Plasma 2

Lecture 8: Whistler Waves and Cyclotron Heating
 APPH E6102y
 Columbia University

Outline

- Review: electromagnetic waves in a cold magnetized plasma (Ch. 4)
- Kinetic electromagnetic waves in a warm magnetic plasma plasma (Ch. 10.3)
- Kinetic whistler waves and cyclotron damping (Ch. 10.3.2)
- Measurement of electron cyclotron damping (1984; https://doi.org/10.1063/1.864605)
- Measurement of Whistler Instabilities (1987; https://doi.org/10.1103/PhysRevLett.59.1821)

Ch. 4: Review of Cold Plasma Waves

$$
\begin{array}{cl}
\boldsymbol{\nabla} \times \mathbf{B}=\mu_{0} \mathbf{J}+\epsilon_{0} \mu_{0} \frac{\partial \mathbf{E}}{\partial t} & \tilde{\mathbf{J}}=\sum_{s} n_{s} e_{s} \tilde{\mathbf{v}}_{s} \\
\boldsymbol{\nabla} \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} & \tilde{\leftrightarrow} \\
\boldsymbol{\nabla} \cdot \mathbf{E}=\frac{\rho_{q}}{\epsilon_{0}} & \tilde{\mathbf{J}}=\stackrel{\leftrightarrow}{\boldsymbol{\sigma}} \cdot \tilde{\mathbf{E}} \\
\boldsymbol{\nabla} \cdot \mathbf{B}=0 &
\end{array}
$$

Ampere's Law (σ ~ perturbed plasma current)

$$
\begin{aligned}
\mathbf{i} \mathbf{k} \times \tilde{\mathbf{B}} & =\epsilon_{0} \mu_{0}(-\mathrm{i} \omega) \stackrel{\leftrightarrow}{\mathbf{K}} \cdot \tilde{\mathbf{E}} \\
\stackrel{\leftrightarrow}{\mathbf{K}} & =\stackrel{\leftrightarrow}{\mathbf{1}}-\frac{\stackrel{\leftrightarrow}{\sigma}}{\mathrm{i} \omega \epsilon_{0}}
\end{aligned}
$$

Dispersion Tensor

$$
\begin{gathered}
\mathbf{k} \times(\mathbf{k} \times \tilde{\mathbf{E}})+\frac{\omega^{2}}{c^{2}} \stackrel{\mathbf{K}}{\mathbf{K}} \cdot \tilde{\mathbf{E}}=0 \\
\stackrel{\leftrightarrow}{\boldsymbol{Đ}} \cdot \tilde{\mathbf{E}}=0
\end{gathered}
$$

Magnetized Plasma

$$
\left[\begin{array}{c}
\widetilde{J}_{x} \tag{4.4.5}\\
\widetilde{J}_{y} \\
\widetilde{J}_{z}
\end{array}\right]=\sum_{s} \frac{n_{s 0} e_{s}^{2}}{m_{s}}\left[\begin{array}{ccc}
\frac{-\mathrm{i} \omega}{\omega_{\mathrm{c} s}^{2}-\omega^{2}} & \frac{\omega_{\mathrm{c} s}}{\omega_{\mathrm{c} s}^{2}-\omega^{2}} & 0 \\
\frac{-\omega_{\mathrm{c} s}}{\omega_{\mathrm{c} s}^{2}-\omega^{2}} & \frac{-\mathrm{i} \omega}{\omega_{\mathrm{c} s}^{2}-\omega^{2}} & 0 \\
0 & 0 & \frac{\mathrm{i}}{\omega}
\end{array}\right]\left[\begin{array}{c}
\widetilde{E}_{x} \\
\widetilde{E}_{y} \\
\widetilde{E}_{z}
\end{array}\right] .
$$

Magnetized Plasma

$$
\begin{align*}
& \vec{\sigma}=\sum_{s} \frac{n_{s} e_{s}^{2}}{m_{s}}\left[\begin{array}{ccc}
\frac{-\mathrm{i} \omega}{\omega_{s}^{2}-\omega^{2}} & \frac{\omega_{\mathrm{cs}}}{\omega_{\mathrm{ss}}^{2}-\omega^{2}} & 0 \\
\frac{-\omega_{s}}{\omega_{\mathrm{cs}}^{2}-\omega^{2}} & \frac{-\mathrm{i} \omega}{\omega_{\mathrm{cs}}^{2}-\omega^{2}} & 0 \\
0 & 0 & \frac{\mathrm{i}}{\omega}
\end{array}\right] \quad \stackrel{\overparen{\mathrm{K}}}{ }=\left[\begin{array}{ccc}
S & -\mathrm{i} D & 0 \\
-\mathrm{i} D & S & 0 \\
0 & 0 & P
\end{array}\right], \tag{4.4.7}\\
& S=1-\sum_{s} \frac{\omega_{\mathrm{p} s}^{2}}{\omega^{2}-\omega_{\mathrm{cs}}^{2}}, \quad D=\sum_{s} \frac{\omega_{\mathrm{cs}} \omega_{\mathrm{p} s}^{2}}{\omega\left(\omega^{2}-\omega_{\mathrm{cs}}^{2}\right)}, \quad P=1-\sum_{s} \frac{\omega_{\mathrm{p} s}^{2}}{\omega^{2}} .
\end{align*}
$$

Propagation Parallel to $B\left(\theta=0 ; k=k_{\|}\right)$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
S-n^{2} & -\mathrm{i} D & 0 \\
\mathrm{i} D & S-n^{2} & 0 \\
0 & 0 & P
\end{array}\right]\left[\begin{array}{l}
\widetilde{E}_{x} \\
\widetilde{E}_{y} \\
\widetilde{E}_{z}
\end{array}\right]=0 .} \\
& n \equiv|k| c / \omega
\end{aligned}
$$

Whistler Mode

$$
n^{2}=R=1-\sum_{s} \frac{\omega_{\mathrm{p} s}^{2}}{\omega\left(\omega+\omega_{\mathrm{c} s}\right)}
$$

Figure 4.15 A plot of $n^{2}=R$ as a function of frequency.

Whistler Mode

$$
n^{2}=R=1-\sum_{s} \frac{\omega_{\mathrm{p} s}^{2}}{\omega\left(\omega+\omega_{\mathrm{c} s}\right)}
$$

$$
\begin{equation*}
t(\omega)=\frac{1}{2 c \omega^{1 / 2}} \int \frac{\omega_{\mathrm{p}} \omega_{\mathrm{c}}}{\left(\omega_{\mathrm{c}}-\omega\right)^{3 / 2}} \mathrm{~d} s, \tag{4.4.33}
\end{equation*}
$$

(WKB) Ray Paths

For an inhomogeneous time-dependent medium, Maxwell's equations can be written as a set of linear homogeneous partial differential equations of the form

$$
\begin{gather*}
\stackrel{\leftrightarrow}{\oplus}(\nabla, \partial / \partial t, \mathbf{r}, t) \cdot \mathbf{f}=0, \tag{4.5.1}\\
\stackrel{\leftrightarrow}{\oplus}(\mathrm{i} \mathbf{k},-\mathrm{i} \omega, \mathbf{r}, t) \cdot \mathbf{f}=0, \\
\delta Đ=\boldsymbol{\nabla}_{\mathbf{k}} \Xi \cdot \frac{\mathrm{d} \mathbf{k}}{\mathrm{~d} \tau} \mathrm{~d} \tau+\frac{\partial Đ}{\partial \omega} \frac{\mathrm{~d} \omega}{\mathrm{~d} \tau} \mathrm{~d} \tau+\boldsymbol{\nabla} \Theta \cdot \frac{\mathrm{d} \mathbf{r}}{\mathrm{~d} \tau} \mathrm{~d} \tau+\frac{\partial Đ}{\partial t} \frac{\mathrm{~d} t}{\mathrm{~d} \tau} \mathrm{~d} \tau=0 . \tag{4.5.4}
\end{gather*}
$$

Plasma 1
Le 11188

WAVE ENERGY DENSITY

GOAL: DERIVE AN EQUATION THAT DESCRIBES THE "OYmAMeS" of WAUES. WE WILL DFRIVE THE GEMERALIZATION OF POYNTING'S THEOREM TO DISPERSIVE MEDIA. (WE ARE, נN A MATTER OF spEARING, PERFORMing A. WK ANALYSIS OF THE MAXWELL -PLASMA System.)

$$
\begin{aligned}
& -; \omega \overline{\bar{D}}(\omega, \bar{r}) \cdot \bar{E}(\omega, \bar{r})=-4 \pi \bar{J}_{F_{x} T}(\bar{r}, \omega) \\
& \overline{\bar{D}}(\omega, \bar{r})=\left(1-\frac{r^{2} c^{2}}{\omega^{2}}\right) \overline{\bar{I}}+\frac{r c \pi c}{\omega^{2}}+\frac{4 \pi i \bar{\sigma}}{\omega}
\end{aligned}
$$

on $\left\langle\omega_{h}\right\rangle=$ TImE AUENASED ENERGY DENSITY

$$
=\frac{1}{2} \frac{|u|^{2}}{\delta \pi} \frac{2}{\partial \omega}\left(\omega_{n} \bar{\Sigma}_{0}^{*} \cdot \overline{\bar{D}}_{n} \cdot \bar{\Sigma}_{0}\right) \quad\binom{\operatorname{since} \operatorname{tais}}{1 \sin }
$$

THEN WE CAN WUITE..

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left\langle\omega_{r}\right\rangle+\frac{2}{\partial \bar{n}} \cdot\left(\bar{V} \bar{g}_{g}\left\langle w_{r}\right\rangle\right)-2 \omega_{x}\left\langle\omega_{r}\right\rangle \\
& =-\frac{1}{2} \Omega_{0}\left\{E^{\infty} \cdot J_{E_{x T}}\right\} \\
& \text { WHERE } \bar{V}_{g} \equiv-\frac{\frac{\partial}{\partial \hbar}\left(\omega_{R} \bar{\delta}_{0}^{*} \cdot \overline{\bar{D}}_{R}, \bar{\Sigma}_{0}\right)}{\frac{\partial}{\partial \omega}\left(\omega_{R} \bar{\Sigma}_{0}^{*} \overline{\bar{D}}_{R} \cdot \bar{\xi}_{0}\right)}=\text { gnoup VFLOCR } \\
& \omega_{I}=-\frac{\omega_{n} \bar{\Sigma}_{0}^{R} \cdot \overline{\bar{D}}_{I} \cdot \bar{\Sigma}_{0}}{\frac{2}{2 \omega}\left(\omega_{n} \bar{\Sigma}_{0}^{N} \cdot \overline{\bar{D}}_{R} \cdot \bar{\Sigma}_{0}\right)}=-\gamma \\
& \gamma=\text { OAm,int }
\end{aligned}
$$

Whistler Mode

$$
n^{2}=R=1-\sum_{s} \frac{\omega_{\mathrm{p} s}^{2}}{\omega\left(\omega+\omega_{\mathrm{c} s}\right)}
$$

$$
\begin{equation*}
t(\omega)=\frac{1}{2 c \omega^{1 / 2}} \int \frac{\omega_{\mathrm{p}} \omega_{\mathrm{c}}}{\left(\omega_{\mathrm{c}}-\omega\right)^{3 / 2}} \mathrm{~d} s, \tag{4.4.33}
\end{equation*}
$$

10.3 Electromagnetic Waves

$$
\begin{align*}
& \mathbf{k} \times(\mathbf{k} \times \tilde{\mathbf{E}})+\frac{\omega^{2}}{c^{2}} \stackrel{\leftrightarrow}{\mathbf{K}} \cdot \tilde{\mathbf{E}}=0, \\
& \text { (10.3.1) } \\
& \begin{array}{l}
\tilde{\mathbf{J}}=\sum_{s} n_{s} e_{s} \tilde{\mathbf{v}}_{s}, \\
\tilde{\mathbf{J}}=\stackrel{\leftrightarrow}{\boldsymbol{\sigma}} \cdot \tilde{\mathbf{J}}=\sum_{s} e_{s} \int_{0}^{2 \pi} \int_{-\infty}^{\infty} \int_{0}^{\infty} \mathbf{v} \tilde{f}_{s} v_{\perp} \mathrm{d} \nu_{\perp} \mathrm{d} \nu_{\| l} \mathrm{~d} \phi, \\
\\
{\left[\begin{array}{l}
\widetilde{J}_{x} \\
\widetilde{J}_{y} \\
\widetilde{J}_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\
\sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\
\sigma_{z x} & \sigma_{z y} & \sigma_{z z}
\end{array}\right]\left[\begin{array}{c}
\widetilde{E}_{x} \\
\widetilde{E}_{y} \\
\widetilde{E}_{z}
\end{array}\right],}
\end{array} \tag{10.3.15}
\end{align*}
$$

Parallel Propagation

$\left[\begin{array}{ccc}S-n^{2} & -\mathrm{i} D & 0 \\ \mathrm{i} D & S-n^{2} & 0 \\ 0 & 0 & P\end{array}\right]\left[\begin{array}{c}\widetilde{E}_{x} \\ \widetilde{E}_{y} \\ \widetilde{E}_{z}\end{array}\right]=0 .\left[\begin{array}{ccc}K_{x x}-\frac{c^{2} k^{2}}{\omega^{2}} & K_{x y} & 0 \\ K_{y x} & K_{y y}-\frac{c^{2} k^{2}}{\omega^{2}} & 0 \\ 0 & 0 & K_{z z}\end{array}\right]\left[\begin{array}{c}\widetilde{E}_{x} \\ \widetilde{E}_{y} \\ \widetilde{E}_{z}\end{array}\right]=0$.
for example: $\quad K_{x x}=1-\sum_{s} \frac{\omega_{\mathrm{p} s}^{2}}{\omega} \sum_{n} \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{n^{2} J_{n}^{2}\left(\beta_{s}\right)}{\beta_{s}^{2}\left(k_{\|} v_{\|}-\omega+n \omega_{\mathrm{cs}}\right)}$, resonance

$$
\times\left[\left(1-\frac{k_{\|} v_{\|}}{\omega}\right) \frac{\partial F_{s 0}}{\partial v_{\perp}}+\frac{k_{\|} v_{\perp}}{\omega} \frac{\partial F_{s 0}}{\partial v_{\|}}\right] 2 \pi v_{\perp}^{2} \mathrm{~d} v_{\perp} \mathrm{d} v_{\|}
$$

Cyclotron Resonance

$$
Đ(k, \omega)=K_{x x}-\frac{c^{2} k_{\|}^{2}}{\omega^{2}} \pm \mathrm{i} K_{x y}=0
$$

$$
\begin{align*}
\theta(k, \omega)= & 1-\frac{c^{2} k_{\|}^{2}}{\omega^{2}}-\sum_{s} \frac{\omega_{\mathrm{p} s}^{2}}{\omega} \\
& \times \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{\frac{\partial F_{s 0}}{\partial v_{\perp}}+\frac{k_{\|}}{\omega}\left(v_{\perp} \frac{\partial F_{s 0}}{\partial v_{\|}}-v_{\|} \frac{\partial F_{s 0}}{\partial v_{\perp}}\right)}{k_{\|} v_{\|}-\omega \pm \omega_{\mathrm{c} s}} \pi v_{\perp}^{2} \mathrm{~d} v_{\perp} \mathrm{d} v_{\|}=0 . \tag{10.3.32}
\end{align*}
$$

Cyclotron Resonance

$$
\begin{gather*}
Đ(k, \omega)=1-\frac{c^{2} k_{\|}^{2}}{\omega^{2}}-\sum_{s} \frac{\omega_{\mathrm{p} s}^{2}}{\omega^{2}} \int_{-\infty}^{\infty} \frac{G_{s 0}\left(v_{\|}\right)}{v_{\|}-\frac{\omega^{2} \pm \omega_{\mathrm{c} s}}{k_{\|}}} \mathrm{d} v_{\|}=0 \tag{10.3.33}\\
G_{s 0}\left(v_{\|}\right)=\int_{0}^{\infty}\left[\left(\frac{\omega}{k_{\|}}-v_{\|}\right) \frac{\partial F_{s 0}}{\partial v_{\perp}}+v_{\perp} \frac{\partial F_{s 0}}{\partial v_{\|}}\right] \pi v_{\perp}^{2} \mathrm{~d} v_{\perp} .
\end{gather*}
$$

Cyclotron Damping

$$
\begin{gather*}
Đ_{\mathrm{r}}=1-\frac{c^{2} k_{\|}^{2}}{\omega^{2}}-\sum_{s} \frac{\omega_{\mathrm{p} s}^{2}}{\omega^{2}} P \int_{-\infty}^{\infty} \frac{G_{s 0}\left(v_{\|}\right)}{v_{\|}-\frac{\omega \pm \omega_{\mathrm{c} s}}{k_{\|}}} \mathrm{d} v_{\|}=0 \tag{10.3.38}\\
\gamma=\frac{-Đ_{\mathrm{i}}}{\partial Đ_{\mathrm{r}} / \partial \omega}=\left.\pi \frac{k_{\|} /\left|k_{\|}\right|}{\partial Đ_{\mathrm{r}} / \partial \omega} \sum_{s} \frac{\omega_{\mathrm{p} s}^{2}}{\omega^{2}} G_{s 0}\left(v_{\|}\right)\right|_{v_{\|}=v_{\| \text {Res }}}, \tag{10.3.39}\\
G_{s 0}\left(v_{\|}\right)=\frac{\omega}{k_{\|}} \int_{0}^{\infty} \frac{\partial F_{s 0}}{\partial v_{\perp}} \pi v_{\perp}^{2} \mathrm{~d} v_{\perp}-\int_{0}^{\infty}\left(v_{\|} \frac{\partial F_{s 0}}{\partial v_{\perp}} v_{\perp} \frac{\partial F_{s 0}}{\partial v_{\|}}\right) \pi v_{\perp}^{2} \mathrm{~d} v_{\perp} . \\
\text { For Ísotropic } \mathrm{F}(\mathrm{v})
\end{gather*}
$$

Cyclotron Damping

$$
\begin{equation*}
(-\gamma)=\left.\pi \frac{\omega /\left|k_{\|}\right|}{\partial Đ_{\mathrm{r}} / \partial \omega} \frac{\omega_{\mathrm{p}}^{2}}{\omega^{2}}\left(\frac{m}{2 \pi \kappa T}\right)^{1 / 2} \exp \left(-\frac{m v_{\| \mathrm{Res}}^{2}}{2 \kappa T}\right)\right|_{v_{\| \mathrm{Res}}=\frac{\omega-\omega_{\mathrm{c}}}{k_{\|}}} \tag{10.3.45}
\end{equation*}
$$

Whistler (Cyclotron) Instability

Figure 10.25 A loss-cone electron velocity distribution showing the cyclotron resonance velocity, $v_{\| \text {Res }}$, for a whistler-mode wave propagating in the $k_{\|}$ direction.

Next Week

Electron-cyclotron heating in a pulsed mirror experiment

M. E. Mauel

Plasma Fusion Center and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 5 December 1983; accepted 6 August 1984)
Experimental measurements of electron-cyclotron resonance heating (ECRH) of a highly ionized plasma in mirror geometry is compared to a two-dimensional, time-dependent, Fokker-Planck simulation. Measurements of the absorption strength of the electrons and of the energy confinement of the ions helped to specify the parameters of the code. The electron energy distribution is measured with an end-loss analyzer and a target x -ray detector. These characterize a non-Maxwellian distribution consisting of "passing" ($10 \mathrm{eV}<T_{e, p}<30 \mathrm{eV}$), "warm" (50 $\mathrm{eV}<T_{e, w}<300 \mathrm{eV}$), and "hot" ($1.2 \mathrm{keV}<T_{e, h}<4.0 \mathrm{keV}$) electron populations. The temperature and fractional densities of the warm and hot populations depend on the absorbed power and total density. A similar distribution is calculated with the simulation program that reproduces the endloss and x-ray signals. Both the experimental measurements and the simulation are described.

Next Week

Warm Electron-Driven Whistler Instability in an Electron-Cyclotron-Resonance Heated, Mirror-Confined Plasma

R. C. Garner, ${ }^{(a)}$ M. E. Mauel, ${ }^{(b)}$ S. A. Hokin, R. S. Post, and D. L. Smatlak Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 8 May 1986; revised manuscript received 24 February 1987)

The whistler electron microinstability has been observed in the Constance- B quadrupole-mirror, electron-cyclotron-resonance heated plasma. Experimental evidence indicates that the warm-electron component (2 keV) drives the instability while the hot-electron component (400 keV) is stable. Dispersion-relation calculations using a new distribution function (electron-cyclotron-resonance heated distribution) to model the warm-electron component are in agreement with this experimental result.
"Whistler instability in an electron-cyclotron-resonance-heated, mirror-confined plasma," Garner, Mauel, Hokin, Post, and Smatlak, Physics of Fluids B, 2, 242 (1990); [https://doi.org/10.1063/1.859234]

Next Week

Tokamak Plasma:
A Complex Physical System B B Kadomtsev
I V Kurchatov. Institute of Atomic Energy, Moscow, Russla

$$
\begin{gather*}
m_{\mathrm{i}} n \frac{\mathrm{~d} v}{\mathrm{~d} t}+\nabla p=\frac{1}{c} j \times \boldsymbol{B} \tag{88}\\
j=\frac{c}{4 \pi} \nabla \times \boldsymbol{B} \tag{89}\\
\operatorname{div} \boldsymbol{B}=0 \tag{90}\\
\frac{\partial \boldsymbol{B}}{\partial t}=\nabla \times v \times \boldsymbol{B} \tag{91}\\
\frac{\partial n}{\partial t}+\operatorname{div}(n \boldsymbol{v})=0 \tag{92}\\
m_{\mathrm{i}} n \frac{\mathrm{~d} v}{\mathrm{~d} t}+\nabla_{\perp} P=\frac{1}{4 \pi}(\boldsymbol{B} \cdot \nabla) \boldsymbol{B}_{\perp} \tag{95}\\
\frac{\partial \boldsymbol{B}_{\perp}}{\partial t}=\nabla \times\left(\boldsymbol{v} \times \boldsymbol{B}_{\perp}\right)+B_{\mathrm{T}} \frac{\partial v}{\partial z} \tag{96}
\end{gather*}
$$

