentally confirmed
on TCA. Under typical operating conditions, where the
Alfven speed is of the order of the electron thermal
speed, the KAW is heavily electron Landau damped,
with a damping rate of the order of one rf period. Thus,
the time taken to set up, or damp the waves is much less
than the time taken for the plasma parameters to evolve.
In order to extract the q profile from one resonance

profile, we would need an accurate measurement of p(r).
However, when the central line densities for which the

where poI and p02 are the values of the central density
when the (1,1) and the (2,0) modes are resonant at a
given radius, r. The ratio of po[ and p02 can be obtained
from electron line-density measurements, provided that
the (1,1) and the (2,0) discharges have the same
effective ion mass, p(0)/n, (0). As the dominant con-
taminants, carbon, oxygen, and metallic impurities all
have A/Z = 2, as is the case for deuterium, this condi-
tion is met even in the presence of an inAux of impurities
brought about by application of the rf power.
The waves were launched in the TCA tokamak,

whose parameters are R, a =0.61, 0.18 m, 8&=0.78-
1,51 T Ip ~ 170 kA and n, ~ 1.5 x 10 m . The re-
quired mode numbers, (n, m) =(1,1) and (2,0) were
determined by the relative phasing of the antennae. The
rf power delivered to the plasma was kept to a minimal
40 kW, at 2.04 MHz. The density oscillations were
detected with a phase-contrast imaging interferometer.
A diagram of the experimental layout is shown in Fig. 1.
Figure 2 shows the radial profile of the amplitude and

phase of the line-density oscillation obtained for the
same line-averaged electron density in both the (1,1) and
(2,0) continua. Although the two continua were ob-
served to have the same threshold density, the (1,1) reso-
nance layer appears at a larger radius than the (2,0) lay-
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FIG. 4. Resonance layer positions for the (1,1) and (2,0)
modes as a function of the central line density.

ty rise. Thus, no temporal deconvolution of the measure-
ments was necessary.
The experimental accuracy of the q profile was deter-

mined by the error in po. In the case of standing waves,
the uncertainty in po was somewhat generously defined
by the interval in density over which the standing waves
were observed. In the case of propagating waves, the er-
ror bars we have adopted corresponded, again very con-
servatively, to a margin of + x/2 in the phase, although
the actual phase measurement was accurate to within a
tenth of a radian. The error bars on subsequent figures
indicate these uncertainties.
Figure 4 shows the measured positions of the reso-

nance layers for the (1,1) and (2,0) modes plotted as a
function of line density. This measurement was obtained
for a plasma current of 1~ =125 kA and a toroidal field
of 8&=1.51 T. The difference in the rate of outward
movement between the (1,1) and (2,0) resonances as the
density increased clearly illustrates the q dependence of
the radius of the (1,1) layer. Although this discharge
showed sawtooth behavior, the ensuing modulation was
not resolved in the measurements; the frequency
response of the instrumentation provided an averaging
over the sawtooth period.
Figure 5(a) shows the q profile deduced from the mea-

surements of Fig. 4. The error bars in this figure indi-
cate worst case combinations of the line-density errors
arising from the allowed phase error of ~ n/2. As the
density increase at low power was often insufhcient to
force the (2,0) resonance layer out to r/a )0.7, we have
added points at larger radii by using the Abel inverted
density profile obtained from an eight-chord far-infrared
interferometer (when available), together with the (1,1)
resonance layer profiles. These are the filled circles in
Fig. 5. The interferometer served to check that the
p*(r) profile did not change significantly over the range
of central density required to shift the resonance position
out to r/a =0.6 (i.e., about 15% above the threshold).
Slight changes to the profile observed at higher densities
only introduced a negligible error for the points beyond

0.5
r/a

(c)
1 0 0.5

r/a

FIG. S. Safety-factor profiles for (a) 8~=1.51 T, I~ =125
kA, (b) 8~=1.SI T, I~ =70 kA, (c) 8& =1.51 T, j~ =50 kA,
(d) 8, =1.16 T, I, =13& kA.

this radius. Figure 5(a) shows data taken from a
sawtooth discharge and exhibits a q profile that is Aat
from r/a =0 to r/a =0.4. This radius corresponds,
within 1 cm, to the sawtooth inversion radius obtained
from soft x-ray measurements. The Oat part of the q
profile extends to (R—Ro)/a =0.4, as seen in similar
discharges where the detector array covered the range—0.4 & (R—Ro)/a (0.4. This also suggests that
toroidal corrections would not affect the central part of
our q-profile measurements. The profile extrapolates
well to the cylindrically equivalent safety factor at the
plasma edge, calculated via the relationship qr =5
x10 a 8&/RI~, in this case qI =3.2. The qI points are
indicated by the crosses in Fig. 5.
Figures 5 (b) and 5 (c) show the q profiles for

discharges with the same toroidal field as Fig. S(a) but
with plasma currents of 70 and 50 kA, respectively.
Both these profiles also extrapolate well to the corre-
sponding values of qr, namely qI=5.7 and 7.9, respec-
tively. These profiles do not have the flat central region
shown in Fig. 5(a) and indicate a more peaked plasma
current. Figure 5(b) shows q values in the central region
slightly above unity, while 5(c) has central q values sub-
stantially above unity. Neither of these two discharges
showed any sawtooth behavior (the onset of sawteeth in
TCA corresponds to qI = 5).
Figure 5(d) shows the q profile for a discharge with a

reduced toroidal field of 8&=1.16 T and a larger plasma
current of Iz =135 kA. The reduced toroidal field, to-
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shown in Fig. 5(a) and indicate a more peaked plasma
current. Figure 5(b) shows q values in the central region
slightly above unity, while 5(c) has central q values sub-
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Superthermal energetic particles !EP" often drive shear Alfvén waves unstable in magnetically
confined plasmas. These instabilities constitute a fascinating nonlinear system where fluid and
kinetic nonlinearities can appear on an equal footing. In addition to basic science, Alfvén
instabilities are of practical importance, as the expulsion of energetic particles can damage the walls
of a confinement device. Because of rapid dispersion, shear Alfvén waves that are part of the
continuous spectrum are rarely destabilized. However, because the index of refraction is periodic in
toroidally confined plasmas, gaps appear in the continuous spectrum. At spatial locations where the
radial group velocity vanishes, weakly damped discrete modes appear in these gaps. These
eigenmodes are of two types. One type is associated with frequency crossings of counterpropagating
waves; the toroidal Alfvén eigenmode is a prominent example. The second type is associated with
an extremum of the continuous spectrum; the reversed shear Alfvén eigenmode is an example of this
type. In addition to these normal modes of the background plasma, when the energetic particle
pressure is very large, energetic particle modes that adopt the frequency of the energetic particle
population occur. Alfvén instabilities of all three types occur in every toroidal magnetic confinement
device with an intense energetic particle population. The energetic particles are most conveniently
described by their constants of motion. Resonances occur between the orbital frequencies of the
energetic particles and the wave phase velocity. If the wave resonance with the energetic particle
population occurs where the gradient with respect to a constant of motion is inverted, the particles
transfer energy to the wave, promoting instability. In a tokamak, the spatial gradient drive associated
with inversion of the toroidal canonical angular momentum P! is most important. Once a mode is
driven unstable, a wide variety of nonlinear dynamics is observed, ranging from steady modes that
gradually saturate, to bursting behavior reminiscent of relaxation oscillations, to rapid frequency
chirping. An analogy to the classic one-dimensional problem of electrostatic plasma waves explains
much of this phenomenology. EP transport can be convective, as when the wave scatters the particle
across a topological boundary into a loss cone, or diffusive, which occurs when islands overlap in
the orbital phase space. Despite a solid qualitative understanding of possible transport mechanisms,
quantitative calculations using measured mode amplitudes currently underestimate the observed
fast-ion transport. Experimentally, detailed identification of nonlinear mechanisms is in its infancy.
Beyond validation of theoretical models, the future of the field lies in the development of control
tools. These may exploit EP instabilities for beneficial purposes, such as favorably modifying the
current profile, or use modest amounts of power to govern the nonlinear dynamics in order to avoid
catastrophic bursts. © 2008 American Institute of Physics. #DOI: 10.1063/1.2838239$

I. INTRODUCTION

Alfvén waves that are driven unstable by superthermal
energetic particles !EP" are common in both natural and
laboratory plasmas. The topic is of interest from a fundamen-
tal scientific perspective and for the practical realization of
fusion energy. From a scientific perspective, the nonlinear
dynamics of Alfvén instabilities occupies an interesting re-
gime where kinetic and magnetohydrodynamic !MHD" non-
linearities can both be important. !In particle accelerators, the
former dominates while, in fluid dynamics, MHD-like non-
linearities dominate." From a practical perspective, transport
of fusion reaction products in a reactor will impact device
performance, while significant losses could be catastrophic.

Indeed, in early studies of toroidal Alfvén eigenmodes !TAE"
in tokamaks, over 50% of the beam power was lost and beam
ions expelled by TAEs ablated material from protective tiles
on the outer wall, coating optical elements with graphite.1 In
another experiment, fast ions that were accelerated by ion
cyclotron heating were transported by TAEs onto orbits that
were trapped in ripple wells produced by the toroidal field
coils; these fast ions bored a hole in a vacuum port, venting
the machine to atmosphere.2

This is not the first review paper on this topic. In 1999,
Wong reviewed experimental results;3 his paper is compre-
hensive and is the best available summary of Tokamak Fu-
sion Test Reactor !TFTR" measurements. A lengthy theoret-
ical review appeared in 1999;4 recently several less
comprehensive theoretical reviews have also appeared.5–7 A
comprehensive review of fast-ion data in tokamaks through

a"
Paper XR1 1, Bull. Am. Phys. Soc. 52, 349 !2007".

b"Invited speaker.
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1993 appears in Ref. 8, but the material on Alfvén instabili-
ties is dated. A more recent but less exhaustive overview of
energetic ion effects in tokamaks was published in 2004.9

Another general resource on fast-ion behavior is the ITER
Physics Basis.10,11 Key issues in burning plasmas are high-
lighted in Ref. 12. For a clear exposition of the theoretical
fundamentals, the best available document is the first four
chapters of Pinches’ thesis.13 For the theory of fast-ion trans-
port, White’s textbook14 is a useful resource.

The goal of this paper is to provide a conceptual over-
view of the field. As much as possible, topics are explained
in general physics language at a level accessible to an unini-
tiated graduate student. Citations are selective, with clarity
rather than priority as the primary criterion. The phenom-
enon of Alfvén eigenmodes is discussed first !Sec. II", fol-
lowed by a discussion of EP orbits, wave-particle resonance,
and energy transfer !Sec. III". Section IV introduces the dis-
tinction between normal modes and energetic particle modes
!EPM". Next, nonlinear dynamics are considered !Sec. V".
The final section surveys the field’s frontier: control tools for
EP-driven instabilities.

II. ALFVÉN GAP MODES

Shear Alfvén waves are transverse low frequency elec-
tromagnetic waves that propagate along the magnetic field B.
When the wave frequency ! is small compared to the ion
cyclotron frequency "i and when kinetic effects are unim-
portant, the dispersion relation in a uniform field is simply

! = k#vA, !1"

where k# is the wave vector in the direction of the magnetic
field and

vA = B #$$0 % nimi !2"

is the Alfvén speed. Here, %nimi is the mass density of the
plasma. Through quasineutrality, in plasmas dominated by
species of the same charge-to-mass ratio Zi /Ai, the mass den-
sity is linearly proportional to the electron density ne, so vA

%B /$ne. The transverse polarization of shear Alfvén waves
implies that the parallel components of the electric and mag-
netic fields Ẽ# and B̃# are much smaller than the transverse
components Ẽ! and B̃!, i.e., Ẽ# & Ẽ! and B̃# & B̃!. The
simple dispersion relation &Eq. !1"' implies that the group
velocity !! /!k equals the phase velocity ! /k#b̂, so low fre-
quency shear Alfvén waves in uniform plasma are disper-
sionless. !Here b̂ represents a unit vector in the direction of
the magnetic field." Physically, shear Alfvén waves are
analogous to transverse waves on a plucked string, with the
tension !%B2" being supplied by the magnetic field and the
mass density being supplied by the ions.

When excited by drawing an axial current to a disk, the
observed properties of shear Alfvén waves in a straight cyl-
inder agree well with this simple description !with kinetic
effects taken into account".15 The uniform field is in the axial
direction ẑ, the wave electric field is in the radial direction r̂,
and the wave magnetic field is in the azimuthal direction '̂.
The situation changes if there is an azimuthal component to

the ambient magnetic field configuration, however. Now the
azimuthal component of the parallel wavelength must be pe-
riodic. Similarly, if there is a periodicity constraint in the
axial direction, as there is in the toroidal counterpart of a
cylinder, the wavelength must also be periodic. The corre-
sponding integer mode numbers are generally represented by
m in the azimuthal !poloidal" direction and by n in the axial
!toroidal" direction. If the field line rotates azimuthally 1 /q
times in the axial periodicity length 2(R, these periodicity
constraints require that k# = !n−mq" /R, where q is the famil-
iar safety factor used in tokamak research. The safety factor
is usually a function of radius, implying that, in contrast to
the uniform field case, the dispersion relation &Eq. !1"'is a
function of radius in a sheared magnetic field. Waves that
satisfy this dispersion relation are part of the Alfvén
continuum.

It is difficult to excite instabilities in the Alfvén con-
tinuum. Consider a hypothetical wave packet of finite radial
extent &Fig. 1!b"'. Waves at different radii have different ve-
locities &Fig. 1!a"', so the pulse rapidly disperses. The asso-
ciated damping rate ) is proportional to the gradient of the
phase velocity, )%d /dr!k#vA". Usually, energetic particles
cannot deliver enough energy to the wave to overcome this
continuum damping.

There are gaps in the continuous spectrum, however, and
the most easily excited modes reside in these frequency gaps.
The existence of frequency gaps is a generic wave phenom-
enon observed in countless physical systems. Familiar ex-
amples include the electron band gap in conductors and

FIG. 1. !Color online" !a" Dispersion relation for an m=4, n=4 wave in a
cylindrical plasma. The phase velocity is a strong function of radial position.
!b" A hypothetical disturbance launched in the highlighted region. The pulse
will rapidly disperse and shear.
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FIG. 1. !Color online" !a" Dispersion relation for an m=4, n=4 wave in a
cylindrical plasma. The phase velocity is a strong function of radial position.
!b" A hypothetical disturbance launched in the highlighted region. The pulse
will rapidly disperse and shear.

055501-2 W. W. Heidbrink Phys. Plasmas 15, 055501 "2008#

Downloaded 17 Aug 2009 to 128.200.44.79. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp

1993 appears in Ref. 8, but the material on Alfvén instabili-
ties is dated. A more recent but less exhaustive overview of
energetic ion effects in tokamaks was published in 2004.9

Another general resource on fast-ion behavior is the ITER
Physics Basis.10,11 Key issues in burning plasmas are high-
lighted in Ref. 12. For a clear exposition of the theoretical
fundamentals, the best available document is the first four
chapters of Pinches’ thesis.13 For the theory of fast-ion trans-
port, White’s textbook14 is a useful resource.

The goal of this paper is to provide a conceptual over-
view of the field. As much as possible, topics are explained
in general physics language at a level accessible to an unini-
tiated graduate student. Citations are selective, with clarity
rather than priority as the primary criterion. The phenom-
enon of Alfvén eigenmodes is discussed first !Sec. II", fol-
lowed by a discussion of EP orbits, wave-particle resonance,
and energy transfer !Sec. III". Section IV introduces the dis-
tinction between normal modes and energetic particle modes
!EPM". Next, nonlinear dynamics are considered !Sec. V".
The final section surveys the field’s frontier: control tools for
EP-driven instabilities.

II. ALFVÉN GAP MODES

Shear Alfvén waves are transverse low frequency elec-
tromagnetic waves that propagate along the magnetic field B.
When the wave frequency ! is small compared to the ion
cyclotron frequency "i and when kinetic effects are unim-
portant, the dispersion relation in a uniform field is simply

! = k#vA, !1"

where k# is the wave vector in the direction of the magnetic
field and

vA = B #$$0 % nimi !2"

is the Alfvén speed. Here, %nimi is the mass density of the
plasma. Through quasineutrality, in plasmas dominated by
species of the same charge-to-mass ratio Zi /Ai, the mass den-
sity is linearly proportional to the electron density ne, so vA

%B /$ne. The transverse polarization of shear Alfvén waves
implies that the parallel components of the electric and mag-
netic fields Ẽ# and B̃# are much smaller than the transverse
components Ẽ! and B̃!, i.e., Ẽ# & Ẽ! and B̃# & B̃!. The
simple dispersion relation &Eq. !1"' implies that the group
velocity !! /!k equals the phase velocity ! /k#b̂, so low fre-
quency shear Alfvén waves in uniform plasma are disper-
sionless. !Here b̂ represents a unit vector in the direction of
the magnetic field." Physically, shear Alfvén waves are
analogous to transverse waves on a plucked string, with the
tension !%B2" being supplied by the magnetic field and the
mass density being supplied by the ions.

When excited by drawing an axial current to a disk, the
observed properties of shear Alfvén waves in a straight cyl-
inder agree well with this simple description !with kinetic
effects taken into account".15 The uniform field is in the axial
direction ẑ, the wave electric field is in the radial direction r̂,
and the wave magnetic field is in the azimuthal direction '̂.
The situation changes if there is an azimuthal component to

the ambient magnetic field configuration, however. Now the
azimuthal component of the parallel wavelength must be pe-
riodic. Similarly, if there is a periodicity constraint in the
axial direction, as there is in the toroidal counterpart of a
cylinder, the wavelength must also be periodic. The corre-
sponding integer mode numbers are generally represented by
m in the azimuthal !poloidal" direction and by n in the axial
!toroidal" direction. If the field line rotates azimuthally 1 /q
times in the axial periodicity length 2(R, these periodicity
constraints require that k# = !n−mq" /R, where q is the famil-
iar safety factor used in tokamak research. The safety factor
is usually a function of radius, implying that, in contrast to
the uniform field case, the dispersion relation &Eq. !1"'is a
function of radius in a sheared magnetic field. Waves that
satisfy this dispersion relation are part of the Alfvén
continuum.

It is difficult to excite instabilities in the Alfvén con-
tinuum. Consider a hypothetical wave packet of finite radial
extent &Fig. 1!b"'. Waves at different radii have different ve-
locities &Fig. 1!a"', so the pulse rapidly disperses. The asso-
ciated damping rate ) is proportional to the gradient of the
phase velocity, )%d /dr!k#vA". Usually, energetic particles
cannot deliver enough energy to the wave to overcome this
continuum damping.

There are gaps in the continuous spectrum, however, and
the most easily excited modes reside in these frequency gaps.
The existence of frequency gaps is a generic wave phenom-
enon observed in countless physical systems. Familiar ex-
amples include the electron band gap in conductors and

FIG. 1. !Color online" !a" Dispersion relation for an m=4, n=4 wave in a
cylindrical plasma. The phase velocity is a strong function of radial position.
!b" A hypothetical disturbance launched in the highlighted region. The pulse
will rapidly disperse and shear.
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1993 appears in Ref. 8, but the material on Alfvén instabili-
ties is dated. A more recent but less exhaustive overview of
energetic ion effects in tokamaks was published in 2004.9
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lighted in Ref. 12. For a clear exposition of the theoretical
fundamentals, the best available document is the first four
chapters of Pinches’ thesis.13 For the theory of fast-ion trans-
port, White’s textbook14 is a useful resource.
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view of the field. As much as possible, topics are explained
in general physics language at a level accessible to an unini-
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rather than priority as the primary criterion. The phenom-
enon of Alfvén eigenmodes is discussed first !Sec. II", fol-
lowed by a discussion of EP orbits, wave-particle resonance,
and energy transfer !Sec. III". Section IV introduces the dis-
tinction between normal modes and energetic particle modes
!EPM". Next, nonlinear dynamics are considered !Sec. V".
The final section surveys the field’s frontier: control tools for
EP-driven instabilities.

II. ALFVÉN GAP MODES

Shear Alfvén waves are transverse low frequency elec-
tromagnetic waves that propagate along the magnetic field B.
When the wave frequency ! is small compared to the ion
cyclotron frequency "i and when kinetic effects are unim-
portant, the dispersion relation in a uniform field is simply

! = k#vA, !1"

where k# is the wave vector in the direction of the magnetic
field and

vA = B #$$0 % nimi !2"

is the Alfvén speed. Here, %nimi is the mass density of the
plasma. Through quasineutrality, in plasmas dominated by
species of the same charge-to-mass ratio Zi /Ai, the mass den-
sity is linearly proportional to the electron density ne, so vA

%B /$ne. The transverse polarization of shear Alfvén waves
implies that the parallel components of the electric and mag-
netic fields Ẽ# and B̃# are much smaller than the transverse
components Ẽ! and B̃!, i.e., Ẽ# & Ẽ! and B̃# & B̃!. The
simple dispersion relation &Eq. !1"' implies that the group
velocity !! /!k equals the phase velocity ! /k#b̂, so low fre-
quency shear Alfvén waves in uniform plasma are disper-
sionless. !Here b̂ represents a unit vector in the direction of
the magnetic field." Physically, shear Alfvén waves are
analogous to transverse waves on a plucked string, with the
tension !%B2" being supplied by the magnetic field and the
mass density being supplied by the ions.

When excited by drawing an axial current to a disk, the
observed properties of shear Alfvén waves in a straight cyl-
inder agree well with this simple description !with kinetic
effects taken into account".15 The uniform field is in the axial
direction ẑ, the wave electric field is in the radial direction r̂,
and the wave magnetic field is in the azimuthal direction '̂.
The situation changes if there is an azimuthal component to

the ambient magnetic field configuration, however. Now the
azimuthal component of the parallel wavelength must be pe-
riodic. Similarly, if there is a periodicity constraint in the
axial direction, as there is in the toroidal counterpart of a
cylinder, the wavelength must also be periodic. The corre-
sponding integer mode numbers are generally represented by
m in the azimuthal !poloidal" direction and by n in the axial
!toroidal" direction. If the field line rotates azimuthally 1 /q
times in the axial periodicity length 2(R, these periodicity
constraints require that k# = !n−mq" /R, where q is the famil-
iar safety factor used in tokamak research. The safety factor
is usually a function of radius, implying that, in contrast to
the uniform field case, the dispersion relation &Eq. !1"'is a
function of radius in a sheared magnetic field. Waves that
satisfy this dispersion relation are part of the Alfvén
continuum.

It is difficult to excite instabilities in the Alfvén con-
tinuum. Consider a hypothetical wave packet of finite radial
extent &Fig. 1!b"'. Waves at different radii have different ve-
locities &Fig. 1!a"', so the pulse rapidly disperses. The asso-
ciated damping rate ) is proportional to the gradient of the
phase velocity, )%d /dr!k#vA". Usually, energetic particles
cannot deliver enough energy to the wave to overcome this
continuum damping.

There are gaps in the continuous spectrum, however, and
the most easily excited modes reside in these frequency gaps.
The existence of frequency gaps is a generic wave phenom-
enon observed in countless physical systems. Familiar ex-
amples include the electron band gap in conductors and
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cylindrical plasma. The phase velocity is a strong function of radial position.
!b" A hypothetical disturbance launched in the highlighted region. The pulse
will rapidly disperse and shear.
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Band Gap in a Bragg Grating  

Bragg reflection in optical interference filters. As Lord
Rayleigh realized,16 any periodic modulation of the index of
refraction N will introduce a band gap. In conductors, the
periodic changes in potential associated with the ion lattice
are associated with periodic changes in N in the electron
wave equation. In photonic crystals, alternating stacks of ma-
terials of different N produce the frequency gap. In optical
fibers, periodic variation of the index of refraction of the core
produces a “fiber Bragg grating” !Fig. 2". The gap is centered
at the Bragg frequency

f =
v̄

2!z
, !3"

where v̄ is the average phase velocity and !z is the distance
between the periodically varying elements. In analytic
theory, the frequency width of the gap !f is proportional to
the modulation of the index of refraction, !f "!N !for small
values of !N / N̄". Physically, the gap is caused by destructive
interference of counterpropagating waves that reflect off the
periodic modulations.

Bragg reflection occurs for Alfvén waves. A periodic
magnetic mirror configuration has a frequency gap at the
Bragg frequency and the gap width scales with the mirror
depth !Fig. 2".17 Since the Alfvén speed is proportional to B,
the magnetic mirrors cause variations in the index of refrac-
tion. Variations in B are unavoidable in a torus with rota-
tional transform. By Ampère’s law, poloidal currents produce
toroidal fields that vary inversely with major radius R,
B"R−1, so the Alfvén speed inevitably varies along a field
line, effectively creating a periodic variation in index of re-
fraction. The poloidal distance around the torus for a field
line is !z=q2#R, so Eq. !3" implies that this toroidicity-
induced frequency gap is centered at18

f =
vA

2!q2#R"
=

vA

4#qR
. !4"

The width of the gap depends on the variation in field
strength, Bmax /Bmin" !R+r" / !R−r"#1+2r /R, so the gap

width, which is proportional to !B / B̄, is proportional to the
inverse aspect ratio $=r /R. !Here r is the minor radius of the
torus."

The previous discussion applies to a field line at any
radius in the plasma. In general, vA, q, and the inverse aspect
ratio are all functions of minor radius. Figure 3 illustrates the
variation of the toroidicity-induced frequency gap with mi-
nor radius for typical tokamak parameters. The center of the
gap $Eq. !4"%varies with radius since vA /q"1 /q&ne varies
with radius. The width of the gap increases with radius be-
cause !B increases as r /R increases.

Any periodic variation in Alfvén speed produces a fre-
quency gap. Examples that are important in practice include
the gap caused by geodesic curvature of the field lines in a
finite beta plasma,20 gaps caused by elongation18,21 or trian-

FIG. 2. !Color online" Comparison of an optical fiber with a transmission
gap for visible light and a plasma with a transmission gap for shear Alfvén
waves. The fiber has a periodically modulated index of refraction in its core.
The plasma has a variable magnetic field that results in periodic modulation
of the index of refraction N. The spatial period of the modulations is !z.
Both systems have a propagation gap at the Bragg frequency and the width
of the propagation gap !f is proportional to the amplitude of modulation
of N.

FIG. 3. !Color online" !a" Dispersion relation of two waves with toroidal
mode number n=4 and poloidal harmonics of m=4 and m=5 in a plasma
with a q profile that increases monotonically with radius. Frequencies are
plotted as positive for both signs of k'. The frequency gap increases with
radius because r /R increases, which increases the modulation of N. The two
waves are counterpropagating in the frequency gap. !b" Dispersion relation
with !solid" and without !dashed" toroidal coupling of the waves. The
m=6 and m=7 waves are also shown and intersect at larger radii. Based on
Ref. 19.
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terials of different N produce the frequency gap. In optical
fibers, periodic variation of the index of refraction of the core
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theory, the frequency width of the gap !f is proportional to
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values of !N / N̄". Physically, the gap is caused by destructive
interference of counterpropagating waves that reflect off the
periodic modulations.
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magnetic mirror configuration has a frequency gap at the
Bragg frequency and the gap width scales with the mirror
depth !Fig. 2".17 Since the Alfvén speed is proportional to B,
the magnetic mirrors cause variations in the index of refrac-
tion. Variations in B are unavoidable in a torus with rota-
tional transform. By Ampère’s law, poloidal currents produce
toroidal fields that vary inversely with major radius R,
B"R−1, so the Alfvén speed inevitably varies along a field
line, effectively creating a periodic variation in index of re-
fraction. The poloidal distance around the torus for a field
line is !z=q2#R, so Eq. !3" implies that this toroidicity-
induced frequency gap is centered at18
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The width of the gap depends on the variation in field
strength, Bmax /Bmin" !R+r" / !R−r"#1+2r /R, so the gap

width, which is proportional to !B / B̄, is proportional to the
inverse aspect ratio $=r /R. !Here r is the minor radius of the
torus."

The previous discussion applies to a field line at any
radius in the plasma. In general, vA, q, and the inverse aspect
ratio are all functions of minor radius. Figure 3 illustrates the
variation of the toroidicity-induced frequency gap with mi-
nor radius for typical tokamak parameters. The center of the
gap $Eq. !4"%varies with radius since vA /q"1 /q&ne varies
with radius. The width of the gap increases with radius be-
cause !B increases as r /R increases.

Any periodic variation in Alfvén speed produces a fre-
quency gap. Examples that are important in practice include
the gap caused by geodesic curvature of the field lines in a
finite beta plasma,20 gaps caused by elongation18,21 or trian-

FIG. 2. !Color online" Comparison of an optical fiber with a transmission
gap for visible light and a plasma with a transmission gap for shear Alfvén
waves. The fiber has a periodically modulated index of refraction in its core.
The plasma has a variable magnetic field that results in periodic modulation
of the index of refraction N. The spatial period of the modulations is !z.
Both systems have a propagation gap at the Bragg frequency and the width
of the propagation gap !f is proportional to the amplitude of modulation
of N.

FIG. 3. !Color online" !a" Dispersion relation of two waves with toroidal
mode number n=4 and poloidal harmonics of m=4 and m=5 in a plasma
with a q profile that increases monotonically with radius. Frequencies are
plotted as positive for both signs of k'. The frequency gap increases with
radius because r /R increases, which increases the modulation of N. The two
waves are counterpropagating in the frequency gap. !b" Dispersion relation
with !solid" and without !dashed" toroidal coupling of the waves. The
m=6 and m=7 waves are also shown and intersect at larger radii. Based on
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Types of Alfvén Resonances

gularity of flux surfaces,22 and gaps caused by helicity23 and
periodic mirroring in stellarators.24 The gap structure for ac-
tual equilibria are often quite complex !Fig. 4".

Frequency gaps are important because radially extended,
weakly damped modes that are not subject to continuum
damping can exist in these gaps. Once again, the existence of
gap modes is a generic wave phenomenon. In conductors,
gap modes are associated with defects in the periodic ionic
lattice. In a particularly clear demonstration of gap modes,
drilling a hole in a periodic stack of materials of alternating
index of refraction creates an eigenmode in the frequency
gap.26 For an eigenmode to exist, the defect must create an
effective potential well that localizes the wave. Mathemati-
cally, in the absence of a defect, the mode amplitude in-
creases exponentially in the frequency gap. With a potential
well, the amplitude remains finite and a mode with vanishing
radial group velocity resides in the gap.

Imagine trying to excite Alfvén modes with an external
antenna of variable frequency, a situation readily imple-
mented in both experiment and computation. If the antenna
frequency intersects the continuum, the wave has a very nar-
row mode structure #Fig. 5!a"$. In the MHD model, the mode
structure is singular; in experiment and more realistic com-
putational models, the wave is strongly damped by interac-
tion with thermal plasma, so the amplitude of the excited
wave is small. In contrast, if the antenna frequency coincides
with the frequency of a gap mode, the mode structure is
regular and spatially extended #Figs. 5!b" and 5!c"$; even
with modest antenna currents, these modes can reach ampli-
tudes that are experimentally observable.

Shear Alfvén eigenmodes can be divided into two
classes. In the most easily understood case, the radial varia-
tion vanishes because of an extremum in the frequency of the
continuous spectrum #Fig. 5!b"$. An example is the reversed
shear Alfvén eigenmode !RSAE" that occurs in tokamak
plasmas with a minimum in the q profile. At this surface, the
radial variation !! /!r vanishes. An effective potential well

exists that traps the wave.27 The mode that resides in this
potential well has a single toroidal and poloidal mode num-
ber. An example of the experimentally measured mode struc-
ture is shown in Fig. 6. The mode resides near the minimum
of the measured q profile and has a frequency that is above

FIG. 4. !Color online" Calculated Alfvén gap structure for an experimental
stellarator equilibrium. The “T” !toroidicity", “E” !ellipticity", and “N” !non-
circularity" induced gaps are labeled. In the region marked with the bold
square, the gaps are caused by both “N” and “H” helicity-induced modula-
tions. Adapted from Ref. 25.

FIG. 5. !Color online" Frequency !left" and mode structure !right" for three
different types of Alfvén waves. The waves are excited by an antenna at the
edge of the plasma. !a" A continuum wave has a very narrow mode structure
that is strongly damped. !b" If the plasma profiles create an extremum in the
Alfvén continuum, the antenna may excite a gap mode that is located near
the extremum; this wave has !predominately" a single poloidal harmonic. !c"
The antenna can also excite gap modes near the extrema created by mode
coupling; in this case, the poloidal harmonics of the coupled waves appear.
Adapted from Ref. 13.

FIG. 6. !Color online" Radial profile of electron temperature fluctuations as
measured in the DIII-D tokamak. The q profile is also shown. RSAEs with
different toroidal mode numbers are located near qmin. More globally ex-
tended TAEs are also observed. Adapted from Ref. 28.
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tual equilibria are often quite complex !Fig. 4".
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weakly damped modes that are not subject to continuum
damping can exist in these gaps. Once again, the existence of
gap modes is a generic wave phenomenon. In conductors,
gap modes are associated with defects in the periodic ionic
lattice. In a particularly clear demonstration of gap modes,
drilling a hole in a periodic stack of materials of alternating
index of refraction creates an eigenmode in the frequency
gap.26 For an eigenmode to exist, the defect must create an
effective potential well that localizes the wave. Mathemati-
cally, in the absence of a defect, the mode amplitude in-
creases exponentially in the frequency gap. With a potential
well, the amplitude remains finite and a mode with vanishing
radial group velocity resides in the gap.

Imagine trying to excite Alfvén modes with an external
antenna of variable frequency, a situation readily imple-
mented in both experiment and computation. If the antenna
frequency intersects the continuum, the wave has a very nar-
row mode structure #Fig. 5!a"$. In the MHD model, the mode
structure is singular; in experiment and more realistic com-
putational models, the wave is strongly damped by interac-
tion with thermal plasma, so the amplitude of the excited
wave is small. In contrast, if the antenna frequency coincides
with the frequency of a gap mode, the mode structure is
regular and spatially extended #Figs. 5!b" and 5!c"$; even
with modest antenna currents, these modes can reach ampli-
tudes that are experimentally observable.

Shear Alfvén eigenmodes can be divided into two
classes. In the most easily understood case, the radial varia-
tion vanishes because of an extremum in the frequency of the
continuous spectrum #Fig. 5!b"$. An example is the reversed
shear Alfvén eigenmode !RSAE" that occurs in tokamak
plasmas with a minimum in the q profile. At this surface, the
radial variation !! /!r vanishes. An effective potential well

exists that traps the wave.27 The mode that resides in this
potential well has a single toroidal and poloidal mode num-
ber. An example of the experimentally measured mode struc-
ture is shown in Fig. 6. The mode resides near the minimum
of the measured q profile and has a frequency that is above

FIG. 4. !Color online" Calculated Alfvén gap structure for an experimental
stellarator equilibrium. The “T” !toroidicity", “E” !ellipticity", and “N” !non-
circularity" induced gaps are labeled. In the region marked with the bold
square, the gaps are caused by both “N” and “H” helicity-induced modula-
tions. Adapted from Ref. 25.

FIG. 5. !Color online" Frequency !left" and mode structure !right" for three
different types of Alfvén waves. The waves are excited by an antenna at the
edge of the plasma. !a" A continuum wave has a very narrow mode structure
that is strongly damped. !b" If the plasma profiles create an extremum in the
Alfvén continuum, the antenna may excite a gap mode that is located near
the extremum; this wave has !predominately" a single poloidal harmonic. !c"
The antenna can also excite gap modes near the extrema created by mode
coupling; in this case, the poloidal harmonics of the coupled waves appear.
Adapted from Ref. 13.

FIG. 6. !Color online" Radial profile of electron temperature fluctuations as
measured in the DIII-D tokamak. The q profile is also shown. RSAEs with
different toroidal mode numbers are located near qmin. More globally ex-
tended TAEs are also observed. Adapted from Ref. 28.
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Energetic Particle Orbits

cases but, like most taxonomy, these details are primarily of
interest to the specialist. The basic phenomenon is generic.

III. ENERGETIC PARTICLE DRIVE

Alfvén waves are driven unstable by the free energy in
the EP distribution function. The basic mechanism of desta-
bilization applies to both fast ions and electrons and is appli-
cable to any magnetic configuration. However, in this sec-
tion, for the sake of clarity, the energetic particles are
assumed to be ions in a tokamak. In most cases, generaliza-
tion to other species and configurations is obvious.

In addition to time t, it takes six coordinates to describe
an arbitrary distribution function: three velocity coordinates
and three spatial coordinates. On the time scale of the orbital
motion, three quantities are conserved, so only 6−3=3 vari-
ables are needed to specify a tokamak orbit. Orbits in hot
fusion plasmas are completed in a time that is much shorter
than characteristic collision times, so one conserved quantity
is the energy W. The rapid gyromotion and the relatively
weak variation of B on the length scale of the gyroradius
insure conservation of the magnetic moment !. Finally, in an
axisymmetric torus, the canonical toroidal angular momen-
tum P" is conserved. The distribution function f is conve-
niently described in terms of these three constants of the
motion, f!W ,! , P" ; t".

Figure 9 shows a typical EP orbit. The perpendicular
velocity causes rapid gyromotion in a plane perpendicular to
the field. When the parallel velocity is projected into the
poloidal plane, it causes the drift motion to follow flux sur-
faces. On the other hand, the !B, curvature, and E# B drifts
are perpendicular to the field and tend to drive ions away
from a confining magnetic surface. In a confinement device,
the rotational transform insures that drifts away from the
surface are compensated by drifts toward the surface as an
ion moves along the magnetic field. Nevertheless, because
the !B and curvature drifts are proportional to the square of

the ion velocity, while the parallel motion is linearly propor-
tional to the velocity, the drift orbits of energetic ions often
deviate dramatically from flux surfaces. In some cases, the
deviations may be so large that the fast ion strikes the wall;
this is termed a loss orbit. Additionally, for low energy par-
ticles there are just two types of orbits !trapped and passing"
but, for high energy particles, several other types of orbits
exist with names such as “potato.”14 The complicated orbit
phenomenology is most easily described by a diagram in
constants-of-motion space that marks topological boundaries
between different types of orbits !Fig. 10". The boundaries
are important because a wave that moves an ion across a
topological boundary causes large radial transport. Energetic
ion loss boundaries in tokamaks are well verified
experimentally.8,48

Power transfer between an ion and a wave requires a
nonzero value of v·E. !v is the velocity vector and E is the
electric field of the wave." For transverse electromagnetic
waves like shear Alfvén waves in a uniform field, a particle
that travels along the field at the phase velocity “sees” a
static magnetic perturbation and no electric field !due to rela-
tivistic transformation of the electric field", so the power
transfer is zero. In curved fields, power transfer can occur but
only the drift velocity vd ultimately contributes. Since the
gyromotion is very rapid compared to the mode frequency
!$i% &", the energy transfer associated with the gyromotion
#v! ·E phase averages to zero. A general expression for the
power transfer between a particle and the fields of a long-
wavelength, low-frequency wave is

dW

dt
= eZvd · E! + eZv$E$ + !

"B$

"t
. !5"

Here, E! is the transverse electric field and E$ and B$ are the
parallel electric and magnetic fields. Theoretically, the first
term is normally considered dominant for shear Alfvén
waves. The second term is small for &'$i as long as mode
conversion to waves with a large electrostatic component
does not occur. The third term is small because the waves are
nearly transverse in a low ( tokamak, so both B$ and & are
small. Experimentally, the relative importance of these terms
awaits confirmation.

TABLE I. Nomenclature of shear Alfvén eigenmodes, listed in ascending
!approximately" order of frequency. For coupling-type eigenmodes, the
coupled poloidal or toroidal harmonics are given; for extremum-type eigen-
modes, the source of the extremum is underlined. The citations are to the
original theoretical and experimental papers.

Acronym Name Cause Theory Obs.

RSAEa Reversed-shear qmin %29& %115&
BAE Beta Compressibility %36& %40&
GAEb Global Generic term %41, 116& %117&
TAE Toroidal m and m+1 %30, 31& %52, 53&
KTAEc Kinetic Electron dynamicsc %66& %45&
EAE Ellipticity m and m+2 %22& %37&
NAE Noncircularity m and m+3 !or higher" %22& %38&
MAE Mirror n and n+1 %24& ¯
HAE Helicity n and m combinations %23& %39&
aUsually in TAE gap but also found in higher-order gaps.
bUsually refers to an eigenmode below a minimum in the Alfvén continuum;
observed at both low %117& and high %42& frequency.
cElectron dynamics discretize the continuum into “kinetic Alfvén waves”
!KAW" %118&; these couple to form KTAE. Similarly, KEAE and KHAE
exist theoretically.

FIG. 9. !Color online" Projection of the orbit of an 80-keV deuterium beam
ion in the DIII-D tokamak. !a" Elevation. The dashed lines represent the
magnetic flux surfaces. The particle orbits poloidally with a frequency &).
!b" Detail of the beginning of the orbit. The rapid gyromotion, parallel drift
along the flux surface, and vertical drift velocity are indicated. !c" Plan view
of the orbit. The particle precesses toroidally with a frequency &".
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Focusing on the power transfer between the drift motion
and the transverse electric field, because the growth rate is
generally small compared to the wave frequency !!" #", it
is convenient to consider the energy transfer after averaging
over dozens of orbital cycles. To avoid phase averaging to
zero, a harmonic of the drift-orbit frequency must match the
wave frequency. All types of orbits are characterized by two
frequencies, the frequency of toroidal motion #$ and the fre-
quency of poloidal motion #% !Fig. 9". For the orbit and
wave phases to match after many cycles, the following con-
dition must be satisfied:

# + p#% − n#$ # 0, !6"

where pis an integer. Though necessary, this condition alone
does not guarantee net energy transfer. The relevant quantity
is $vd·E! over many complete orbital cycles. To evaluate
this term, it is convenient to express vd and E! in terms of
poloidal angle. The drift velocity is written as a Fourier se-
ries in % harmonics,

vd= %
l=& 1,& 2,. . .

Ale
il%, !7"

where the Al are Fourier coefficients. For low energy par-
ticles in a circular cross-section tokamak, only the l= & 1

terms are appreciable; however, in strongly shaped plasmas
and for large drift-orbit displacements, higher order harmon-
ics are also important. The resonance condition for nonzero
$vd·E! is

# + !m + l"#% − n#$ # 0. !8"

Resonant energy transfer can take place with all of the po-
loidal harmonics that comprise the gap mode.

As a simple example, consider TAE resonance with
passing fast ions that circulate in the direction of the field
line. The toroidal circulation frequency is #$=v&/R and the
poloidal circulation frequency is #%=v&/qR. Using the facts
that #=vA /2qR 'Eq. !4"(and that the mode is centered at the
frequency crossing at q= !m+1 /2" /n, Eq. !8" implies that
)l)=1 resonance occurs when v&=vA and v&=vA /3. For co-
going particles, one resonance is with the m harmonic and
another is with the m+1 harmonic that interfere construc-
tively to form the TAE. Equation !8" implies and computer
simulations49 verify that both co- and counter-circulating
particles can resonate with the mode. !The assertion that
counter-circulating ions do not interact with a mode that ro-
tates in the ion-diamagnetic direction in Refs. 3 and 50 is
incorrect."

For other gap modes, the fundamental )l)=1 resonances
are different. For example, for the EAE with #=vA /qR, the
m and m+2 modes couple at the q= !m+1" /n surface, so
circulating particles with v&=vA /2 resonate with the mode.38

In practice, higher l harmonics often are important too.
Figure 11 shows the many resonances between a high-energy
ion-cyclotron accelerated fast ion population and the ob-
served TAEs in a JET tokamak plasma. Experimentally, an
enormous number of different EP populations have driven
unstable Alfvén gap modes through a wide variety of differ-
ent resonances. Neutral beams,52,53 ion-cyclotron accelerated
fast ions,54 alpha particles produced in deuterium-tritium
!D-T" fusion reactions,44 and an electron tail population pro-
duced by electron cyclotron heating55 have all driven Alfvén
eigenmodes unstable. Instability is observed in essentially
all toroidal confinement configurations: tokamaks,52,53

FIG. 10. !Color online" Classification of different orbit types for beam ions
in the DIII-D tokamak vs magnetic moment ' and canonical angular mo-
mentum P$. The poloidal flux at the wall is ( w, the particle energy is W, and
the magnetic field at the magnetic axis is B0. Particles that move outward
from the magnetic axis move leftward on the P$ axis. Four types of EP
transport are illustrated. !Red rectangle" The wave can perturb the equilib-
rium !(̃ ", causing particles near a loss boundary to collide with the wall.
!Green triangle" Particles that stay in phase with a mode throughout the
plasma can convectively escape via the Ẽ) B drift. !Blue diamond" Particles
can diffuse as they receive velocity kicks associated with the many wave-
particle resonances in the plasma. !Purple circles" If the EPs move outward,
they can locally alter the EP gradient and destabilize a new wave that trans-
ports them further, where a new wave is destabilized, etc.

FIG. 11. !Color online" Calculated resonances for rf-accelerated tail ions in
the JET tokamak in the energy/toroidal-angular-momentum plane. The tor-
oidal !n" and poloidal !p" values of the resonances are labeled. The ampli-
tude scale takes into account the probability of detection by a gamma-ray
diagnostic. Adapted from Ref. 51.
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TAE-Particle Resonance

stellarators,34 spherical tokamaks,56 and a reversed field
pinch !even without an EP population".57

Several factors determine the actual energy exchange.
First, the relative strength of the various resonances depends
on the amplitudes of the poloidal harmonics that make up the
eigenmode and on the Fourier amplitudes of the drift veloc-
ity. Second, as in Landau damping #Fig. 12!a"$, the net en-

ergy exchange between the particles and the wave depends
on the slope of the distribution function. Particles with speed
slightly below the resonant velocity gain energy, while par-
ticles with speeds slightly above the resonant velocity lose
energy. If the distribution function is monotonically decreas-
ing along a coordinate that defines the resonance, the par-
ticles damp the wave. Most EP distribution functions mono-
tonically decrease with increasing energy !!f /!W!0", so the
energy distribution usually damps the wave #Fig. 12!b"$.
!This is true both for the slowing-down distributions that
commonly occur for fusion products and neutral-beam injec-
tion and for the Boltzmann distribution that often occurs dur-
ing wave heating." Wave growth is usually driven by the free
energy in the spatial gradient. The canonical toroidal angular
momentum is

P" = mRv" − Ze# , !9"

where m and Ze are the ion mass and charge and #=RA" is
the poloidal flux. !A" is the toroidal component of the mag-
netic vector potential." Note that P" decreases when # in-
creases. An EP profile that peaks on axis has !f /!#!0 but
!f /!P"$ 0 #Fig. 12!c"$. The wave gains energy at the ex-
pense of the particles. The energy transfer is proportional to

% & '
!f

!W
+ n

!f

!P"
. !10"

!Since the magnetic moment ( is not altered by low-
frequency Alfvén waves, !f /!( is irrelevant to the energy
transfer." Alfvén eigenmodes with n "0 break the toroidal
symmetry of the plasma. If the ions are fast, the toroidal
frequency '" is large and the resonance condition #Eq. !8"$ is
satisfied for a significant fraction of the population; if, in
addition, the spatial gradient of the resonant particles is
large, the energetic particles can strongly drive the mode.

The strongest confirmation of these ideas was obtained
in the TFTR D-T experiments. Alpha-particle driven TAEs
were not ordinarily observed. Calculations indicated that the
large beam-ion population was strongly damping the TAEs
through the !f /!W term. Based on these calculations, theo-
rists predicted58,59 that, if beam-ion Landau damping could
be suppressed, the spatial gradient of the alpha particles
would destabilize TAEs and suggested59 that this condition
could be achieved after neutral-beam injection, since the
beam-ion pressure would decay much faster than the alpha
pressure. Indeed, when the experiment was conducted, alpha-
driven TAEs were observed %150 ms after beam injection,60

as theoretically predicted.
The third factor governing energy exchange is the align-

ment of the orbit with the eigenmode. Because the toroidal
symmetry is more strongly broken for higher toroidal mode
numbers, the extracted energy scales linearly with n as long
as the orbit is small compared to the radial extent of the
mode. However, if the orbit exceeds the radial extent of the
mode, the efficiency of energy transfer declines. Since the
radial extent shrinks approximately as n −1, there is generally
a particular mode number n that maximizes the fast-ion
drive. Theoretically, the drive is largest when the orbit size
approximately matches the eigenmode spatial extent.61 Ex-

FIG. 12. !Color online" Illustration of the dependence of EP drive !or damp-
ing" on the slope of the distribution function. !a" Classic Landau damping
situation: for a monotonically decreasing distribution function there are
more particles that gain energy from the wave than lose energy, so the wave
damps. !b" The energy distribution typically is monotonically decreasing, so
the wave damps. !c" The distribution function is usually peaked on axis. The
toroidal angular momentum P" has the opposite dependence on radius than
the flux function, so a peaked distribution function has a positive gradient
!f /!P" and gives net energy to the wave.
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stellarators,34 spherical tokamaks,56 and a reversed field
pinch !even without an EP population".57

Several factors determine the actual energy exchange.
First, the relative strength of the various resonances depends
on the amplitudes of the poloidal harmonics that make up the
eigenmode and on the Fourier amplitudes of the drift veloc-
ity. Second, as in Landau damping #Fig. 12!a"$, the net en-

ergy exchange between the particles and the wave depends
on the slope of the distribution function. Particles with speed
slightly below the resonant velocity gain energy, while par-
ticles with speeds slightly above the resonant velocity lose
energy. If the distribution function is monotonically decreas-
ing along a coordinate that defines the resonance, the par-
ticles damp the wave. Most EP distribution functions mono-
tonically decrease with increasing energy !!f /!W!0", so the
energy distribution usually damps the wave #Fig. 12!b"$.
!This is true both for the slowing-down distributions that
commonly occur for fusion products and neutral-beam injec-
tion and for the Boltzmann distribution that often occurs dur-
ing wave heating." Wave growth is usually driven by the free
energy in the spatial gradient. The canonical toroidal angular
momentum is

P" = mRv" − Ze# , !9"

where m and Ze are the ion mass and charge and #=RA" is
the poloidal flux. !A" is the toroidal component of the mag-
netic vector potential." Note that P" decreases when # in-
creases. An EP profile that peaks on axis has !f /!#!0 but
!f /!P"$ 0 #Fig. 12!c"$. The wave gains energy at the ex-
pense of the particles. The energy transfer is proportional to

% & '
!f

!W
+ n

!f

!P"
. !10"

!Since the magnetic moment ( is not altered by low-
frequency Alfvén waves, !f /!( is irrelevant to the energy
transfer." Alfvén eigenmodes with n "0 break the toroidal
symmetry of the plasma. If the ions are fast, the toroidal
frequency '" is large and the resonance condition #Eq. !8"$ is
satisfied for a significant fraction of the population; if, in
addition, the spatial gradient of the resonant particles is
large, the energetic particles can strongly drive the mode.

The strongest confirmation of these ideas was obtained
in the TFTR D-T experiments. Alpha-particle driven TAEs
were not ordinarily observed. Calculations indicated that the
large beam-ion population was strongly damping the TAEs
through the !f /!W term. Based on these calculations, theo-
rists predicted58,59 that, if beam-ion Landau damping could
be suppressed, the spatial gradient of the alpha particles
would destabilize TAEs and suggested59 that this condition
could be achieved after neutral-beam injection, since the
beam-ion pressure would decay much faster than the alpha
pressure. Indeed, when the experiment was conducted, alpha-
driven TAEs were observed %150 ms after beam injection,60

as theoretically predicted.
The third factor governing energy exchange is the align-

ment of the orbit with the eigenmode. Because the toroidal
symmetry is more strongly broken for higher toroidal mode
numbers, the extracted energy scales linearly with n as long
as the orbit is small compared to the radial extent of the
mode. However, if the orbit exceeds the radial extent of the
mode, the efficiency of energy transfer declines. Since the
radial extent shrinks approximately as n −1, there is generally
a particular mode number n that maximizes the fast-ion
drive. Theoretically, the drive is largest when the orbit size
approximately matches the eigenmode spatial extent.61 Ex-

FIG. 12. !Color online" Illustration of the dependence of EP drive !or damp-
ing" on the slope of the distribution function. !a" Classic Landau damping
situation: for a monotonically decreasing distribution function there are
more particles that gain energy from the wave than lose energy, so the wave
damps. !b" The energy distribution typically is monotonically decreasing, so
the wave damps. !c" The distribution function is usually peaked on axis. The
toroidal angular momentum P" has the opposite dependence on radius than
the flux function, so a peaked distribution function has a positive gradient
!f /!P" and gives net energy to the wave.
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Focusing on the power transfer between the drift motion
and the transverse electric field, because the growth rate is
generally small compared to the wave frequency !!" #", it
is convenient to consider the energy transfer after averaging
over dozens of orbital cycles. To avoid phase averaging to
zero, a harmonic of the drift-orbit frequency must match the
wave frequency. All types of orbits are characterized by two
frequencies, the frequency of toroidal motion #$ and the fre-
quency of poloidal motion #% !Fig. 9". For the orbit and
wave phases to match after many cycles, the following con-
dition must be satisfied:

# + p#% − n#$ # 0, !6"

where pis an integer. Though necessary, this condition alone
does not guarantee net energy transfer. The relevant quantity
is $vd·E! over many complete orbital cycles. To evaluate
this term, it is convenient to express vd and E! in terms of
poloidal angle. The drift velocity is written as a Fourier se-
ries in % harmonics,

vd= %
l=& 1,& 2,. . .

Ale
il%, !7"

where the Al are Fourier coefficients. For low energy par-
ticles in a circular cross-section tokamak, only the l= & 1

terms are appreciable; however, in strongly shaped plasmas
and for large drift-orbit displacements, higher order harmon-
ics are also important. The resonance condition for nonzero
$vd·E! is

# + !m + l"#% − n#$ # 0. !8"

Resonant energy transfer can take place with all of the po-
loidal harmonics that comprise the gap mode.

As a simple example, consider TAE resonance with
passing fast ions that circulate in the direction of the field
line. The toroidal circulation frequency is #$=v&/R and the
poloidal circulation frequency is #%=v&/qR. Using the facts
that #=vA /2qR 'Eq. !4"(and that the mode is centered at the
frequency crossing at q= !m+1 /2" /n, Eq. !8" implies that
)l)=1 resonance occurs when v&=vA and v&=vA /3. For co-
going particles, one resonance is with the m harmonic and
another is with the m+1 harmonic that interfere construc-
tively to form the TAE. Equation !8" implies and computer
simulations49 verify that both co- and counter-circulating
particles can resonate with the mode. !The assertion that
counter-circulating ions do not interact with a mode that ro-
tates in the ion-diamagnetic direction in Refs. 3 and 50 is
incorrect."

For other gap modes, the fundamental )l)=1 resonances
are different. For example, for the EAE with #=vA /qR, the
m and m+2 modes couple at the q= !m+1" /n surface, so
circulating particles with v&=vA /2 resonate with the mode.38

In practice, higher l harmonics often are important too.
Figure 11 shows the many resonances between a high-energy
ion-cyclotron accelerated fast ion population and the ob-
served TAEs in a JET tokamak plasma. Experimentally, an
enormous number of different EP populations have driven
unstable Alfvén gap modes through a wide variety of differ-
ent resonances. Neutral beams,52,53 ion-cyclotron accelerated
fast ions,54 alpha particles produced in deuterium-tritium
!D-T" fusion reactions,44 and an electron tail population pro-
duced by electron cyclotron heating55 have all driven Alfvén
eigenmodes unstable. Instability is observed in essentially
all toroidal confinement configurations: tokamaks,52,53

FIG. 10. !Color online" Classification of different orbit types for beam ions
in the DIII-D tokamak vs magnetic moment ' and canonical angular mo-
mentum P$. The poloidal flux at the wall is ( w, the particle energy is W, and
the magnetic field at the magnetic axis is B0. Particles that move outward
from the magnetic axis move leftward on the P$ axis. Four types of EP
transport are illustrated. !Red rectangle" The wave can perturb the equilib-
rium !(̃ ", causing particles near a loss boundary to collide with the wall.
!Green triangle" Particles that stay in phase with a mode throughout the
plasma can convectively escape via the Ẽ) B drift. !Blue diamond" Particles
can diffuse as they receive velocity kicks associated with the many wave-
particle resonances in the plasma. !Purple circles" If the EPs move outward,
they can locally alter the EP gradient and destabilize a new wave that trans-
ports them further, where a new wave is destabilized, etc.

FIG. 11. !Color online" Calculated resonances for rf-accelerated tail ions in
the JET tokamak in the energy/toroidal-angular-momentum plane. The tor-
oidal !n" and poloidal !p" values of the resonances are labeled. The ampli-
tude scale takes into account the probability of detection by a gamma-ray
diagnostic. Adapted from Ref. 51.
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stellarators,34 spherical tokamaks,56 and a reversed field
pinch !even without an EP population".57

Several factors determine the actual energy exchange.
First, the relative strength of the various resonances depends
on the amplitudes of the poloidal harmonics that make up the
eigenmode and on the Fourier amplitudes of the drift veloc-
ity. Second, as in Landau damping #Fig. 12!a"$, the net en-

ergy exchange between the particles and the wave depends
on the slope of the distribution function. Particles with speed
slightly below the resonant velocity gain energy, while par-
ticles with speeds slightly above the resonant velocity lose
energy. If the distribution function is monotonically decreas-
ing along a coordinate that defines the resonance, the par-
ticles damp the wave. Most EP distribution functions mono-
tonically decrease with increasing energy !!f /!W!0", so the
energy distribution usually damps the wave #Fig. 12!b"$.
!This is true both for the slowing-down distributions that
commonly occur for fusion products and neutral-beam injec-
tion and for the Boltzmann distribution that often occurs dur-
ing wave heating." Wave growth is usually driven by the free
energy in the spatial gradient. The canonical toroidal angular
momentum is

P" = mRv" − Ze# , !9"

where m and Ze are the ion mass and charge and #=RA" is
the poloidal flux. !A" is the toroidal component of the mag-
netic vector potential." Note that P" decreases when # in-
creases. An EP profile that peaks on axis has !f /!#!0 but
!f /!P"$ 0 #Fig. 12!c"$. The wave gains energy at the ex-
pense of the particles. The energy transfer is proportional to

% & '
!f

!W
+ n

!f

!P"
. !10"

!Since the magnetic moment ( is not altered by low-
frequency Alfvén waves, !f /!( is irrelevant to the energy
transfer." Alfvén eigenmodes with n "0 break the toroidal
symmetry of the plasma. If the ions are fast, the toroidal
frequency '" is large and the resonance condition #Eq. !8"$ is
satisfied for a significant fraction of the population; if, in
addition, the spatial gradient of the resonant particles is
large, the energetic particles can strongly drive the mode.

The strongest confirmation of these ideas was obtained
in the TFTR D-T experiments. Alpha-particle driven TAEs
were not ordinarily observed. Calculations indicated that the
large beam-ion population was strongly damping the TAEs
through the !f /!W term. Based on these calculations, theo-
rists predicted58,59 that, if beam-ion Landau damping could
be suppressed, the spatial gradient of the alpha particles
would destabilize TAEs and suggested59 that this condition
could be achieved after neutral-beam injection, since the
beam-ion pressure would decay much faster than the alpha
pressure. Indeed, when the experiment was conducted, alpha-
driven TAEs were observed %150 ms after beam injection,60

as theoretically predicted.
The third factor governing energy exchange is the align-

ment of the orbit with the eigenmode. Because the toroidal
symmetry is more strongly broken for higher toroidal mode
numbers, the extracted energy scales linearly with n as long
as the orbit is small compared to the radial extent of the
mode. However, if the orbit exceeds the radial extent of the
mode, the efficiency of energy transfer declines. Since the
radial extent shrinks approximately as n −1, there is generally
a particular mode number n that maximizes the fast-ion
drive. Theoretically, the drive is largest when the orbit size
approximately matches the eigenmode spatial extent.61 Ex-

FIG. 12. !Color online" Illustration of the dependence of EP drive !or damp-
ing" on the slope of the distribution function. !a" Classic Landau damping
situation: for a monotonically decreasing distribution function there are
more particles that gain energy from the wave than lose energy, so the wave
damps. !b" The energy distribution typically is monotonically decreasing, so
the wave damps. !c" The distribution function is usually peaked on axis. The
toroidal angular momentum P" has the opposite dependence on radius than
the flux function, so a peaked distribution function has a positive gradient
!f /!P" and gives net energy to the wave.
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