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integral on the right-hand side as
∫ ∞

−∞
Φ̂∗1(k) e−ikz eiω∗(k, t)tdk =

∫ −∞

∞
Φ̂∗1(−k) eikz eiω∗(−k, t)td(−k)

=

∫ ∞

−∞
Φ̂∗1(−k) eikz eiω∗(−k, t)dk. (11.1.29)

Comparing the right-hand side of the above equation with the left-hand side of the
previous equation, we obtain the identities

Φ̂1(k) = Φ̂∗1(−k) (11.1.30)

and

ω(k, t) = −ω∗(−k, t). (11.1.31)

The above equation implies that

ωr(k, t) = −ωr(−k, t), γ(k, t) = γ(−k, t). (11.1.32)

To obtain the quasi-linear diffusion equation from Eq. (11.1.15), consider the
expression

∂

∂υz

〈
fs1
∂Φ1

∂z

〉
=

∂

∂υz

1
2L

∫ L

−L

∂Φ1

∂z
fs1dz

=
∂

∂υz

1
2L

∫ L

−L

[{
∂

∂z

∫ ∞

−∞
Φ̃1(k, t) eikzdk

}

×
∫ ∞

−∞
f̃s1(k′,υz, t) eik′z dk′

]
dz, (11.1.33)

where we have used the Fourier transformation equations (11.1.19) and (11.1.20).
If we now change the order of differentiation with respect to z and the integration
with respect to k in the first integrand (in parentheses), take the limit of a large box
(L→∞), and use the identity

lim
L→∞

∫ L

−L
ei(k+ k′)zdz = 2πδ(k+ k′), (11.1.34)

where δ(k+ k′) is the Dirac delta function; we obtain

∂

∂υz

〈
fs1
∂Φ1

∂z

〉
= −π

L
∂

∂υz

∫ ∞

−∞
ikΦ̃1(−k, t) f̃s1(k,υz, t)dk. (11.1.35)
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The above equation implies that the spectral density E (k, t) obeys the differential
equation

∂E (k, t)
∂t

= 2γ(k, t)E (k, t), (11.1.43)

where the time dependence of γ(k, t) is suppressed in integrating E (k, t), because
γ(k, t) varies much more slowly with time than the fluctuating energy E (k, t). Using
the identity Ê1(−k) = Ê∗1(k) and Eq. (11.1.42), Eq. (11.1.39) can be written in the
form of a diffusion equation,

∂

∂t
⟨ fs⟩(υz, t) =

∂

∂υz

[
Dq(υz, t)

∂

∂υz
⟨ fz⟩(υz, t)

]
, (11.1.44)

which is called the quasi-linear diffusion equation, where

Dq(υz, t) =
2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

iE (k, t)
ω− kυz

dk (11.1.45)

is the diffusion coefficient. Since Eq. (11.1.44) is the time evolution equation for
a real distribution function ⟨ fs⟩(υz, t), the coefficient Dq(υz, t), given by the above
equation, must also be real. This can be seen by writing

iE (k, t)
ω− kυz

=
iE (k, t)

ωr + iγ− kυz
=

iE (k, t)[ωr − kυz − iγ]
(ωr − kυz)2 +γ2 . (11.1.46)

Using the fact that E (k, t) is even in k (i.e., E (k, t) = E (−k, t)) and ωr(k, t) is odd
in k (by identity (11.1.32)), it follows that the imaginary part of the integral in
Eq. (11.1.45) vanishes identically because the integrand is odd in k. We are thus
left with the diffusion coefficient

Dq(υz, t) =
2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

E (k, t)γ(k, t)
[ωr(k, t)− kυz]2 +γ2(k, t)

dk, (11.1.47)

which is manifestly real and positive for growing modes.
Equations (11.1.42) and (11.1.44), with the diffusion coefficient specified by

Eq. (11.1.47), are the basic equations of quasi-linear theory.

11.1.2 Application to the Bump-on-Tail Instability

To illustrate an application of quasi-linear theory, we next discuss the time
evolution of the electron bump-on-tail instability. Such a distribution function was
first discussed in Section 9.5.4, and is shown in Figure 11.1. The phase velocities,
ω/k, of the unstable Langmuir waves that arise from this distribution function lie
in the region where fe0 = ⟨ fe⟩(υz, t = 0) is an increasing function of υz, i.e., where
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The above equation implies that the spectral density E (k, t) obeys the differential
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is the diffusion coefficient. Since Eq. (11.1.44) is the time evolution equation for
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The above equation implies that the spectral density E (k, t) obeys the differential
equation

∂E (k, t)
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= 2γ(k, t)E (k, t), (11.1.43)
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∂

∂υz

[
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∂

∂υz
⟨ fz⟩(υz, t)

]
, (11.1.44)

which is called the quasi-linear diffusion equation, where
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ms
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dk (11.1.45)

is the diffusion coefficient. Since Eq. (11.1.44) is the time evolution equation for
a real distribution function ⟨ fs⟩(υz, t), the coefficient Dq(υz, t), given by the above
equation, must also be real. This can be seen by writing
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Equations (11.1.42) and (11.1.44), with the diffusion coefficient specified by

Eq. (11.1.47), are the basic equations of quasi-linear theory.

11.1.2 Application to the Bump-on-Tail Instability

To illustrate an application of quasi-linear theory, we next discuss the time
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Using Eqs. (11.1.23) and (11.1.24), we can write the above equation as

∂

∂υz

〈
fs1
∂Φ1

∂z

〉
=− π

L
∂

∂υz

∫ ∞

−∞
ik Φ̂1(−k) f̂s1(k,υz)e−i[ω(k, t)+ω(−k, t)]tdk

=− π
L
∂

∂υz

∫ ∞

−∞
ik Φ̂1(−k) f̂s1(k,υz)e2γ(k, t)tdk, (11.1.36)

where we have used identities (11.1.32) to obtain

ω(k, t)+ω(−k, t) =ωr(k, t)+ iγ(k, t)+ωr(−k, t)+ iγ(−k, t)

= 2iγ(k, t). (11.1.37)

Substituting expression (11.1.25) for f̂s1(k,υz) into Eq. (11.1.36), we obtain

∂

∂υz

〈
fs1
∂Φ1

∂z

〉
=
π

L
es

ms

∂

∂υz

∫ ∞

−∞
ik2 Φ̂1(k) Φ̂1(−k)

ω− kυz

∂

∂υz
⟨ fs⟩e2γ(k, t)tdk, (11.1.38)

which, when substituted into the right-hand side of Eq. (11.1.15), gives

∂

∂t
⟨ fs⟩ =

π

L

(
es

ms

)2
∂

∂υz

[∫ ∞

−∞
Ê1(k) Ê1(−k)e2γ(k, t)t i

ω− kυz

∂

∂υz
⟨ fs⟩

]
dk, (11.1.39)

where Ê1(k) = −ikΦ̂1(k). The above equation can be written more compactly in
terms of the averaged electrostatic energy, which is defined as

⟨WE⟩ =
ϵ0

4L

∫ L

−L
|E1(z, t)|2dz, (11.1.40)

where ϵ0|E1(z, t)|2/2 is the electrostatic energy density. Using the identity (11.1.34),
it can be shown that

⟨WE⟩ =
πϵ0

2L

∫ ∞

−∞
Ẽ1(k, t)Ẽ1(−k, t)dk =

πϵ0

2L

∫ ∞

−∞
Ẽ1(k, t)Ẽ∗1(k, t)dk

=
πϵ0

2L

∫ ∞

−∞
|Ẽ1(k, t)|2 dk

=

∫ ∞

−∞
E (k, t)dk, (11.1.41)

where E (k, t)= (πϵ0/2L)|Ẽ1(k, t)|2 is called the spectral density of the electric field.
We can also write E (k, t) in the equivalent form:

E (k, t) =
πϵ0

2L
|Ê1(k)|2 e2γ(k, t)t. (11.1.42)
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The above equation implies that the spectral density E (k, t) obeys the differential
equation

∂E (k, t)
∂t

= 2γ(k, t)E (k, t), (11.1.43)

where the time dependence of γ(k, t) is suppressed in integrating E (k, t), because
γ(k, t) varies much more slowly with time than the fluctuating energy E (k, t). Using
the identity Ê1(−k) = Ê∗1(k) and Eq. (11.1.42), Eq. (11.1.39) can be written in the
form of a diffusion equation,

∂

∂t
⟨ fs⟩(υz, t) =

∂

∂υz

[
Dq(υz, t)

∂

∂υz
⟨ fz⟩(υz, t)

]
, (11.1.44)

which is called the quasi-linear diffusion equation, where

Dq(υz, t) =
2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

iE (k, t)
ω− kυz

dk (11.1.45)

is the diffusion coefficient. Since Eq. (11.1.44) is the time evolution equation for
a real distribution function ⟨ fs⟩(υz, t), the coefficient Dq(υz, t), given by the above
equation, must also be real. This can be seen by writing

iE (k, t)
ω− kυz

=
iE (k, t)

ωr + iγ− kυz
=

iE (k, t)[ωr − kυz − iγ]
(ωr − kυz)2 +γ2 . (11.1.46)

Using the fact that E (k, t) is even in k (i.e., E (k, t) = E (−k, t)) and ωr(k, t) is odd
in k (by identity (11.1.32)), it follows that the imaginary part of the integral in
Eq. (11.1.45) vanishes identically because the integrand is odd in k. We are thus
left with the diffusion coefficient
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2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

E (k, t)γ(k, t)
[ωr(k, t)− kυz]2 +γ2(k, t)

dk, (11.1.47)

which is manifestly real and positive for growing modes.
Equations (11.1.42) and (11.1.44), with the diffusion coefficient specified by

Eq. (11.1.47), are the basic equations of quasi-linear theory.

11.1.2 Application to the Bump-on-Tail Instability

To illustrate an application of quasi-linear theory, we next discuss the time
evolution of the electron bump-on-tail instability. Such a distribution function was
first discussed in Section 9.5.4, and is shown in Figure 11.1. The phase velocities,
ω/k, of the unstable Langmuir waves that arise from this distribution function lie
in the region where fe0 = ⟨ fe⟩(υz, t = 0) is an increasing function of υz, i.e., where
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The above equation implies that the spectral density E (k, t) obeys the differential
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The above equation implies that the spectral density E (k, t) obeys the differential
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left with the diffusion coefficient

Dq(υz, t) =
2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

E (k, t)γ(k, t)
[ωr(k, t)− kυz]2 +γ2(k, t)

dk, (11.1.47)

which is manifestly real and positive for growing modes.
Equations (11.1.42) and (11.1.44), with the diffusion coefficient specified by

Eq. (11.1.47), are the basic equations of quasi-linear theory.

11.1.2 Application to the Bump-on-Tail Instability

To illustrate an application of quasi-linear theory, we next discuss the time
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first discussed in Section 9.5.4, and is shown in Figure 11.1. The phase velocities,
ω/k, of the unstable Langmuir waves that arise from this distribution function lie
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velocities are then given by

υz = ±
√
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(W −qΦ), (9.2.51)

where the (+) sign is for particles moving in the +z direction, and the (−) sign is
for particles moving in the −z direction. For an electrostatic potential of the form
Φ(z) =Φ0 coskz, the trajectories in (z,υz) phase space are as shown in Figure 9.13.
The slightly darker lines in the phase-space plot that separate trapped particles
from untrapped particles are called separatrices. The total energy of particles on
the separatrices is given by W0 =qΦ0, whereΦ0 is the amplitude of the electrostatic
potential. Particles with total energies W < W0 are trapped and particles with
total energies W > W0 are untrapped. The velocity distribution of particles on
these trajectories is determined by the zero-order distribution function, F0(υz).
Once the initial particle distribution function is determined, trapped particles,
such as A and B, follow the ellipse-shaped trajectories inside the separatrices, and
untrapped particles, such as A ′ and B′, stream freely along the trajectories outside
the separatrices. The oscillation frequency of the trapped particles depends on how
deep the particles are in the potential well. Particles trapped near the bottom of the
potential well, where the potential is parabolic, oscillate at a frequency called the
bounce frequency, which is given by

ωb = k

√
qΦ0

m
. (9.2.52)

Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
particles at the top of the well. Since the oscillation frequency decreases with
increasing energy, as the particles move along the ellipse-shaped trajectories, they
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potential. Particles with total energies W < W0 are trapped and particles with
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such as A and B, follow the ellipse-shaped trajectories inside the separatrices, and
untrapped particles, such as A ′ and B′, stream freely along the trajectories outside
the separatrices. The oscillation frequency of the trapped particles depends on how
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bounce frequency, which is given by
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Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
particles at the top of the well. Since the oscillation frequency decreases with
increasing energy, as the particles move along the ellipse-shaped trajectories, they
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such as A and B, follow the ellipse-shaped trajectories inside the separatrices, and
untrapped particles, such as A ′ and B′, stream freely along the trajectories outside
the separatrices. The oscillation frequency of the trapped particles depends on how
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Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
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where the (+) sign is for particles moving in the +z direction, and the (−) sign is
for particles moving in the −z direction. For an electrostatic potential of the form
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potential. Particles with total energies W < W0 are trapped and particles with
total energies W > W0 are untrapped. The velocity distribution of particles on
these trajectories is determined by the zero-order distribution function, F0(υz).
Once the initial particle distribution function is determined, trapped particles,
such as A and B, follow the ellipse-shaped trajectories inside the separatrices, and
untrapped particles, such as A ′ and B′, stream freely along the trajectories outside
the separatrices. The oscillation frequency of the trapped particles depends on how
deep the particles are in the potential well. Particles trapped near the bottom of the
potential well, where the potential is parabolic, oscillate at a frequency called the
bounce frequency, which is given by
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Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
particles at the top of the well. Since the oscillation frequency decreases with
increasing energy, as the particles move along the ellipse-shaped trajectories, they
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where the (+) sign is for particles moving in the +z direction, and the (−) sign is
for particles moving in the −z direction. For an electrostatic potential of the form
Φ(z) =Φ0 coskz, the trajectories in (z,υz) phase space are as shown in Figure 9.13.
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the separatrices is given by W0 =qΦ0, whereΦ0 is the amplitude of the electrostatic
potential. Particles with total energies W < W0 are trapped and particles with
total energies W > W0 are untrapped. The velocity distribution of particles on
these trajectories is determined by the zero-order distribution function, F0(υz).
Once the initial particle distribution function is determined, trapped particles,
such as A and B, follow the ellipse-shaped trajectories inside the separatrices, and
untrapped particles, such as A ′ and B′, stream freely along the trajectories outside
the separatrices. The oscillation frequency of the trapped particles depends on how
deep the particles are in the potential well. Particles trapped near the bottom of the
potential well, where the potential is parabolic, oscillate at a frequency called the
bounce frequency, which is given by

ωb = k
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Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
particles at the top of the well. Since the oscillation frequency decreases with
increasing energy, as the particles move along the ellipse-shaped trajectories, they
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where the (+) sign is for particles moving in the +z direction, and the (−) sign is
for particles moving in the −z direction. For an electrostatic potential of the form
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Once the initial particle distribution function is determined, trapped particles,
such as A and B, follow the ellipse-shaped trajectories inside the separatrices, and
untrapped particles, such as A ′ and B′, stream freely along the trajectories outside
the separatrices. The oscillation frequency of the trapped particles depends on how
deep the particles are in the potential well. Particles trapped near the bottom of the
potential well, where the potential is parabolic, oscillate at a frequency called the
bounce frequency, which is given by
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Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
particles at the top of the well. Since the oscillation frequency decreases with
increasing energy, as the particles move along the ellipse-shaped trajectories, they
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where the (+) sign is for particles moving in the +z direction, and the (−) sign is
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Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
particles at the top of the well. Since the oscillation frequency decreases with
increasing energy, as the particles move along the ellipse-shaped trajectories, they
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where the (+) sign is for particles moving in the +z direction, and the (−) sign is
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the separatrices. The oscillation frequency of the trapped particles depends on how
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Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
particles at the top of the well. Since the oscillation frequency decreases with
increasing energy, as the particles move along the ellipse-shaped trajectories, they

(8C"D�$9�)D8��4*4�!45!8�4(��((%D-��+++�64"5C�7:8�$C:�6$C8�(8C"D���((%D-��7$��$C:�������
�,
���	,�����,����
/$+#!$4787�9C$"��((%D-��+++�64"5C�7:8�$C:�6$C8��2846�8CD�.$!!8:8�1�5C4C,� �.$!)"5�4�3#�*8CD�(,��$#����04#������4(��
-
	-
	��D)5 86(�($�(�8�.4"5C�7:8�.$C8

9.2 The Landau Approach 343

qΦ

υz

z

z

B

A

B 

A

ω
k

B A  and

A and B

Figure 9.13 Phase-space trajectories in a frame of reference (z,υz) moving at the
phase velocity for a sinusoidal electrostatic potential Φ(z) =Φ0 coskz.

velocities are then given by

υz = ±
√

2
m

(W −qΦ), (9.2.51)
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Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
particles at the top of the well. Since the oscillation frequency decreases with
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Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
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Figure 9.13 Phase-space trajectories in a frame of reference (z,υz) moving at the
phase velocity for a sinusoidal electrostatic potential Φ(z) =Φ0 coskz.

velocities are then given by

υz = ±
√

2
m

(W −qΦ), (9.2.51)

where the (+) sign is for particles moving in the +z direction, and the (−) sign is
for particles moving in the −z direction. For an electrostatic potential of the form
Φ(z) =Φ0 coskz, the trajectories in (z,υz) phase space are as shown in Figure 9.13.
The slightly darker lines in the phase-space plot that separate trapped particles
from untrapped particles are called separatrices. The total energy of particles on
the separatrices is given by W0 =qΦ0, whereΦ0 is the amplitude of the electrostatic
potential. Particles with total energies W < W0 are trapped and particles with
total energies W > W0 are untrapped. The velocity distribution of particles on
these trajectories is determined by the zero-order distribution function, F0(υz).
Once the initial particle distribution function is determined, trapped particles,
such as A and B, follow the ellipse-shaped trajectories inside the separatrices, and
untrapped particles, such as A ′ and B′, stream freely along the trajectories outside
the separatrices. The oscillation frequency of the trapped particles depends on how
deep the particles are in the potential well. Particles trapped near the bottom of the
potential well, where the potential is parabolic, oscillate at a frequency called the
bounce frequency, which is given by

ωb = k

√
qΦ0

m
. (9.2.52)

Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
particles at the top of the well. Since the oscillation frequency decreases with
increasing energy, as the particles move along the ellipse-shaped trajectories, they
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and

υm+1 = υm − 2πϵ2 sin(2πzm+1). (11.1.57)

The Standard Map, which is originally due to Chirikov (1969) and Taylor (1969), is
one of the most widely studied examples of chaos in Hamiltonian systems, and its
application to quasi-linear theory is discussed by Stix (1992). Because this map
is already in finite difference form, it can be integrated easily on a computer.
The computing strategy is as follows. To start, choose a set of initial conditions
(z0,υ0). For each initial condition, a series of iterants (z1,υ1), (z2,υ2), . . ., is then
calculated and plotted as points in z − υ phase space. Figure 11.2 shows such a
plot for ϵ = 0.10. The υn values cover a range suitable for showing two of the
infinite number of waves. We note the strong similarity to Figure 9.13, except
that there are now trapping regions associated with each of the waves, only two
of which are shown. As the wave amplitude increases, ϵ becomes larger, and the
trapping regions increase in size. This trend can be seen in Figure 11.3, which is
for ϵ = 0.30. Well before the trapping regions become large enough to touch each
other, we note the appearance of smaller trapping regions between the separatrices
of the main trapping regions associated with the two waves.

For an even larger wave amplitude, ϵ = 0.50, shown in Figure 11.4, the phase
space becomes a mixture of some regions that contain trapped particles and other
regions that contain particles that appear to be randomly located. As ϵ becomes
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even larger, the trapping regions are destroyed and the particle trajectories are no
longer constrained by nice, well-behaved functions that are constants of motion.
Instead, the trajectories wander over and tend to fill most of the phase space,
as shown in Figure 11.5 for ϵ = 1.00. Such behavior is characteristic of chaos,
similar to the example discussed in Section 3.10. It is worth emphasizing again
that the onset of chaos does not mean that the particle motions are random. Since
the mapping is strictly deterministic, the final location of the particle in phase
space is unique, no matter how large the value of ϵ may be. However, even small
differences in the initial conditions or the wave amplitudes and phases can lead to
very widely diverging final results when the particle motion is chaotic. In many
situations of physical interest, such as a plasma comprising many particles, it is
impossible to specify exactly the initial conditions of all the particles. The particle
trajectories in phase space then become unpredictable, and hence random. This
simple demonstration of chaotic particle motions provides a powerful justification
for the basic assumption of quasi-linear theory, which is that the growth of waves
over a range of phase velocities leads to the rapid diffusion of particles in velocity
space and an eventual flattening of the distribution function in the unstable region
of velocity space.

A good example of such velocity space diffusion can be seen in the spectra
of solar flare electrons responsible for type III solar radio bursts. As discussed
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the instability. It is interesting to investigate exactly how this diffusion takes place.
In Section 9.2.5 we discussed the trapping and phase mixing of particles in phase
space when one wave is present. To investigate the nonlinear effects that occur
when a broad spectrum of waves is present, let us consider what happens when
we superpose an infinite number of sinusoidal waves of the same amplitude and
wavelength. For such a superposition, the equations of motion are

dz
dt
= υz (11.1.51)

and

m
dυz

dt
= q E

N∑

n=−N

cos(kz− nωt), (11.1.52)

where N →∞. To simplify the equations, we define dimensionless variables ξ =
kz,τ=ωt, and υ= υz/(ω/k). The above equations can then be rewritten in the form

dξ
dτ
= υ (11.1.53)

and

dυ
dτ
= ϵ2

N∑

n=−N

cos(ξ− nτ), (11.1.54)

where ϵ2 = qkE/(mω2) is a parameter that measures the depth of the potential well
formed by a given wave. In the limit N→∞, it can be shown that the summation
in the above equation can be written

N∑

n=−N

cos(ξ− nτ)
N→∞⇒ 2πcosξ

∞∑

n=−∞
δ(τ− 2πn), (11.1.55)

where δ(τ− 2πn) is the Dirac delta function. In other words, the charged particle
is subject to a sequence of instantaneous kicks when τ = 2πn, which produces a
series of discontinuous changes in its velocity. In between each kick, the particle
moves with a uniform velocity. The process can be described rigorously by a series
of difference equations, obtained by integrating the differential equations (11.1.53)
and (11.1.54) with respect to time until just after the (m+1)st kick. Defining a new
variable zn = ξn/2π−1/4, it can be shown that Eqs. (11.1.54) and (11.1.55) reduce
to the so-called Standard Map, given by the difference equations

zm+1 = zm +υm (11.1.56)
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and
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The Standard Map, which is originally due to Chirikov (1969) and Taylor (1969), is
one of the most widely studied examples of chaos in Hamiltonian systems, and its
application to quasi-linear theory is discussed by Stix (1992). Because this map
is already in finite difference form, it can be integrated easily on a computer.
The computing strategy is as follows. To start, choose a set of initial conditions
(z0,υ0). For each initial condition, a series of iterants (z1,υ1), (z2,υ2), . . ., is then
calculated and plotted as points in z − υ phase space. Figure 11.2 shows such a
plot for ϵ = 0.10. The υn values cover a range suitable for showing two of the
infinite number of waves. We note the strong similarity to Figure 9.13, except
that there are now trapping regions associated with each of the waves, only two
of which are shown. As the wave amplitude increases, ϵ becomes larger, and the
trapping regions increase in size. This trend can be seen in Figure 11.3, which is
for ϵ = 0.30. Well before the trapping regions become large enough to touch each
other, we note the appearance of smaller trapping regions between the separatrices
of the main trapping regions associated with the two waves.

For an even larger wave amplitude, ϵ = 0.50, shown in Figure 11.4, the phase
space becomes a mixture of some regions that contain trapped particles and other
regions that contain particles that appear to be randomly located. As ϵ becomes
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346 Electrostatic Waves in a Hot Unmagnetized Plasma
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Figure 9.15 The nonlinear effects of particle trapping tend to increase the wave
amplitude relative to the predictions of linear Landau damping.

their relative phases. However, as in the linear phase, if there is even a small rate
of irreversible interactions, such as due to collisions, the phase-mixed distribution
is eventually converted to a completely random distribution.

9.3 The Plasma Dispersion Function

Next we discuss the dispersion relation for a Maxwellian distribution function,
which in normalized one-dimensional form is given by

F0(υz) =
( m
2πκT

)1/2
exp

[
−mυ2

z

2κT

]
. (9.3.1)

Unfortunately, for a Maxwellian distribution function, the integral in the dispersion
relation equation (9.2.23) cannot be evaluated using the residue theorem. The
reason is that when the integration contour is closed at infinity the integral diverges.
Nevertheless, approximations can be carried out in certain limits, and it is useful to
develop the tools necessary to carry out these approximations, since we will have
use for these tools later. If we make a change of variables to

z =

√
m

2κT
υz and ζ =

√
m

2κT

(
ip
k

)
, (9.3.2)

it is easy to show that the dispersion relation equation (9.2.23) can be rewritten in
the form

Ð(k, p) = 1+
1

(kλD)2

1√
π

∫

C

z e−z2

z− ζ dz = 0, (9.3.3)

where we have made use of the fact that
√
κT/m=ωpλD. The integral in the above

expression can be rewritten in a standard form by the algebraic reorganization

1√
π

∫

C

z e−z2

z− ζ dz =
1√
π

∫

C

(
1+

ζ

z− ζ

)
e−z2

dz

= 1+ ζZ(ζ), (9.3.4)
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Experimental Test of Quasilinear Theory*

C. Roberson, K. %. Gentle, and P. Nielsen
Center for Plasma Physics, University of Texas, Austin, Texas 78718

(Received 5 November 1970)

The shape and amplitude of the electron-plasma wave spectrum resulting from a
"gentle bump" on the tail of the electron velocity distribution of a plasma is measured
and found to be in good agreement with quasilinear theory.

Nonlinear theories of unstable plasmas are
usually concerned with two principal problems:
estimating the final wave spectrum and calculat-
ing the effect of the waves on the particles. The
simplest instability that may be followed analy-
tically to its nonlinear limit is a "gentIe bump"
on the tail of the electron velocity distribution.
The amplitude and shape of the spectrum as well
as the change in the velocity distribution may be
cal.culated from quasilinear theory. "
In this Letter we report an experiment designed

to test the validity of this theory by measuring
the electron-plasma wave spectrum resulting
from the injection of an electron beam of suffi-
ciently low density and large velocity spread to
satisfy the assumptions of quasilinear theory.
In prior beam-plasma experiments the initial
velocity spread of the beam electrons was not
sufficient to meet the requirements. ' '
When the beam electrons form a "gentle bump"

on the plasma electron velocity distribution, the
dispersion relation is determined by the plasma

electrons, and the only effect of the beam is to
cause exponential growth of the waves (or plasma
noise) with phase velocities corresponding to
the positive slope of the beam distribution. As
the waves become sufficiently large they cause

' a diffusion of the beam electrons in velocity.
The growth rate of the waves therefore decreases
and eventually goes to zero when the velocity
distribution becomes flattened in the beam region.
Hence, we can calculate the dispersion relation
and initial growth rate from linear theory and
the equilibrium spectrum from the quasilinear
theory.
To determine the dispersion relation, we con-

sider a long cylinder of collisionless plasma in
a strong magnetic field aligned with the axis.
The plasma density is a function of radius only.
In the limit that the phase velocity of the waves
is small compared with the velocity of light, the
electric field may be derived from a scalar po-
tential, and for the radially symmetric modes
the dispersion relation may be found from

d'4(r) 1 d4(r), ~,'(r)

where 4 is the wave potential, k and ~ are the
complex wave number and angular frequency of
the wave, co~'(r) is the radially dependent plasma
frequency, v, the mean thermal velocity of the
plasma electrons, and W is related to the plas-
ma dispersion function' by W(x) =2Z'(-x/W2).
Using the experimentally observed density pro-
file, the numerical solution of Eq. (1) yields the
potential profile 4 (r) and the complex wave num-
ber as a function of frequency in the absence of
the beam.
Vfhen the beam in injected into the plasma, the

real part of the dispersion relation is unchanged
and the growth due to the beam is given by'

nv, ' f, rdr 4'(r)[sf, (v, r)/Bv]„»
v,m, ' f,"rdr 'C( )Xr(r)

where e is the imaginary part of the wave num-

! ber, v, is the group velocity, N(r) the plasma
density, 8'~' the derivative of the real part of
the W function, and f, the beam-velocity distri-
bution function. The growth rate depends on the
ratio of the beam density integrated over its
cross-sectional area to the plasma density in-
tegrated over the plasma cross section. Both
low density and small cross section in the beam
contribute to the required weakness of the insta-
bility.
Drummond' has considered the quasilinear de-

velopment of spatial. ly growing waves in a plas-
ma, column immersed in a strong magnetic field
and finds a local diffusion equation similar to
the one-dimensional case. When the diffusion
equation is integrated over the cross section of
the plasma and combined with the equation for
the rate of change in wave energy, we find the
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The growth rate of the waves therefore decreases
and eventually goes to zero when the velocity
distribution becomes flattened in the beam region.
Hence, we can calculate the dispersion relation
and initial growth rate from linear theory and
the equilibrium spectrum from the quasilinear
theory.
To determine the dispersion relation, we con-

sider a long cylinder of collisionless plasma in
a strong magnetic field aligned with the axis.
The plasma density is a function of radius only.
In the limit that the phase velocity of the waves
is small compared with the velocity of light, the
electric field may be derived from a scalar po-
tential, and for the radially symmetric modes
the dispersion relation may be found from

d'4(r) 1 d4(r), ~,'(r)

where 4 is the wave potential, k and ~ are the
complex wave number and angular frequency of
the wave, co~'(r) is the radially dependent plasma
frequency, v, the mean thermal velocity of the
plasma electrons, and W is related to the plas-
ma dispersion function' by W(x) =2Z'(-x/W2).
Using the experimentally observed density pro-
file, the numerical solution of Eq. (1) yields the
potential profile 4 (r) and the complex wave num-
ber as a function of frequency in the absence of
the beam.
Vfhen the beam in injected into the plasma, the

real part of the dispersion relation is unchanged
and the growth due to the beam is given by'

nv, ' f, rdr 4'(r)[sf, (v, r)/Bv]„»
v,m, ' f,"rdr 'C( )Xr(r)

where e is the imaginary part of the wave num-

! ber, v, is the group velocity, N(r) the plasma
density, 8'~' the derivative of the real part of
the W function, and f, the beam-velocity distri-
bution function. The growth rate depends on the
ratio of the beam density integrated over its
cross-sectional area to the plasma density in-
tegrated over the plasma cross section. Both
low density and small cross section in the beam
contribute to the required weakness of the insta-
bility.
Drummond' has considered the quasilinear de-

velopment of spatial. ly growing waves in a plas-
ma, column immersed in a strong magnetic field
and finds a local diffusion equation similar to
the one-dimensional case. When the diffusion
equation is integrated over the cross section of
the plasma and combined with the equation for
the rate of change in wave energy, we find the
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FIG. 2. (a) Wave growth and saturation versus dis-
tance (b.) Saturation power level versus beam current.

The spatial growth of the noise as a result of
the beam is measured by connecting the receiv-
ing antenna directly to a broad-band amplifier
and a sampling rf voltmeter. The log of the volt-
meter output is plotted on the Y axis and dis-
tance from beam injection point on the X axis of
the recorder'. The results [Fig. 2(a)] have the
qualitative features expected from the theory:
slow exponential growth to reach a quasiequilib-
rium saturation level without overshoot.
To determine the wave power in the spectrum

we must know the absolute coupling constant of
the probes. No precise way of obtaining this is
available, but the total coupling through the plas-
ma for a paix of probes can easily be measured.
For three probes, three transmitter-receiver
pairs are possible. This gives three equations
for the three unknown single-probe coupling
coefficients. A calibrated receiver is positioned
200 cm from the beam injection point and the
wave power is measux ed as a function of beam
current. The wave power is linearly proportion-
al to the beam current [Fig. 2(b)] as predicl:ed
by Eq. (4). For our beam distribution, we cal-
culate that 14% of the beam power should be con-
verted to wave power. We obsex've approximate-
ly 10% conversion, which is excellent agreement
for R measurement of absolute power level. "
The shape of the equilibrium spectrum is mea-

sured using an adjustable narrow-band (3%) filter
in the receiving line. The powex and coupling
constant are measured at a series of fixed fre-
quencies. The amplitude of the spectrum as cal-
culated from Eq. (3) is normalized to the mea-
sured value at one point and the comparison of
theory and experiment is shown in Fig. 3(a).
The ShRpe Rnd width of the spectrUIQ Rle found
to be in excellent agreement with theory.
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FIG. 3. (a) Shape of wave spectrum. Solid line is
theory, circles are experimental values. Beam cur-
rent is 2 mA. (b) Inferred beam-velocity distribution
versus energy analyzer distribution. The solid curve
is obtained from an electronically differentiated output
of the analyzer.

We have also measured the growth rates of the
spectral components by using the adjustable fil-
ter and plotting the log of the receiver power
versus distance for a number of frequencies.
These growth rates were used in Eq. (2) to find
the avexaged beam-velocity distribution function
assuming that the wave potential is constant
over the beam diameter; the beam is sufficiently
small to justify this easily. This inferred beam
distribution is compared with the direct measure-
ment using an energy analyzer. The results are
shown in Fig. 3(b), where the width of the shaded
region is an indication of the estimated error in
determining the inferred distribution. No "nox'-
DlRllzRtlon plocedure 18 used 1n this conlpari-
son.
In summary, we find that the quasilinear theory
correctly predicts the manner in which the elec-
tron-plasma wave spectrum from a "gentle bump"
grows and saturates. The theory gives the pro-
per dependence of saturation level as a function
of beam current, the shape of the spectrum,
and the magnitude of the equilibrium power level.
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The shape and amplitude of the electron-plasma wave spectrum resulting from a
"gentle bump" on the tail of the electron velocity distribution of a plasma is measured
and found to be in good agreement with quasilinear theory.

Nonlinear theories of unstable plasmas are
usually concerned with two principal problems:
estimating the final wave spectrum and calculat-
ing the effect of the waves on the particles. The
simplest instability that may be followed analy-
tically to its nonlinear limit is a "gentIe bump"
on the tail of the electron velocity distribution.
The amplitude and shape of the spectrum as well
as the change in the velocity distribution may be
cal.culated from quasilinear theory. "
In this Letter we report an experiment designed

to test the validity of this theory by measuring
the electron-plasma wave spectrum resulting
from the injection of an electron beam of suffi-
ciently low density and large velocity spread to
satisfy the assumptions of quasilinear theory.
In prior beam-plasma experiments the initial
velocity spread of the beam electrons was not
sufficient to meet the requirements. ' '
When the beam electrons form a "gentle bump"

on the plasma electron velocity distribution, the
dispersion relation is determined by the plasma

electrons, and the only effect of the beam is to
cause exponential growth of the waves (or plasma
noise) with phase velocities corresponding to
the positive slope of the beam distribution. As
the waves become sufficiently large they cause

' a diffusion of the beam electrons in velocity.
The growth rate of the waves therefore decreases
and eventually goes to zero when the velocity
distribution becomes flattened in the beam region.
Hence, we can calculate the dispersion relation
and initial growth rate from linear theory and
the equilibrium spectrum from the quasilinear
theory.
To determine the dispersion relation, we con-

sider a long cylinder of collisionless plasma in
a strong magnetic field aligned with the axis.
The plasma density is a function of radius only.
In the limit that the phase velocity of the waves
is small compared with the velocity of light, the
electric field may be derived from a scalar po-
tential, and for the radially symmetric modes
the dispersion relation may be found from

d'4(r) 1 d4(r), ~,'(r)

where 4 is the wave potential, k and ~ are the
complex wave number and angular frequency of
the wave, co~'(r) is the radially dependent plasma
frequency, v, the mean thermal velocity of the
plasma electrons, and W is related to the plas-
ma dispersion function' by W(x) =2Z'(-x/W2).
Using the experimentally observed density pro-
file, the numerical solution of Eq. (1) yields the
potential profile 4 (r) and the complex wave num-
ber as a function of frequency in the absence of
the beam.
Vfhen the beam in injected into the plasma, the

real part of the dispersion relation is unchanged
and the growth due to the beam is given by'

nv, ' f, rdr 4'(r)[sf, (v, r)/Bv]„»
v,m, ' f,"rdr 'C( )Xr(r)

where e is the imaginary part of the wave num-

! ber, v, is the group velocity, N(r) the plasma
density, 8'~' the derivative of the real part of
the W function, and f, the beam-velocity distri-
bution function. The growth rate depends on the
ratio of the beam density integrated over its
cross-sectional area to the plasma density in-
tegrated over the plasma cross section. Both
low density and small cross section in the beam
contribute to the required weakness of the insta-
bility.
Drummond' has considered the quasilinear de-

velopment of spatial. ly growing waves in a plas-
ma, column immersed in a strong magnetic field
and finds a local diffusion equation similar to
the one-dimensional case. When the diffusion
equation is integrated over the cross section of
the plasma and combined with the equation for
the rate of change in wave energy, we find the
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power spectrum at saturation to be given by

P(u) = c—,(1- j dU n[gi(v) —g,. (v)j,
E

where P(v) is the power per unit frequency, C is
a constant, v and v~ are the wave frequency and
phase velocity, respectively, v is the electron-
veIocity component parallel to the magnetic field,
and g,.& are the initial and final distribution
functions integrated over the plasma cross sec-
ion and perpendicular velocities xo The inal
distribution is fIat and given by the appropriate
construction on the initial distribution. The total
power in the wave spectrum is equaI to the de-
crease in particle energy flux caused by the ve-
locity diffusion process and is equal to
P= J 'dv rnv'/2[gq(v) —g,. (v)], (4)

Vy

where m is the mass of an electron and the lim-
its of integration are over the flattened region
«r, (v)
These equations are the quasilinear predictions

of the shape and amplitude of the wave spectrum
from a "gentle bump, " and it is these results
that the experiment is designed to check.
The plasma is produced by ionization of hydro-

gen gas in a coaxial stub microwave cavity, and
it drifts along magnetic field lines down a 250-
cm aluminum tube 10 cm in diameter. The plas-
ma is terminated by a plate with a &-cm hole
behind which the electron gun is mounted. The
plate is biased to reflect electrons with velocities
less than the slowest of those that come from the
gun. The tube acts as a waveguide beyond cutoff
for electromagnetic propagation at the wave fre-
quencies used, and has four longitudinal slots
equispaced around the circumference along which
antenna probes may be moved. The complete
assembly is contained in a vacuum chamber and
maintained at a pressure of less than 10 ' Torr
by diffusion and Ti sublimation pumps. Axial
magnetic field coils are mounted around the vacu-
um chamber and provide a magnetic field of
about 1 kG. The electron gun is a simple diode
with a large-aperture (2.5-cm diam) plate
mounted inside a soft-iron cylinder. The result
is a beam distribution with a large spread in
parallel energy, which when injected into the
plasma makes a bump on the tail of the parallel
electron-velocity distribution. The energy dis-
tribution of the beam is measured directly using
a large-aperture gridded energy analyzer.
The dispersion curve is determined from mea-

surements of wavelength as a function of the fre-
quency of the plasma wave. The wavelength can
be observed directly by adding a constant-phase
reference signal from the transmitter to the re-
ceived signal. As the receiving probe is moved,
the interference pattern is plotted on an X-Y re-
corder, displaying the wavelength. The temper-
ature and density of the plasma are inferred by
computer using a program that solves Eq. (l) to
obtain the best least-squares fit to the experi-
mental points. The beam may be turned on and
the dispersion data repeated using coherent de-
tection to find the test wave in the noise spec-
trum. The wavelengths may be compared with
those measured without the beam to show that
the beam does not change the dispersion relation.
The results are shown in Fig. 1.
The dispersion curve is the most sensitive in-

dicator of the transition from gentle bump to
two-stream instability. The invariance of the
dispersion curve with the beam establishes em-
pirically that the bump is sufficiently broad.
The transition has also been examined theoreti-
cally by O'Neil and Malmberg. " They obtain a
parameter s depending on the beam and plasma
properties and show that for s &1.64, the disper-
sion curves are bumplike. In this experiment,
s ~ 1.8 for all beams, and their results confirm
that the dispersion curves are definitely quasi-
linear in this case.
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FIG. 1. Dispersion curve. The solid line is calcu-
lated without beam, circles are observations without
beam, squares are observations with a beam current
of 2.6 mA. The electron temperature is'14 eV. The
central electron density is 1.3 x 108 electron/cm3 with
a half-width of approximately 3 cm.
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The plasma is produced by ionization of hydro-
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it drifts along magnetic field lines down a 250-
cm aluminum tube 10 cm in diameter. The plas-
ma is terminated by a plate with a &-cm hole
behind which the electron gun is mounted. The
plate is biased to reflect electrons with velocities
less than the slowest of those that come from the
gun. The tube acts as a waveguide beyond cutoff
for electromagnetic propagation at the wave fre-
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antenna probes may be moved. The complete
assembly is contained in a vacuum chamber and
maintained at a pressure of less than 10 ' Torr
by diffusion and Ti sublimation pumps. Axial
magnetic field coils are mounted around the vacu-
um chamber and provide a magnetic field of
about 1 kG. The electron gun is a simple diode
with a large-aperture (2.5-cm diam) plate
mounted inside a soft-iron cylinder. The result
is a beam distribution with a large spread in
parallel energy, which when injected into the
plasma makes a bump on the tail of the parallel
electron-velocity distribution. The energy dis-
tribution of the beam is measured directly using
a large-aperture gridded energy analyzer.
The dispersion curve is determined from mea-

surements of wavelength as a function of the fre-
quency of the plasma wave. The wavelength can
be observed directly by adding a constant-phase
reference signal from the transmitter to the re-
ceived signal. As the receiving probe is moved,
the interference pattern is plotted on an X-Y re-
corder, displaying the wavelength. The temper-
ature and density of the plasma are inferred by
computer using a program that solves Eq. (l) to
obtain the best least-squares fit to the experi-
mental points. The beam may be turned on and
the dispersion data repeated using coherent de-
tection to find the test wave in the noise spec-
trum. The wavelengths may be compared with
those measured without the beam to show that
the beam does not change the dispersion relation.
The results are shown in Fig. 1.
The dispersion curve is the most sensitive in-

dicator of the transition from gentle bump to
two-stream instability. The invariance of the
dispersion curve with the beam establishes em-
pirically that the bump is sufficiently broad.
The transition has also been examined theoreti-
cally by O'Neil and Malmberg. " They obtain a
parameter s depending on the beam and plasma
properties and show that for s &1.64, the disper-
sion curves are bumplike. In this experiment,
s ~ 1.8 for all beams, and their results confirm
that the dispersion curves are definitely quasi-
linear in this case.
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FIG. 1. Dispersion curve. The solid line is calcu-
lated without beam, circles are observations without
beam, squares are observations with a beam current
of 2.6 mA. The electron temperature is'14 eV. The
central electron density is 1.3 x 108 electron/cm3 with
a half-width of approximately 3 cm.
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where P(v) is the power per unit frequency, C is
a constant, v and v~ are the wave frequency and
phase velocity, respectively, v is the electron-
veIocity component parallel to the magnetic field,
and g,.& are the initial and final distribution
functions integrated over the plasma cross sec-
ion and perpendicular velocities xo The inal
distribution is fIat and given by the appropriate
construction on the initial distribution. The total
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P= J 'dv rnv'/2[gq(v) —g,. (v)], (4)

Vy
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These equations are the quasilinear predictions

of the shape and amplitude of the wave spectrum
from a "gentle bump, " and it is these results
that the experiment is designed to check.
The plasma is produced by ionization of hydro-

gen gas in a coaxial stub microwave cavity, and
it drifts along magnetic field lines down a 250-
cm aluminum tube 10 cm in diameter. The plas-
ma is terminated by a plate with a &-cm hole
behind which the electron gun is mounted. The
plate is biased to reflect electrons with velocities
less than the slowest of those that come from the
gun. The tube acts as a waveguide beyond cutoff
for electromagnetic propagation at the wave fre-
quencies used, and has four longitudinal slots
equispaced around the circumference along which
antenna probes may be moved. The complete
assembly is contained in a vacuum chamber and
maintained at a pressure of less than 10 ' Torr
by diffusion and Ti sublimation pumps. Axial
magnetic field coils are mounted around the vacu-
um chamber and provide a magnetic field of
about 1 kG. The electron gun is a simple diode
with a large-aperture (2.5-cm diam) plate
mounted inside a soft-iron cylinder. The result
is a beam distribution with a large spread in
parallel energy, which when injected into the
plasma makes a bump on the tail of the parallel
electron-velocity distribution. The energy dis-
tribution of the beam is measured directly using
a large-aperture gridded energy analyzer.
The dispersion curve is determined from mea-

surements of wavelength as a function of the fre-
quency of the plasma wave. The wavelength can
be observed directly by adding a constant-phase
reference signal from the transmitter to the re-
ceived signal. As the receiving probe is moved,
the interference pattern is plotted on an X-Y re-
corder, displaying the wavelength. The temper-
ature and density of the plasma are inferred by
computer using a program that solves Eq. (l) to
obtain the best least-squares fit to the experi-
mental points. The beam may be turned on and
the dispersion data repeated using coherent de-
tection to find the test wave in the noise spec-
trum. The wavelengths may be compared with
those measured without the beam to show that
the beam does not change the dispersion relation.
The results are shown in Fig. 1.
The dispersion curve is the most sensitive in-

dicator of the transition from gentle bump to
two-stream instability. The invariance of the
dispersion curve with the beam establishes em-
pirically that the bump is sufficiently broad.
The transition has also been examined theoreti-
cally by O'Neil and Malmberg. " They obtain a
parameter s depending on the beam and plasma
properties and show that for s &1.64, the disper-
sion curves are bumplike. In this experiment,
s ~ 1.8 for all beams, and their results confirm
that the dispersion curves are definitely quasi-
linear in this case.
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FIG. 1. Dispersion curve. The solid line is calcu-
lated without beam, circles are observations without
beam, squares are observations with a beam current
of 2.6 mA. The electron temperature is'14 eV. The
central electron density is 1.3 x 108 electron/cm3 with
a half-width of approximately 3 cm.
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The shape and amplitude of the electron-plasma wave spectrum resulting from a
"gentle bump" on the tail of the electron velocity distribution of a plasma is measured
and found to be in good agreement with quasilinear theory.

Nonlinear theories of unstable plasmas are
usually concerned with two principal problems:
estimating the final wave spectrum and calculat-
ing the effect of the waves on the particles. The
simplest instability that may be followed analy-
tically to its nonlinear limit is a "gentIe bump"
on the tail of the electron velocity distribution.
The amplitude and shape of the spectrum as well
as the change in the velocity distribution may be
cal.culated from quasilinear theory. "
In this Letter we report an experiment designed

to test the validity of this theory by measuring
the electron-plasma wave spectrum resulting
from the injection of an electron beam of suffi-
ciently low density and large velocity spread to
satisfy the assumptions of quasilinear theory.
In prior beam-plasma experiments the initial
velocity spread of the beam electrons was not
sufficient to meet the requirements. ' '
When the beam electrons form a "gentle bump"

on the plasma electron velocity distribution, the
dispersion relation is determined by the plasma

electrons, and the only effect of the beam is to
cause exponential growth of the waves (or plasma
noise) with phase velocities corresponding to
the positive slope of the beam distribution. As
the waves become sufficiently large they cause

' a diffusion of the beam electrons in velocity.
The growth rate of the waves therefore decreases
and eventually goes to zero when the velocity
distribution becomes flattened in the beam region.
Hence, we can calculate the dispersion relation
and initial growth rate from linear theory and
the equilibrium spectrum from the quasilinear
theory.
To determine the dispersion relation, we con-

sider a long cylinder of collisionless plasma in
a strong magnetic field aligned with the axis.
The plasma density is a function of radius only.
In the limit that the phase velocity of the waves
is small compared with the velocity of light, the
electric field may be derived from a scalar po-
tential, and for the radially symmetric modes
the dispersion relation may be found from

d'4(r) 1 d4(r), ~,'(r)

where 4 is the wave potential, k and ~ are the
complex wave number and angular frequency of
the wave, co~'(r) is the radially dependent plasma
frequency, v, the mean thermal velocity of the
plasma electrons, and W is related to the plas-
ma dispersion function' by W(x) =2Z'(-x/W2).
Using the experimentally observed density pro-
file, the numerical solution of Eq. (1) yields the
potential profile 4 (r) and the complex wave num-
ber as a function of frequency in the absence of
the beam.
Vfhen the beam in injected into the plasma, the

real part of the dispersion relation is unchanged
and the growth due to the beam is given by'

nv, ' f, rdr 4'(r)[sf, (v, r)/Bv]„»
v,m, ' f,"rdr 'C( )Xr(r)

where e is the imaginary part of the wave num-

! ber, v, is the group velocity, N(r) the plasma
density, 8'~' the derivative of the real part of
the W function, and f, the beam-velocity distri-
bution function. The growth rate depends on the
ratio of the beam density integrated over its
cross-sectional area to the plasma density in-
tegrated over the plasma cross section. Both
low density and small cross section in the beam
contribute to the required weakness of the insta-
bility.
Drummond' has considered the quasilinear de-

velopment of spatial. ly growing waves in a plas-
ma, column immersed in a strong magnetic field
and finds a local diffusion equation similar to
the one-dimensional case. When the diffusion
equation is integrated over the cross section of
the plasma and combined with the equation for
the rate of change in wave energy, we find the
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where P(v) is the power per unit frequency, C is
a constant, v and v~ are the wave frequency and
phase velocity, respectively, v is the electron-
veIocity component parallel to the magnetic field,
and g,.& are the initial and final distribution
functions integrated over the plasma cross sec-
ion and perpendicular velocities xo The inal
distribution is fIat and given by the appropriate
construction on the initial distribution. The total
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crease in particle energy flux caused by the ve-
locity diffusion process and is equal to
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where m is the mass of an electron and the lim-
its of integration are over the flattened region
«r, (v)
These equations are the quasilinear predictions

of the shape and amplitude of the wave spectrum
from a "gentle bump, " and it is these results
that the experiment is designed to check.
The plasma is produced by ionization of hydro-

gen gas in a coaxial stub microwave cavity, and
it drifts along magnetic field lines down a 250-
cm aluminum tube 10 cm in diameter. The plas-
ma is terminated by a plate with a &-cm hole
behind which the electron gun is mounted. The
plate is biased to reflect electrons with velocities
less than the slowest of those that come from the
gun. The tube acts as a waveguide beyond cutoff
for electromagnetic propagation at the wave fre-
quencies used, and has four longitudinal slots
equispaced around the circumference along which
antenna probes may be moved. The complete
assembly is contained in a vacuum chamber and
maintained at a pressure of less than 10 ' Torr
by diffusion and Ti sublimation pumps. Axial
magnetic field coils are mounted around the vacu-
um chamber and provide a magnetic field of
about 1 kG. The electron gun is a simple diode
with a large-aperture (2.5-cm diam) plate
mounted inside a soft-iron cylinder. The result
is a beam distribution with a large spread in
parallel energy, which when injected into the
plasma makes a bump on the tail of the parallel
electron-velocity distribution. The energy dis-
tribution of the beam is measured directly using
a large-aperture gridded energy analyzer.
The dispersion curve is determined from mea-

surements of wavelength as a function of the fre-
quency of the plasma wave. The wavelength can
be observed directly by adding a constant-phase
reference signal from the transmitter to the re-
ceived signal. As the receiving probe is moved,
the interference pattern is plotted on an X-Y re-
corder, displaying the wavelength. The temper-
ature and density of the plasma are inferred by
computer using a program that solves Eq. (l) to
obtain the best least-squares fit to the experi-
mental points. The beam may be turned on and
the dispersion data repeated using coherent de-
tection to find the test wave in the noise spec-
trum. The wavelengths may be compared with
those measured without the beam to show that
the beam does not change the dispersion relation.
The results are shown in Fig. 1.
The dispersion curve is the most sensitive in-

dicator of the transition from gentle bump to
two-stream instability. The invariance of the
dispersion curve with the beam establishes em-
pirically that the bump is sufficiently broad.
The transition has also been examined theoreti-
cally by O'Neil and Malmberg. " They obtain a
parameter s depending on the beam and plasma
properties and show that for s &1.64, the disper-
sion curves are bumplike. In this experiment,
s ~ 1.8 for all beams, and their results confirm
that the dispersion curves are definitely quasi-
linear in this case.
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FIG. 1. Dispersion curve. The solid line is calcu-
lated without beam, circles are observations without
beam, squares are observations with a beam current
of 2.6 mA. The electron temperature is'14 eV. The
central electron density is 1.3 x 108 electron/cm3 with
a half-width of approximately 3 cm.
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ion and perpendicular velocities xo The inal
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power in the wave spectrum is equaI to the de-
crease in particle energy flux caused by the ve-
locity diffusion process and is equal to
P= J 'dv rnv'/2[gq(v) —g,. (v)], (4)

Vy

where m is the mass of an electron and the lim-
its of integration are over the flattened region
«r, (v)
These equations are the quasilinear predictions

of the shape and amplitude of the wave spectrum
from a "gentle bump, " and it is these results
that the experiment is designed to check.
The plasma is produced by ionization of hydro-

gen gas in a coaxial stub microwave cavity, and
it drifts along magnetic field lines down a 250-
cm aluminum tube 10 cm in diameter. The plas-
ma is terminated by a plate with a &-cm hole
behind which the electron gun is mounted. The
plate is biased to reflect electrons with velocities
less than the slowest of those that come from the
gun. The tube acts as a waveguide beyond cutoff
for electromagnetic propagation at the wave fre-
quencies used, and has four longitudinal slots
equispaced around the circumference along which
antenna probes may be moved. The complete
assembly is contained in a vacuum chamber and
maintained at a pressure of less than 10 ' Torr
by diffusion and Ti sublimation pumps. Axial
magnetic field coils are mounted around the vacu-
um chamber and provide a magnetic field of
about 1 kG. The electron gun is a simple diode
with a large-aperture (2.5-cm diam) plate
mounted inside a soft-iron cylinder. The result
is a beam distribution with a large spread in
parallel energy, which when injected into the
plasma makes a bump on the tail of the parallel
electron-velocity distribution. The energy dis-
tribution of the beam is measured directly using
a large-aperture gridded energy analyzer.
The dispersion curve is determined from mea-

surements of wavelength as a function of the fre-
quency of the plasma wave. The wavelength can
be observed directly by adding a constant-phase
reference signal from the transmitter to the re-
ceived signal. As the receiving probe is moved,
the interference pattern is plotted on an X-Y re-
corder, displaying the wavelength. The temper-
ature and density of the plasma are inferred by
computer using a program that solves Eq. (l) to
obtain the best least-squares fit to the experi-
mental points. The beam may be turned on and
the dispersion data repeated using coherent de-
tection to find the test wave in the noise spec-
trum. The wavelengths may be compared with
those measured without the beam to show that
the beam does not change the dispersion relation.
The results are shown in Fig. 1.
The dispersion curve is the most sensitive in-

dicator of the transition from gentle bump to
two-stream instability. The invariance of the
dispersion curve with the beam establishes em-
pirically that the bump is sufficiently broad.
The transition has also been examined theoreti-
cally by O'Neil and Malmberg. " They obtain a
parameter s depending on the beam and plasma
properties and show that for s &1.64, the disper-
sion curves are bumplike. In this experiment,
s ~ 1.8 for all beams, and their results confirm
that the dispersion curves are definitely quasi-
linear in this case.
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FIG. 1. Dispersion curve. The solid line is calcu-
lated without beam, circles are observations without
beam, squares are observations with a beam current
of 2.6 mA. The electron temperature is'14 eV. The
central electron density is 1.3 x 108 electron/cm3 with
a half-width of approximately 3 cm.
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power spectrum at saturation to be given by

P(u) = c—,(1- j dU n[gi(v) —g,. (v)j,
E

where P(v) is the power per unit frequency, C is
a constant, v and v~ are the wave frequency and
phase velocity, respectively, v is the electron-
veIocity component parallel to the magnetic field,
and g,.& are the initial and final distribution
functions integrated over the plasma cross sec-
ion and perpendicular velocities xo The inal
distribution is fIat and given by the appropriate
construction on the initial distribution. The total
power in the wave spectrum is equaI to the de-
crease in particle energy flux caused by the ve-
locity diffusion process and is equal to
P= J 'dv rnv'/2[gq(v) —g,. (v)], (4)

Vy

where m is the mass of an electron and the lim-
its of integration are over the flattened region
«r, (v)
These equations are the quasilinear predictions

of the shape and amplitude of the wave spectrum
from a "gentle bump, " and it is these results
that the experiment is designed to check.
The plasma is produced by ionization of hydro-

gen gas in a coaxial stub microwave cavity, and
it drifts along magnetic field lines down a 250-
cm aluminum tube 10 cm in diameter. The plas-
ma is terminated by a plate with a &-cm hole
behind which the electron gun is mounted. The
plate is biased to reflect electrons with velocities
less than the slowest of those that come from the
gun. The tube acts as a waveguide beyond cutoff
for electromagnetic propagation at the wave fre-
quencies used, and has four longitudinal slots
equispaced around the circumference along which
antenna probes may be moved. The complete
assembly is contained in a vacuum chamber and
maintained at a pressure of less than 10 ' Torr
by diffusion and Ti sublimation pumps. Axial
magnetic field coils are mounted around the vacu-
um chamber and provide a magnetic field of
about 1 kG. The electron gun is a simple diode
with a large-aperture (2.5-cm diam) plate
mounted inside a soft-iron cylinder. The result
is a beam distribution with a large spread in
parallel energy, which when injected into the
plasma makes a bump on the tail of the parallel
electron-velocity distribution. The energy dis-
tribution of the beam is measured directly using
a large-aperture gridded energy analyzer.
The dispersion curve is determined from mea-

surements of wavelength as a function of the fre-
quency of the plasma wave. The wavelength can
be observed directly by adding a constant-phase
reference signal from the transmitter to the re-
ceived signal. As the receiving probe is moved,
the interference pattern is plotted on an X-Y re-
corder, displaying the wavelength. The temper-
ature and density of the plasma are inferred by
computer using a program that solves Eq. (l) to
obtain the best least-squares fit to the experi-
mental points. The beam may be turned on and
the dispersion data repeated using coherent de-
tection to find the test wave in the noise spec-
trum. The wavelengths may be compared with
those measured without the beam to show that
the beam does not change the dispersion relation.
The results are shown in Fig. 1.
The dispersion curve is the most sensitive in-

dicator of the transition from gentle bump to
two-stream instability. The invariance of the
dispersion curve with the beam establishes em-
pirically that the bump is sufficiently broad.
The transition has also been examined theoreti-
cally by O'Neil and Malmberg. " They obtain a
parameter s depending on the beam and plasma
properties and show that for s &1.64, the disper-
sion curves are bumplike. In this experiment,
s ~ 1.8 for all beams, and their results confirm
that the dispersion curves are definitely quasi-
linear in this case.
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FIG. 1. Dispersion curve. The solid line is calcu-
lated without beam, circles are observations without
beam, squares are observations with a beam current
of 2.6 mA. The electron temperature is'14 eV. The
central electron density is 1.3 x 108 electron/cm3 with
a half-width of approximately 3 cm.
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Experimental Test of Quasilinear Theory*

C. Roberson, K. %. Gentle, and P. Nielsen
Center for Plasma Physics, University of Texas, Austin, Texas 78718

(Received 5 November 1970)

The shape and amplitude of the electron-plasma wave spectrum resulting from a
"gentle bump" on the tail of the electron velocity distribution of a plasma is measured
and found to be in good agreement with quasilinear theory.

Nonlinear theories of unstable plasmas are
usually concerned with two principal problems:
estimating the final wave spectrum and calculat-
ing the effect of the waves on the particles. The
simplest instability that may be followed analy-
tically to its nonlinear limit is a "gentIe bump"
on the tail of the electron velocity distribution.
The amplitude and shape of the spectrum as well
as the change in the velocity distribution may be
cal.culated from quasilinear theory. "
In this Letter we report an experiment designed

to test the validity of this theory by measuring
the electron-plasma wave spectrum resulting
from the injection of an electron beam of suffi-
ciently low density and large velocity spread to
satisfy the assumptions of quasilinear theory.
In prior beam-plasma experiments the initial
velocity spread of the beam electrons was not
sufficient to meet the requirements. ' '
When the beam electrons form a "gentle bump"

on the plasma electron velocity distribution, the
dispersion relation is determined by the plasma

electrons, and the only effect of the beam is to
cause exponential growth of the waves (or plasma
noise) with phase velocities corresponding to
the positive slope of the beam distribution. As
the waves become sufficiently large they cause

' a diffusion of the beam electrons in velocity.
The growth rate of the waves therefore decreases
and eventually goes to zero when the velocity
distribution becomes flattened in the beam region.
Hence, we can calculate the dispersion relation
and initial growth rate from linear theory and
the equilibrium spectrum from the quasilinear
theory.
To determine the dispersion relation, we con-

sider a long cylinder of collisionless plasma in
a strong magnetic field aligned with the axis.
The plasma density is a function of radius only.
In the limit that the phase velocity of the waves
is small compared with the velocity of light, the
electric field may be derived from a scalar po-
tential, and for the radially symmetric modes
the dispersion relation may be found from

d'4(r) 1 d4(r), ~,'(r)

where 4 is the wave potential, k and ~ are the
complex wave number and angular frequency of
the wave, co~'(r) is the radially dependent plasma
frequency, v, the mean thermal velocity of the
plasma electrons, and W is related to the plas-
ma dispersion function' by W(x) =2Z'(-x/W2).
Using the experimentally observed density pro-
file, the numerical solution of Eq. (1) yields the
potential profile 4 (r) and the complex wave num-
ber as a function of frequency in the absence of
the beam.
Vfhen the beam in injected into the plasma, the

real part of the dispersion relation is unchanged
and the growth due to the beam is given by'

nv, ' f, rdr 4'(r)[sf, (v, r)/Bv]„»
v,m, ' f,"rdr 'C( )Xr(r)

where e is the imaginary part of the wave num-

! ber, v, is the group velocity, N(r) the plasma
density, 8'~' the derivative of the real part of
the W function, and f, the beam-velocity distri-
bution function. The growth rate depends on the
ratio of the beam density integrated over its
cross-sectional area to the plasma density in-
tegrated over the plasma cross section. Both
low density and small cross section in the beam
contribute to the required weakness of the insta-
bility.
Drummond' has considered the quasilinear de-

velopment of spatial. ly growing waves in a plas-
ma, column immersed in a strong magnetic field
and finds a local diffusion equation similar to
the one-dimensional case. When the diffusion
equation is integrated over the cross section of
the plasma and combined with the equation for
the rate of change in wave energy, we find the
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FIG. 2. (a) Wave growth and saturation versus dis-
tance (b.) Saturation power level versus beam current.

The spatial growth of the noise as a result of
the beam is measured by connecting the receiv-
ing antenna directly to a broad-band amplifier
and a sampling rf voltmeter. The log of the volt-
meter output is plotted on the Y axis and dis-
tance from beam injection point on the X axis of
the recorder'. The results [Fig. 2(a)] have the
qualitative features expected from the theory:
slow exponential growth to reach a quasiequilib-
rium saturation level without overshoot.
To determine the wave power in the spectrum

we must know the absolute coupling constant of
the probes. No precise way of obtaining this is
available, but the total coupling through the plas-
ma for a paix of probes can easily be measured.
For three probes, three transmitter-receiver
pairs are possible. This gives three equations
for the three unknown single-probe coupling
coefficients. A calibrated receiver is positioned
200 cm from the beam injection point and the
wave power is measux ed as a function of beam
current. The wave power is linearly proportion-
al to the beam current [Fig. 2(b)] as predicl:ed
by Eq. (4). For our beam distribution, we cal-
culate that 14% of the beam power should be con-
verted to wave power. We obsex've approximate-
ly 10% conversion, which is excellent agreement
for R measurement of absolute power level. "
The shape of the equilibrium spectrum is mea-

sured using an adjustable narrow-band (3%) filter
in the receiving line. The powex and coupling
constant are measured at a series of fixed fre-
quencies. The amplitude of the spectrum as cal-
culated from Eq. (3) is normalized to the mea-
sured value at one point and the comparison of
theory and experiment is shown in Fig. 3(a).
The ShRpe Rnd width of the spectrUIQ Rle found
to be in excellent agreement with theory.
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FIG. 3. (a) Shape of wave spectrum. Solid line is
theory, circles are experimental values. Beam cur-
rent is 2 mA. (b) Inferred beam-velocity distribution
versus energy analyzer distribution. The solid curve
is obtained from an electronically differentiated output
of the analyzer.

We have also measured the growth rates of the
spectral components by using the adjustable fil-
ter and plotting the log of the receiver power
versus distance for a number of frequencies.
These growth rates were used in Eq. (2) to find
the avexaged beam-velocity distribution function
assuming that the wave potential is constant
over the beam diameter; the beam is sufficiently
small to justify this easily. This inferred beam
distribution is compared with the direct measure-
ment using an energy analyzer. The results are
shown in Fig. 3(b), where the width of the shaded
region is an indication of the estimated error in
determining the inferred distribution. No "nox'-
DlRllzRtlon plocedure 18 used 1n this conlpari-
son.
In summary, we find that the quasilinear theory
correctly predicts the manner in which the elec-
tron-plasma wave spectrum from a "gentle bump"
grows and saturates. The theory gives the pro-
per dependence of saturation level as a function
of beam current, the shape of the spectrum,
and the magnitude of the equilibrium power level.
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FIG. 2. (a) Wave growth and saturation versus dis-
tance (b.) Saturation power level versus beam current.

The spatial growth of the noise as a result of
the beam is measured by connecting the receiv-
ing antenna directly to a broad-band amplifier
and a sampling rf voltmeter. The log of the volt-
meter output is plotted on the Y axis and dis-
tance from beam injection point on the X axis of
the recorder'. The results [Fig. 2(a)] have the
qualitative features expected from the theory:
slow exponential growth to reach a quasiequilib-
rium saturation level without overshoot.
To determine the wave power in the spectrum

we must know the absolute coupling constant of
the probes. No precise way of obtaining this is
available, but the total coupling through the plas-
ma for a paix of probes can easily be measured.
For three probes, three transmitter-receiver
pairs are possible. This gives three equations
for the three unknown single-probe coupling
coefficients. A calibrated receiver is positioned
200 cm from the beam injection point and the
wave power is measux ed as a function of beam
current. The wave power is linearly proportion-
al to the beam current [Fig. 2(b)] as predicl:ed
by Eq. (4). For our beam distribution, we cal-
culate that 14% of the beam power should be con-
verted to wave power. We obsex've approximate-
ly 10% conversion, which is excellent agreement
for R measurement of absolute power level. "
The shape of the equilibrium spectrum is mea-

sured using an adjustable narrow-band (3%) filter
in the receiving line. The powex and coupling
constant are measured at a series of fixed fre-
quencies. The amplitude of the spectrum as cal-
culated from Eq. (3) is normalized to the mea-
sured value at one point and the comparison of
theory and experiment is shown in Fig. 3(a).
The ShRpe Rnd width of the spectrUIQ Rle found
to be in excellent agreement with theory.
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FIG. 3. (a) Shape of wave spectrum. Solid line is
theory, circles are experimental values. Beam cur-
rent is 2 mA. (b) Inferred beam-velocity distribution
versus energy analyzer distribution. The solid curve
is obtained from an electronically differentiated output
of the analyzer.

We have also measured the growth rates of the
spectral components by using the adjustable fil-
ter and plotting the log of the receiver power
versus distance for a number of frequencies.
These growth rates were used in Eq. (2) to find
the avexaged beam-velocity distribution function
assuming that the wave potential is constant
over the beam diameter; the beam is sufficiently
small to justify this easily. This inferred beam
distribution is compared with the direct measure-
ment using an energy analyzer. The results are
shown in Fig. 3(b), where the width of the shaded
region is an indication of the estimated error in
determining the inferred distribution. No "nox'-
DlRllzRtlon plocedure 18 used 1n this conlpari-
son.
In summary, we find that the quasilinear theory
correctly predicts the manner in which the elec-
tron-plasma wave spectrum from a "gentle bump"
grows and saturates. The theory gives the pro-
per dependence of saturation level as a function
of beam current, the shape of the spectrum,
and the magnitude of the equilibrium power level.
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The shape and amplitude of the electron-plasma wave spectrum resulting from a
"gentle bump" on the tail of the electron velocity distribution of a plasma is measured
and found to be in good agreement with quasilinear theory.

Nonlinear theories of unstable plasmas are
usually concerned with two principal problems:
estimating the final wave spectrum and calculat-
ing the effect of the waves on the particles. The
simplest instability that may be followed analy-
tically to its nonlinear limit is a "gentIe bump"
on the tail of the electron velocity distribution.
The amplitude and shape of the spectrum as well
as the change in the velocity distribution may be
cal.culated from quasilinear theory. "
In this Letter we report an experiment designed

to test the validity of this theory by measuring
the electron-plasma wave spectrum resulting
from the injection of an electron beam of suffi-
ciently low density and large velocity spread to
satisfy the assumptions of quasilinear theory.
In prior beam-plasma experiments the initial
velocity spread of the beam electrons was not
sufficient to meet the requirements. ' '
When the beam electrons form a "gentle bump"

on the plasma electron velocity distribution, the
dispersion relation is determined by the plasma

electrons, and the only effect of the beam is to
cause exponential growth of the waves (or plasma
noise) with phase velocities corresponding to
the positive slope of the beam distribution. As
the waves become sufficiently large they cause

' a diffusion of the beam electrons in velocity.
The growth rate of the waves therefore decreases
and eventually goes to zero when the velocity
distribution becomes flattened in the beam region.
Hence, we can calculate the dispersion relation
and initial growth rate from linear theory and
the equilibrium spectrum from the quasilinear
theory.
To determine the dispersion relation, we con-

sider a long cylinder of collisionless plasma in
a strong magnetic field aligned with the axis.
The plasma density is a function of radius only.
In the limit that the phase velocity of the waves
is small compared with the velocity of light, the
electric field may be derived from a scalar po-
tential, and for the radially symmetric modes
the dispersion relation may be found from

d'4(r) 1 d4(r), ~,'(r)

where 4 is the wave potential, k and ~ are the
complex wave number and angular frequency of
the wave, co~'(r) is the radially dependent plasma
frequency, v, the mean thermal velocity of the
plasma electrons, and W is related to the plas-
ma dispersion function' by W(x) =2Z'(-x/W2).
Using the experimentally observed density pro-
file, the numerical solution of Eq. (1) yields the
potential profile 4 (r) and the complex wave num-
ber as a function of frequency in the absence of
the beam.
Vfhen the beam in injected into the plasma, the

real part of the dispersion relation is unchanged
and the growth due to the beam is given by'

nv, ' f, rdr 4'(r)[sf, (v, r)/Bv]„»
v,m, ' f,"rdr 'C( )Xr(r)

where e is the imaginary part of the wave num-

! ber, v, is the group velocity, N(r) the plasma
density, 8'~' the derivative of the real part of
the W function, and f, the beam-velocity distri-
bution function. The growth rate depends on the
ratio of the beam density integrated over its
cross-sectional area to the plasma density in-
tegrated over the plasma cross section. Both
low density and small cross section in the beam
contribute to the required weakness of the insta-
bility.
Drummond' has considered the quasilinear de-

velopment of spatial. ly growing waves in a plas-
ma, column immersed in a strong magnetic field
and finds a local diffusion equation similar to
the one-dimensional case. When the diffusion
equation is integrated over the cross section of
the plasma and combined with the equation for
the rate of change in wave energy, we find the
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FIG. 2. (a) Wave growth and saturation versus dis-
tance (b.) Saturation power level versus beam current.

The spatial growth of the noise as a result of
the beam is measured by connecting the receiv-
ing antenna directly to a broad-band amplifier
and a sampling rf voltmeter. The log of the volt-
meter output is plotted on the Y axis and dis-
tance from beam injection point on the X axis of
the recorder'. The results [Fig. 2(a)] have the
qualitative features expected from the theory:
slow exponential growth to reach a quasiequilib-
rium saturation level without overshoot.
To determine the wave power in the spectrum

we must know the absolute coupling constant of
the probes. No precise way of obtaining this is
available, but the total coupling through the plas-
ma for a paix of probes can easily be measured.
For three probes, three transmitter-receiver
pairs are possible. This gives three equations
for the three unknown single-probe coupling
coefficients. A calibrated receiver is positioned
200 cm from the beam injection point and the
wave power is measux ed as a function of beam
current. The wave power is linearly proportion-
al to the beam current [Fig. 2(b)] as predicl:ed
by Eq. (4). For our beam distribution, we cal-
culate that 14% of the beam power should be con-
verted to wave power. We obsex've approximate-
ly 10% conversion, which is excellent agreement
for R measurement of absolute power level. "
The shape of the equilibrium spectrum is mea-

sured using an adjustable narrow-band (3%) filter
in the receiving line. The powex and coupling
constant are measured at a series of fixed fre-
quencies. The amplitude of the spectrum as cal-
culated from Eq. (3) is normalized to the mea-
sured value at one point and the comparison of
theory and experiment is shown in Fig. 3(a).
The ShRpe Rnd width of the spectrUIQ Rle found
to be in excellent agreement with theory.
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FIG. 3. (a) Shape of wave spectrum. Solid line is
theory, circles are experimental values. Beam cur-
rent is 2 mA. (b) Inferred beam-velocity distribution
versus energy analyzer distribution. The solid curve
is obtained from an electronically differentiated output
of the analyzer.

We have also measured the growth rates of the
spectral components by using the adjustable fil-
ter and plotting the log of the receiver power
versus distance for a number of frequencies.
These growth rates were used in Eq. (2) to find
the avexaged beam-velocity distribution function
assuming that the wave potential is constant
over the beam diameter; the beam is sufficiently
small to justify this easily. This inferred beam
distribution is compared with the direct measure-
ment using an energy analyzer. The results are
shown in Fig. 3(b), where the width of the shaded
region is an indication of the estimated error in
determining the inferred distribution. No "nox'-
DlRllzRtlon plocedure 18 used 1n this conlpari-
son.
In summary, we find that the quasilinear theory
correctly predicts the manner in which the elec-
tron-plasma wave spectrum from a "gentle bump"
grows and saturates. The theory gives the pro-
per dependence of saturation level as a function
of beam current, the shape of the spectrum,
and the magnitude of the equilibrium power level.
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FIG. 2. (a) Wave growth and saturation versus dis-
tance (b.) Saturation power level versus beam current.

The spatial growth of the noise as a result of
the beam is measured by connecting the receiv-
ing antenna directly to a broad-band amplifier
and a sampling rf voltmeter. The log of the volt-
meter output is plotted on the Y axis and dis-
tance from beam injection point on the X axis of
the recorder'. The results [Fig. 2(a)] have the
qualitative features expected from the theory:
slow exponential growth to reach a quasiequilib-
rium saturation level without overshoot.
To determine the wave power in the spectrum

we must know the absolute coupling constant of
the probes. No precise way of obtaining this is
available, but the total coupling through the plas-
ma for a paix of probes can easily be measured.
For three probes, three transmitter-receiver
pairs are possible. This gives three equations
for the three unknown single-probe coupling
coefficients. A calibrated receiver is positioned
200 cm from the beam injection point and the
wave power is measux ed as a function of beam
current. The wave power is linearly proportion-
al to the beam current [Fig. 2(b)] as predicl:ed
by Eq. (4). For our beam distribution, we cal-
culate that 14% of the beam power should be con-
verted to wave power. We obsex've approximate-
ly 10% conversion, which is excellent agreement
for R measurement of absolute power level. "
The shape of the equilibrium spectrum is mea-

sured using an adjustable narrow-band (3%) filter
in the receiving line. The powex and coupling
constant are measured at a series of fixed fre-
quencies. The amplitude of the spectrum as cal-
culated from Eq. (3) is normalized to the mea-
sured value at one point and the comparison of
theory and experiment is shown in Fig. 3(a).
The ShRpe Rnd width of the spectrUIQ Rle found
to be in excellent agreement with theory.
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FIG. 3. (a) Shape of wave spectrum. Solid line is
theory, circles are experimental values. Beam cur-
rent is 2 mA. (b) Inferred beam-velocity distribution
versus energy analyzer distribution. The solid curve
is obtained from an electronically differentiated output
of the analyzer.

We have also measured the growth rates of the
spectral components by using the adjustable fil-
ter and plotting the log of the receiver power
versus distance for a number of frequencies.
These growth rates were used in Eq. (2) to find
the avexaged beam-velocity distribution function
assuming that the wave potential is constant
over the beam diameter; the beam is sufficiently
small to justify this easily. This inferred beam
distribution is compared with the direct measure-
ment using an energy analyzer. The results are
shown in Fig. 3(b), where the width of the shaded
region is an indication of the estimated error in
determining the inferred distribution. No "nox'-
DlRllzRtlon plocedure 18 used 1n this conlpari-
son.
In summary, we find that the quasilinear theory
correctly predicts the manner in which the elec-
tron-plasma wave spectrum from a "gentle bump"
grows and saturates. The theory gives the pro-
per dependence of saturation level as a function
of beam current, the shape of the spectrum,
and the magnitude of the equilibrium power level.
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Waves in a Hot Magnetized Plasma

In this chapter we discuss the propagation of small-amplitude waves in a hot
magnetized plasma. Just as for a cold plasma, the presence of a static zero-order
magnetic field in a hot plasma leads to a wide variety of new phenomena. Because
the zero-order motions of the particles in a magnetized plasma consist of circular
orbits around the magnetic field, some type of resonance can be expected when
the wave frequency is equal to the cyclotron frequency. In a cold plasma, this
resonance is the same for all particles of a given charge-to-mass ratio, and gives
rise to the well-defined cyclotron resonances described in Chapter 4. In a hot
plasma, the frequency “felt” by a particle is Doppler-shifted by the thermal
motion of the particle along the static magnetic field. For a given parallel velocity,
resonance occurs when the frequency in the guiding-center frame of reference of
the particle is at the cyclotron frequency, i.e., ω′ = ω − k∥υ∥ = ωc. Because of
the thermal spread in the particle velocities, the resonance is no longer sharp,
as it was in a cold plasma, but is now broadened by the thermal motion. The
resonant interaction also produces damping, called cyclotron damping, in a manner
somewhat analogous to Landau damping. If the cyclotron radius of the particle
is a significant fraction of the wavelength, the phase shift introduced by the
periodic cyclotron motion of the particles back and forth along the perpendicular
component of the wave vector produces a phase modulation at the cyclotron
frequency. As we will show, this phase modulation leads to a series of resonances at
harmonics of the cyclotron frequency. The general cyclotron resonance condition
then becomes ω′ =ω − k∥υ∥ = nωc, where n is an integer.

Given the complexity of the cyclotron resonance interactions described above, it
should come as no surprise that the mathematical analysis is more difficult than for
a cold plasma. Nevertheless, it is possible to derive a general dispersion relation
for the propagation of small-amplitude waves in a hot magnetized plasma. Because
of the complexity of the analysis, we will restrict our discussion to certain special
cases that are of general interest.
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10.1 Linearization of the Vlasov Equation

Before proceeding with the derivation of the dispersion relation, it is useful to
discuss some general features of the linearized Vlasov equation when a zero-order
magnetic field is present. Since the wave amplitudes are assumed to be small,
the Vlasov equation is linearized in the usual way by assuming that the velocity
distribution function consists of a constant homogeneous zero-order term, fs0(v),
plus a small perturbation, fs1(v), so that

fs(v) = fs0(v)+ fs1(v). (10.1.1)

Since the plasma is magnetized, we must now assume that the magnetic field
consists of a constant homogeneous zero-order term plus a small first-order
perturbation, i.e., B = B0 + B1. For the electric field, it is sufficient to assume
that the zero-order term is zero, so that E = E1. This assumption is justified on
the grounds that, except for exceedingly strong electric fields (E0 ≥ cB0), it is
always possible to transform to a frame of reference in which E0 = 0. Using these
definitions it can be shown that the zero- and first-order linearized expansions of
the Vlasov equation (5.2.15) are given by

v×B0 ·∇v fs0 = 0 (10.1.2)

and

∂ fs

∂t
+ v ·∇ fs +

es

ms
(v×B0) ·∇v fs +

es

ms
[E+ v×B] ·∇v fs0 = 0, (10.1.3)

where as usual we have dropped the 1 subscript on the first-order terms. Because
of the anticipated azimuthal symmetry with respect to the zero-order magnetic
field, it is useful to introduce cylindrical velocity space coordinates (υ⊥,φ,υ∥), with
B0 along the z axis as shown in Figure 10.1. To understand the meaning of the
condition imposed on the zero-order distribution function by Eq. (10.1.2), we start
by writing this equation in rectangular (x,y,z) coordinates:

(v×B0) ·∇v fs0 =

(
υy
∂ fs0

∂υx
− υx

∂ fs0

∂υy

)
B0 = 0. (10.1.4)

Next, we transform this equation to cylindrical velocity space coordinates by using
the equations υx = υ⊥ cosφ,υy = υ⊥ sinφ, and υz = υ∥, which when substituted into
the above equation gives

(v×B0) ·∇v fs0 =

(
υ⊥ sinφ

∂ fs0

∂υx
− υ⊥ cosφ

∂ fs0

∂υy

)
B0 = 0. (10.1.5)
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