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The collective behavior of a fully ionized plasma in which the number of particles in a sphere
of radius a, the Debye length, is very large compared to one is governed by the collisionless Boltz-
mann or Vlasov equation. In an infinite homogeneous plasma of this type, 1t is well known that
in the “linearized” theory a velocity distribution f, (v) consisting of a main part that i1s a mono-
tonically decreasing function of energy plus a small gentle bump on the tail of the main part
(e.g. a Maxwellian plus runaway clectrons) leads to unstable (growing) plasma oscillations, and
that the unstable oscillations are those for which v @ f, (v)/0 v> 0 for v = w/k (w is the frequency
and k£ the wave number). :

After a sufficient time these waves grow to such an amplitude that the non-linear terms in
the Vlasov equation are important and the linearization 1s no longer valid. The question then
arises as to the behavior of these waves in the non-linear region and it is this question which we
consider. - |

The method is to divide the non-linear terms into two groups, one of which combined with
the linear terms yields a non-linear dispersion relation, while the other provides a weak coupling
between the different modes. The non-linear dispersion relation leads to the establishment of
an equilibrium spectrum, which then decays slowly to zero due to the mode-coupling terms. The
limiting of the wave amplitudes to the equilibrium spectrum is due to flattening of the bump in
the velocity distribution by non-linear effects. The slow decay of the equilibrium spectrum leads
to further changes in the velocity distribution so that asymptotically the distribution function
1s a monotonically decreasing function of energy and hence gtable. Analytic expressions for the
equilibrium spectrum and the equilibrium velocity distribution are obtained. An approximate
value for the maximum energy in the equilibrium electric field is given by the geometric mean
of the thermal energy and the drift energy of the particles in the bump.
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The quasi-linear velocity space diffusion is considered for waves of any oscillation branch propa-
gating at an arbitrary angle to a uniform magnetic field in a spatially uniform plasma. The space-
averaged distribution function is assumed to change slowly compared to a gyroperiod and charac-
teristic times of the wave motion. Nonlinear mode coupling is neglected. An H-like theorem shows
that both resonant and nonresonant quasi-linear diffusion force the particle distributions towards
marginal stablity. Creation of the marginally stable state in the presence of a sufficiently broad wave
spectrum in general involves diffusing particles to infinite energies, and so the marginally stable plateau
1s not accessible physically, except in special cases. Resonant particles with velocities much larger
than typical phase velocities in the excited spectrum are scattered primarily in pitch angle about the
magnetlc field. Only particles with velocities the order of the wave phase velocities or less are scat-
tered in energy at a rate comparable with their pitch angle scattering rate.
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The Slow Evolution of the Average

linear waves
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Quasilinear Vlasov-Poisson

which all of the spatial variations are in the z direction. The governing equations
for such a system are the Vlasov equation,
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Quasilinear Vlasov-Poisson
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What is the (slow) evolution of
the average distribution?



Quasilinear Vlasov-Poisson
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Quasilinear Vlasov-Poisson

Equation for
Average
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Quasilinear Vlasov-Poisson

Linear part...
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Quasilinear Vlasov-Poisson

Quasi-linear part...
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Quasilinear Vlasov-Poisson

uasi-linear part...
Q P '3 0D 0 1 f (9CI>1f q
(9UZ Y 8vz 2L 185
0 1 ("0 (- 1
= — | Dyk,0)e"™?
v, ZLLI{&LO e d"}
/ X f f;l(k’,vz,t)eik,zdk’ ]dz, (11.1.33)

L . ,
lim K+ K24y — 28k + ), (11.1.34)
—oo J_ 71




Quasilinear Vlasov-Poisson

uasi-linear part...
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Quasilinear Vlasov-Poisson

Quasi-linear part...
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Quasilinear Velocity-Space Diffusion
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where &(k,t) = (ney/2L)|E;(k,1)|? is called the spectral density of the electric field.
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Quasilinear Velocity-Space Diffusion

o o o
E(fS>(U29t) o avz |:Dq(U29t) aUZ <]CZ>(U29t):| y (11144)
C2(e\ [ & (k,tyy(k,1)
Palval= g (m_) Ttk D — ko P 72D D

0& (k,t)
ot

=2v(k,t)& (k, 1), (11.1.43)



o [Linear Landau

damping
I—A/

Nonlinear
damping

Figure 9.15 The nonlinear effects of particle trapping tend to increase the wave
amplitude relative to the predictions of linear Landau damping.
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Quasilinear Velocity-Space Diffusion
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The nonlinear limit of wave growth induced by a low density
cold electron beam in a collisionless lasma 18 calculated
from a slmple physical model. The bandmdth of the growing

“noise’”” 18 so small that the beam interacts with a nearly
sinusoidal electric field.
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The shape and amplitude of the electron-plasma wave spectrum resulting from a

“gentle bump”’ on the tail of the electron velocity distribution of a plasma is measured

and found to be in good agreement with quasilinear theory.

In this Letter we report an experiment designed
to test the validity of this theory by measuring
the electron-plasma wave spectrum resulting
from the injection of an electron beam of suffi-
ciently low density and large velocity spread to
satisfy the assumptions of quasilinear theory.

In prior beam-plasma experiments the initial
velocity spread of the beam electrons was not
sufficient to meet the requirements.3™°
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FIG. 3. (a) Shape of wave spectrum. Solid line is
theory, circles are experimental values. Beam cur-
rent is 2 mA. (b) Inferred beam=velocity distribution
versus energy analyzer distribution. The solid curve
is obtained from an electronically differentiated output
of the analyzer.



