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Waves 1n a Hot Magnetized Plasma
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Electron temperature measurements in a dense plasma using Bernstein waves
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Abstract—Bernstein (electron cyclotron) waves have been successfully excited and detected in a
fairly dense r.f. Argon plasma. The use of these waves as a diagnostic tool in studying the thermal
properties of the plasma in the direction perpendicular to an applied magnetic field has been investi-
gated. The method could be useful in probing a wide variety of laboratory plasmas.

cussed later. Thus at high values of w,/w, the electron temperature is inferred from
essentially a single parameter fit (), giving 7, = 2-75eV.

F1G. 6.—Comparison of theoretical dispersion curves and experimentai data for
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B, = 357 G and pressure = 1m torr.
(a) wyfew, =35V, =098, 10°cm/sec
(b) w,/w, =325V, = 0-98. 10° cm/sec.
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F1c. 1.—Schematic diagram of experimental apparatus: A: pyrex tube, B: axial @ o
magnetic field coil (one of 17), C: r.f. coil and matching circuit, D: double Langmuir o ¢ oy
probe, E: L-shaped aerials, F: magnetic probe, G: Electrostatic energy analyser. HP 85554 =
FiG. 4—Set-up for Bernstein wavelength measurements, showing u.h.f. generator
connected to fixed aerial, movable aerial and motor drive, and method of display using
31 Exp erimental appara s spectrum analyser and X=-Y plotter.

The plasma was produced by a 1-2m long 10 cm in dia. pyrex tube immersed
in an axial uniform magnetic field variable between zero and 700 G. r.f. Power from
2 85 MHz 0-5 kW oscillator was matched into a coil surrounding the plasma and
having its axis perpendicular to the axis of the discharge tube Fig. 1. The r.f. power
couples into an m = 1 standing helicon wave (BoSWELL, 1970) as indicated by measure-
ments of the b, component of the wave field inside the tube. The frequency and wave-
length of the helicon waves are determined by the exciting frequency and the dimensions
of the exciting coil respectively.

EIVED SIGNAL (a.u.)
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Fic. 5.—Typical received signals using arrangement of Fig. 4. Electron cyclotron
4 frequency f. = 1130 MHz, Curve 4 for f = 2000 MHz, Curve B for f = 1650 MHz.
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Bernstein Waves in the Io Plasma Torus: A Novel Kind of Electron

Temperature Sensor -
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During Ulysses passage through the Io plasma torus, along a basically north-to-south trajectory
crossing the magnetic equator at R ~ 7.8 R; from Jupiter, the Unified Radio and Plasma Wave
experiment observed weakly banded emissions with well-defined minima at gyroharmonics. These
noise bands are interpreted as stable electrostatic fluctuations in Bernstein modes. The finite size of the 1 9 X h 1.1 : AN, 7.
antenna is shown to produce an apparent polarization depending on the wavelength, so that measuring | kil . . " ' O NEEE Sale
the spin modulation as a function of frequency yields the gyroradius and thus the local cold electron | ' s e 7Y W
temperature. This determination is not affected by a very small concentration of suprathermal
electrons, is independent of any gain calibration, and does not require an independent magnetic field
measurement. We find that the temperature increases with latitude, from ~1.3 X 10° K near the
magnetic (or centrifugal) equator, to approximately twice this value at £10° latitude (i.e., a distance of
~1.3 R; from the magnetic equatorial plane). As a by-product, we also deduce the magnetic field
strength with a few percent error.

frequency (kHz)

U.T. hours

Fig. 1. Unified radio and plasma wave dynamic spectrum during encounter displayed as frequency versus time,
with relative intensity indicated by the bar chart on the right. The torus traversal took place near 1400-1800 UT. We
have superimposed in continuous lines the plasma frequency f, deduced from the upper hybrid noise and harmonics of
the electron gyrofrequency f, (calculated from the data as expl;ined in section 4.3). The distance to Jupiter R (in Jovian
radii) and magnetic latitude A, are given in the middle panel. The dashed line near 1600 UT in the lower panel shows

5 Sg/2 (see text).
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Fig. 2. Typical spectra in (a) the torus and (b) its outer fringe.
The arrows indicate harmonics of the electron gyrofrequency f,.
The labels correspond to radial distance to Jupiter (R), magnetic
latitude (A,,), and plasma frequency (f,).
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Fig. 9. Measured frequencies of the minima of the spectral shape (dots), together with the gyrofrequency and its
harmonics computed by averaging the gyrofrequencies deduced from these minima (continuous lines). The gyrofre-
quency calculated from the magnetometer data (64-s averages; courtesy of A. Balogh) is shown for comparison as a
dashed line.
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Fig. 5. Bernstein modes (k = k) drawn as o/} versus kp for U.T. (hours)

different values of the parameter w,/{} increasing from leﬁ to right. Fig. 8. Temperature (15 min averaged) as a function of time,
(The. case "’ﬁ/‘o‘ - ,7'7 Corresponas t.o the. spectrum (,’f F igurc 3a, deduced from the spin modulation of Bernstein waves from ~+11°
and its first harmonic band is nearly identical to the limiting curve to —11° magnetic latitude along Ulysses trajectory in the torus (at
w,/Q) — = shown here for comparison.) The results correspond to ~8 R; from Jupiter). The shaded region sketches the maximum
a Maxwellian plasma but are not significantly changed by a very error bars, whose present large values are due to the very simple

small proportion of suprathermal electrons. method used here.
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Waves 1n a Hot Magnetized Plasma
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‘Cylindrical Velocity-Space Coordinates’
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Figure 10.1 Cylindrical velocity space coordinates v, , v, and ¢.

8fs+ﬁ[ﬁ+vxﬁ]-vaS0:O. (10.1.10)
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‘Cylindrical Velocity-Space Coordinates’
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10.2.1 The Harris Dispersion Relation
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Jacobi-Anger Expansion
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Phase shift
S k Figure 10.3 For a finite cyclotron radius, p., a phase shift is introduced by the
/6 — | ,0 cyclotron motion of the particle around the magnetic field. This phase shift is
responsible for the resonances at n w..
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Figure 10.4 Plots of the zero-order, first-order, and second-order Bessel func-
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e Bssing = N g, (g e Y, (10.2.11)

f¢ e_i(@sﬁb’ + B, sIn ¢,)d¢’ _ Z 7,(8,) f¢ e—i(azs + n)¢'d¢,

_ iZ InBs) ~i(as+m)g (10.2.12)

a,+n

n

f "l 4 om0y il +Bosing) g

SRS f Cemilay = 1+ | =i+ 14m¢ g

o—Has—1+n)¢ . —a;+1+n)p
=1 ) Ju(Bs | . 10.2.13
1;](,8)[ a;,—1+n as+1+n ( )




gives

. ' ¢ - 1(m—n
(¢ +,8381n¢)f :_k”aFSo ZJ ; el(m—n)g
8UII as+n
OF; odm—n+1)¢ JAm—-—n—-1)¢
o _kJ_ L Z J J | C
2 T 0u, = - as+n—1 as+n+1
(10.2.15)
In the second summation, the index can be relabeled to give
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Using the Bessel function recursion formula, J,,1 + J,-1 = (2n/B)J,, this sum can
be written in the more compact form

mZ,n,Bs(CVs‘Fn)e ‘ (10.2.17)
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This equation 1s called the Harris dispersion relation after Harris (1959), who first
derived this result.



10.2.2 The Low-temperature, Long-Wavelength Limit
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10.2.3 The Bernstein Modes
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10.2.3 The Bernstein Modes
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Figure 10.6 Plots of I',(8.) forn =1, 2, and 3.



10.2.3 The Bernstein Modes

00 2
2wp rn (IBC)

Plky.w)=1-) o =1 =% (10.2.29)
n=1/7"¢"7C ¢
Wy
4, —
@3
3w b—="

Oun [ ~Y

20, —
w

a)c_ -

1 ) 3 4 5 B.=k,pe

Figure 10.8 A plot of the solutions of D(k,,w) = 0 as a function of the
perpendicular wave number, k&, . These solutions are called the Bernstein modes.



Figure 10.25 A loss-cone electron velocity distribution showing the cyclotron
resonance velocity, vjres, for a whistler-mode wave propagating in the k;

direction.

Next Lecture...

10.3 Electromagnetic Waves
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