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The collective behavior of a fully ionized plasma in which the number of particles in a sphere 
of radius a, the Debye length, is very large compared to one is governed by the collisionless Boltz-
mann or Vlasôv equation. In an infinite homogeneous plasma of this type, it is well known that 
in the "linearized" theory a velocity distribution/0 (v) consisting of a main part that is a mono-
tonically decreasing function of energy plus a small gentle bump on the tail of the main part 
(e.g. a Maxwellian plus runaway electrons) leads to unstable (growing) plasma oscillations, and 
that the unstable oscillations are those for which v 3 / 0 (v)jd v > 0 for v = eo/fc ( w is the frequency 
and   the wave number). 

After a sufficient time these waves grow to such an amplitude that the non-linear terms in 
the Vlasov equation are important and the linearization is no longer valid. The question then 
arises as to the behavior of these waves in the non-linear region and it is this question which we. 
consider. 

The method is to divide the non-linear terms into two groups, one of which combined with 
the linear terms yields a non-linear dispersion relation, while the other provides a weak coupling 
between the different modes. The non-linear dispersion relation leads to the establishment of 
an equilibrium spectrum, which then decays slowly to zero due to the mode-coupling terms. The 
limiting of the wave amplitudes to the equilibrium spectrum is due to flattening of the bump in 
the velocity distribution by non-linear effects. The slow decay of the equilibrium spectrum leads 
to further changes in the velocity distribution so that asymptotically the distribution function 
is a monotonically decreasing function of energy and hence stable. Analytic expressions for the 
equilibrium spectrum and the equilibrium velocity distribution are obtained. An approximate 
value for the maximum energy in the equilibrium electric field is given by the geometric mean 
of the thermal energy and the drift energy of the particles in the bump. 

1. Introduction to an equilibrium spectrum is a result of a diffusion 
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I t will be shown tha t the development in the the dispersion relation is such tha t the interaction 
non-linear regime for certain types of unstable modes between modes is non-resonant, 
can be followed in considerable detail for long times. In Section 2 the linearized solutions are discussed, 
This is illustrated for the case of unstable electron- and the non-linear dispersion relations are developed 
plasma oscillations. The result is t ha t these waves, in Section 3. In Section 4 the non-linear dispersion 
which are initially unstable, grow in a short time relations are applied to a one-dimensional example, 
to an equilibrium spectrum (in   space) and then The damping due to mode coupling is discussed in 
decay slowly to zero. The limiting of these waves Section 5, and the results are discussed in Section 6. 
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The Slow Evolution of the Average 

430 Nonlinear Effects

We start the discussion of quasi-linear theory by defining the spatial average of
the time-dependent distribution function fs1(z,υz, t) as

⟨ fs⟩(υz, t) =
1

2L

∫ L

− L
fs(z,υz, t)dz, (11.1.5)

where the spatial integration is carried out over the entire length 2L of a
one-dimensional plasma. We further require that the spatially averaged distribution
function be identical to the zero-order distribution function at t = 0,

⟨ fs⟩(υz, t = 0) = fs0(υz), (11.1.6)

but allow ⟨ fs⟩ to deviate from fs0(υz) for t > 0. The total distribution function is
then written as the sum of the averaged distribution function ⟨ fs⟩ plus a fluctuation,
fs1, i.e.,

fs(z,υz, t) = ⟨ fs⟩(υz, t)+ fs1(z,υz, t). (11.1.7)

Note that at t = 0, Eq. (11.1.7) reduces identically to Eq. (11.1.4). The main
difference between linear theory and quasi-linear theory lies in what one linearizes
about: in linear theory, one linearizes about a time-independent equilibrium
distribution function fs0(υz), whereas in quasi-linear theory one linearizes about a
spatially averaged distribution function ⟨ fs0⟩(υz, t), which is allowed to vary slowly
in time.

Taking the spatial average of both sides of Eq. (11.1.7) in the manner of
Eq. (11.1.5), it follows that the spatial average of the first-order perturbation of
the velocity distribution function is zero:

⟨ fs1(z,υz, t)⟩ = 0. (11.1.8)

For electrostatic perturbations, we can write the perturbed electric field as

E1(z, t) = − ∂
∂z
Φ1(z, t). (11.1.9)

Taking the spatial average of Eq. (11.1.9) and requiring that Φ1(z, t) decays to zero
at the system boundaries, we can show that the spatial average of the first-order
electric field is also zero:

⟨E1(z, t)⟩ = − 1
2L

∫ L

− L

∂Φ1(z, t)
∂z

dz = 0. (11.1.10)

11.1.1 The Quasi-linear Diffusion Equation

Next, we develop an equation called the quasi-linear diffusion equation, which
describes the time evolution of the average distribution function. This equation is
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Quasilinear Vlasov-Poisson 
11.1 Quasi-linear Theory 429

which all of the spatial variations are in the z direction. The governing equations
for such a system are the Vlasov equation,

∂ fs

∂t
+υz

∂ fs

∂z
− es

ms

∂Φ

∂z
∂ fs

∂υz
= 0, (11.1.1)

and Poisson’s equation,

∂2Φ

∂z2 = −
∑

s

es

ϵ0

∫ ∞

−∞
fs dυz, (11.1.2)

where Φ is the electrostatic potential and fs is the velocity distribution function of
the sth species. We start by assuming that the plasma is initially in a homogeneous
equilibrium state, fs = fs0(υz), with no wave electric field, i.e., ∂Φ0/∂z = 0. It is
easy to see that such an equilibrium solution identically satisfies Eqs. (11.1.1)
and (11.1.2). The first term on the left of Eq. (11.1.1) vanishes because fs0 is
time-independent, the second term vanishes because fs0 is spatially uniform, and
the last term vanishes because the equilibrium is field free. Equation (11.1.2) is
satisfied because the plasma is quasi-neutral, i.e.,

∑

s

es

∫ ∞

−∞
fs0 dυz = 0. (11.1.3)

At t = 0, we perturb the equilibrium by introducing a small perturbation
fs1(z,υz, t = 0) so that the total distribution function can be written as the sum
of two terms:

fs(z,υz, t = 0) = fs0(υz)+ fs1(z,υz, t = 0). (11.1.4)

In Chapters 9 and 10, we approached the problem of wave propagation in
hot plasmas by linearizing Eqs. (11.1.1) and (11.1.2) about the equilibrium
velocity distribution, fs0(υz), and determining the time evolution of the first-order
perturbation, fs1(z,υz, t). In doing so, we assumed that the equilibrium distribution
function fs0(υz) at t = 0 remains unchanged as the perturbation evolves from its
initial value fs1(z,υz, t = 0) at t = 0 to its value fs1(z,υz, t) at an arbitrary time t.
Clearly, this assumption cannot be valid for all times. For instance, if the plasma is
subject to a linear, exponentially growing instability, fs1 will grow exponentially,
invalidating the assumption that fs1 remains small. Then the question is how
the growing disturbance fs1(z,υz, t) changes the initial equilibrium fs0(υz), and
how that, in turn, acts back on fs1(z,υz, t). As discussed below, the quasi-linear
approximation provides one way to approach this problem.
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obtained by taking the spatial average of the Vlasov equation (11.1.1), which can
be written

∂

∂t
⟨ fs⟩+

〈
υz
∂ fs

∂z

〉
=

es

ms

〈
∂Φ

∂z
∂ fs

∂υz

〉
. (11.1.11)

The second term on the left-hand side of the above equation can be rewritten as
〈
υz
∂ fs

∂z

〉
=

〈
∂

∂z
(υz fs)

〉
= 0, (11.1.12)

because the integrand is a perfect differential and we require that the perturbation
fs1(z,υz, t) vanish at the boundaries of the system. One way to ensure that this
condition is satisfied is to take L to be very large and require that fs decay to zero
at large values of z. The term on the right-hand side of Eq. (11.1.11) can then be
written

es

ms

〈
∂Φ

∂z
∂ fs

∂υz

〉
=

es

ms

〈(
∂Φ0

∂z
+
∂Φ1

∂z

)(
∂⟨ fs⟩
∂υz
+
∂ fs1

∂υz

)〉
. (11.1.13)

Since ∂Φ0/∂z = 0 in equilibrium and ⟨∂Φ1/∂z⟩ = 0 by Eq. (11.1.10), we obtain

es

ms

〈
∂Φ

∂z
∂ fs

∂υz

〉
=

es

ms

〈
∂Φ1

∂z
∂ fs1

∂υz

〉
=

es

ms

∂

∂υz

〈
fs1
∂Φ1

∂z

〉
. (11.1.14)

Using Eqs. (11.1.12) and (11.1.14), we can then reduce Eq. (11.1.11) to

∂

∂t
⟨ fs⟩ =

es

ms

∂

∂υz

〈
fs1
∂Φ1

∂z

〉
. (11.1.15)

To derive an equation for fs1(z,υz, t), we subtract the averaged equation (11.1.15)
from the full Vlasov equation (11.1.1), to give

(
∂

∂t
+υz

∂

∂z

)
fs1(z,υz, t) =

es

ms

∂Φ1

∂z
∂⟨ fs⟩
∂υz

+
es

ms

∂

∂υz

[
∂Φ1

∂z
fs1 −

〈
∂Φ1

∂z
fs1

〉]
. (11.1.16)

Both Eqs. (11.1.15) and (11.1.16) are exact. However, they are not a closed set,
because a time evolution equation for the second-order fluctuations (∂Φ1/∂z) fs1

(and its average) is needed. Any effort to determine such a time evolution
equation will inevitably bring in third-order fluctuations. In turn, a time-dependent
equation for third-order fluctuations will involve fluctuations of the fourth order.
This process, when continued, produces a hierarchy of indefinitely higher order.
Therefore, there is a closure problem, similar to the closure problem encountered
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obtained by taking the spatial average of the Vlasov equation (11.1.1), which can
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The second term on the left-hand side of the above equation can be rewritten as
〈
υz
∂ fs

∂z

〉
=

〈
∂

∂z
(υz fs)

〉
= 0, (11.1.12)

because the integrand is a perfect differential and we require that the perturbation
fs1(z,υz, t) vanish at the boundaries of the system. One way to ensure that this
condition is satisfied is to take L to be very large and require that fs decay to zero
at large values of z. The term on the right-hand side of Eq. (11.1.11) can then be
written

es

ms

〈
∂Φ

∂z
∂ fs

∂υz

〉
=

es

ms

〈(
∂Φ0

∂z
+
∂Φ1

∂z

)(
∂⟨ fs⟩
∂υz
+
∂ fs1

∂υz

)〉
. (11.1.13)

Since ∂Φ0/∂z = 0 in equilibrium and ⟨∂Φ1/∂z⟩ = 0 by Eq. (11.1.10), we obtain

es

ms
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∂z
∂ fs
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〉
=
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∂ fs1

∂υz

〉
=
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ms
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〈
fs1
∂Φ1

∂z

〉
. (11.1.14)

Using Eqs. (11.1.12) and (11.1.14), we can then reduce Eq. (11.1.11) to

∂

∂t
⟨ fs⟩ =

es

ms

∂

∂υz

〈
fs1
∂Φ1

∂z

〉
. (11.1.15)

To derive an equation for fs1(z,υz, t), we subtract the averaged equation (11.1.15)
from the full Vlasov equation (11.1.1), to give

(
∂

∂t
+υz

∂

∂z

)
fs1(z,υz, t) =

es

ms

∂Φ1

∂z
∂⟨ fs⟩
∂υz

+
es
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∂

∂υz

[
∂Φ1

∂z
fs1 −

〈
∂Φ1

∂z
fs1

〉]
. (11.1.16)

Both Eqs. (11.1.15) and (11.1.16) are exact. However, they are not a closed set,
because a time evolution equation for the second-order fluctuations (∂Φ1/∂z) fs1

(and its average) is needed. Any effort to determine such a time evolution
equation will inevitably bring in third-order fluctuations. In turn, a time-dependent
equation for third-order fluctuations will involve fluctuations of the fourth order.
This process, when continued, produces a hierarchy of indefinitely higher order.
Therefore, there is a closure problem, similar to the closure problem encountered
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because the integrand is a perfect differential and we require that the perturbation
fs1(z,υz, t) vanish at the boundaries of the system. One way to ensure that this
condition is satisfied is to take L to be very large and require that fs decay to zero
at large values of z. The term on the right-hand side of Eq. (11.1.11) can then be
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To derive an equation for fs1(z,υz, t), we subtract the averaged equation (11.1.15)
from the full Vlasov equation (11.1.1), to give
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Both Eqs. (11.1.15) and (11.1.16) are exact. However, they are not a closed set,
because a time evolution equation for the second-order fluctuations (∂Φ1/∂z) fs1

(and its average) is needed. Any effort to determine such a time evolution
equation will inevitably bring in third-order fluctuations. In turn, a time-dependent
equation for third-order fluctuations will involve fluctuations of the fourth order.
This process, when continued, produces a hierarchy of indefinitely higher order.
Therefore, there is a closure problem, similar to the closure problem encountered
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and

f̃s1(k,υz, t) = f̂s1 (k,υz)e−iω(k, t)t, (11.1.24)

where ω(k, t) is a complex frequency. If ⟨ fs⟩ in Eq. (11.1.21) were fs0, then
ω(k, t) would be independent of time. However, unlike fs0, the average distribution
function ⟨ fs⟩ changes as a function of time, in accordance with Eq. (11.1.15). Each
realization of ⟨ fs⟩ in time produces its own frequency, ω, making ω a function
of time as well. However, the time evolution of ⟨ fs⟩, and hence of ω, is slower
than that of fs1 because, according to Eq. (11.1.15), ∂⟨ fs⟩/∂t is second order in
the fluctuations while ∂ fs1/∂t is first order. Hence, it is reasonable to assume
that ω remains approximately constant on the faster time-scale of fluctuations that
evolve according to Eqs. (11.1.21) and (11.1.22). Substituting Eqs. (11.1.23) and
(11.1.24) into Eqs. (11.1.21) and (11.1.22), we obtain

f̂s1(k,υz) = −
es

ms

k Φ̂1(k)
ω− kυz

∂⟨ fs⟩
∂υz

(11.1.25)

and

k2Φ̂1(k) =
∑

s

es

ϵ0

∫ ∞

−∞
f̂s1(k,υz) dυz. (11.1.26)

We will assume that the wave is unstable: that is, the complex frequency (ω =
ωr + iγ) has a positive imaginary part (γ > 0). This makes a more detailed
Landau analysis for damped modes, as discussed in Section (9.2), unnecessary.
The generalization to include a Landau analysis, which covers stable as well as
unstable modes, will not be carried out here.

Before we proceed to derive the quasi-linear diffusion equation, it is useful to
introduce some identities involving Fourier representations. These follow from the
requirement that the electrostatic potential must be real for all t, i.e.,

Φ1(z, t) =Φ∗1(z, t), (11.1.27)

where * denotes a complex conjugate. Written in terms of Fourier transforms, the
above equation becomes

∫ ∞

−∞
Φ̂1(k) eikz e−iω∗(k, t)tdk =

∫ ∞

−∞
Φ̂∗1(k) e−ikz eiω∗(k, t)t dk. (11.1.28)

We note that k is a dummy variable of integration. So changing k to −k will not
change the value of the integral on the right-hand side. We can then rewrite the
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integral on the right-hand side as
∫ ∞

−∞
Φ̂∗1(k) e−ikz eiω∗(k, t)tdk =

∫ −∞

∞
Φ̂∗1(−k) eikz eiω∗(−k, t)td(−k)

=

∫ ∞

−∞
Φ̂∗1(−k) eikz eiω∗(−k, t)dk. (11.1.29)

Comparing the right-hand side of the above equation with the left-hand side of the
previous equation, we obtain the identities

Φ̂1(k) = Φ̂∗1(−k) (11.1.30)

and

ω(k, t) = −ω∗(−k, t). (11.1.31)

The above equation implies that

ωr(k, t) = −ωr(−k, t), γ(k, t) = γ(−k, t). (11.1.32)

To obtain the quasi-linear diffusion equation from Eq. (11.1.15), consider the
expression

∂

∂υz

〈
fs1
∂Φ1

∂z

〉
=

∂

∂υz

1
2L

∫ L

−L

∂Φ1

∂z
fs1dz

=
∂

∂υz

1
2L

∫ L

−L

[{
∂

∂z

∫ ∞

−∞
Φ̃1(k, t) eikzdk

}

×
∫ ∞

−∞
f̃s1(k′,υz, t) eik′z dk′

]
dz, (11.1.33)

where we have used the Fourier transformation equations (11.1.19) and (11.1.20).
If we now change the order of differentiation with respect to z and the integration
with respect to k in the first integrand (in parentheses), take the limit of a large box
(L→∞), and use the identity

lim
L→∞

∫ L

−L
ei(k+ k′)zdz = 2πδ(k+ k′), (11.1.34)

where δ(k+ k′) is the Dirac delta function; we obtain

∂

∂υz

〈
fs1
∂Φ1

∂z

〉
= −π

L
∂

∂υz

∫ ∞

−∞
ikΦ̃1(−k, t) f̃s1(k,υz, t)dk. (11.1.35)
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integral on the right-hand side as
∫ ∞

−∞
Φ̂∗1(k) e−ikz eiω∗(k, t)tdk =

∫ −∞

∞
Φ̂∗1(−k) eikz eiω∗(−k, t)td(−k)

=

∫ ∞

−∞
Φ̂∗1(−k) eikz eiω∗(−k, t)dk. (11.1.29)

Comparing the right-hand side of the above equation with the left-hand side of the
previous equation, we obtain the identities

Φ̂1(k) = Φ̂∗1(−k) (11.1.30)

and

ω(k, t) = −ω∗(−k, t). (11.1.31)

The above equation implies that

ωr(k, t) = −ωr(−k, t), γ(k, t) = γ(−k, t). (11.1.32)

To obtain the quasi-linear diffusion equation from Eq. (11.1.15), consider the
expression

∂

∂υz

〈
fs1
∂Φ1

∂z

〉
=

∂

∂υz

1
2L

∫ L

−L

∂Φ1
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fs1dz

=
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2L

∫ L

−L

[{
∂

∂z

∫ ∞

−∞
Φ̃1(k, t) eikzdk

}

×
∫ ∞

−∞
f̃s1(k′,υz, t) eik′z dk′

]
dz, (11.1.33)

where we have used the Fourier transformation equations (11.1.19) and (11.1.20).
If we now change the order of differentiation with respect to z and the integration
with respect to k in the first integrand (in parentheses), take the limit of a large box
(L→∞), and use the identity

lim
L→∞

∫ L

−L
ei(k+ k′)zdz = 2πδ(k+ k′), (11.1.34)

where δ(k+ k′) is the Dirac delta function; we obtain

∂

∂υz

〈
fs1
∂Φ1

∂z

〉
= −π

L
∂

∂υz

∫ ∞

−∞
ikΦ̃1(−k, t) f̃s1(k,υz, t)dk. (11.1.35)
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integral on the right-hand side as
∫ ∞

−∞
Φ̂∗1(k) e−ikz eiω∗(k, t)tdk =

∫ −∞

∞
Φ̂∗1(−k) eikz eiω∗(−k, t)td(−k)

=

∫ ∞

−∞
Φ̂∗1(−k) eikz eiω∗(−k, t)dk. (11.1.29)

Comparing the right-hand side of the above equation with the left-hand side of the
previous equation, we obtain the identities

Φ̂1(k) = Φ̂∗1(−k) (11.1.30)

and

ω(k, t) = −ω∗(−k, t). (11.1.31)

The above equation implies that

ωr(k, t) = −ωr(−k, t), γ(k, t) = γ(−k, t). (11.1.32)

To obtain the quasi-linear diffusion equation from Eq. (11.1.15), consider the
expression

∂
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=
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}

×
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f̃s1(k′,υz, t) eik′z dk′

]
dz, (11.1.33)

where we have used the Fourier transformation equations (11.1.19) and (11.1.20).
If we now change the order of differentiation with respect to z and the integration
with respect to k in the first integrand (in parentheses), take the limit of a large box
(L→∞), and use the identity

lim
L→∞

∫ L

−L
ei(k+ k′)zdz = 2πδ(k+ k′), (11.1.34)

where δ(k+ k′) is the Dirac delta function; we obtain

∂

∂υz

〈
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〉
= −π
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∫ ∞

−∞
ikΦ̃1(−k, t) f̃s1(k,υz, t)dk. (11.1.35)
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integral on the right-hand side as
∫ ∞

−∞
Φ̂∗1(k) e−ikz eiω∗(k, t)tdk =

∫ −∞

∞
Φ̂∗1(−k) eikz eiω∗(−k, t)td(−k)

=

∫ ∞

−∞
Φ̂∗1(−k) eikz eiω∗(−k, t)dk. (11.1.29)

Comparing the right-hand side of the above equation with the left-hand side of the
previous equation, we obtain the identities

Φ̂1(k) = Φ̂∗1(−k) (11.1.30)

and

ω(k, t) = −ω∗(−k, t). (11.1.31)

The above equation implies that

ωr(k, t) = −ωr(−k, t), γ(k, t) = γ(−k, t). (11.1.32)

To obtain the quasi-linear diffusion equation from Eq. (11.1.15), consider the
expression
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1
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∫ L
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1
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∫ L
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}

×
∫ ∞

−∞
f̃s1(k′,υz, t) eik′z dk′

]
dz, (11.1.33)

where we have used the Fourier transformation equations (11.1.19) and (11.1.20).
If we now change the order of differentiation with respect to z and the integration
with respect to k in the first integrand (in parentheses), take the limit of a large box
(L→∞), and use the identity

lim
L→∞

∫ L

−L
ei(k+ k′)zdz = 2πδ(k+ k′), (11.1.34)

where δ(k+ k′) is the Dirac delta function; we obtain
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〉
= −π

L
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∂υz

∫ ∞

−∞
ikΦ̃1(−k, t) f̃s1(k,υz, t)dk. (11.1.35)
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integral on the right-hand side as
∫ ∞

−∞
Φ̂∗1(k) e−ikz eiω∗(k, t)tdk =

∫ −∞
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Φ̂∗1(−k) eikz eiω∗(−k, t)td(−k)

=

∫ ∞

−∞
Φ̂∗1(−k) eikz eiω∗(−k, t)dk. (11.1.29)

Comparing the right-hand side of the above equation with the left-hand side of the
previous equation, we obtain the identities

Φ̂1(k) = Φ̂∗1(−k) (11.1.30)

and

ω(k, t) = −ω∗(−k, t). (11.1.31)

The above equation implies that

ωr(k, t) = −ωr(−k, t), γ(k, t) = γ(−k, t). (11.1.32)

To obtain the quasi-linear diffusion equation from Eq. (11.1.15), consider the
expression
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]
dz, (11.1.33)

where we have used the Fourier transformation equations (11.1.19) and (11.1.20).
If we now change the order of differentiation with respect to z and the integration
with respect to k in the first integrand (in parentheses), take the limit of a large box
(L→∞), and use the identity

lim
L→∞

∫ L

−L
ei(k+ k′)zdz = 2πδ(k+ k′), (11.1.34)

where δ(k+ k′) is the Dirac delta function; we obtain
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integral on the right-hand side as
∫ ∞

−∞
Φ̂∗1(k) e−ikz eiω∗(k, t)tdk =

∫ −∞

∞
Φ̂∗1(−k) eikz eiω∗(−k, t)td(−k)

=

∫ ∞

−∞
Φ̂∗1(−k) eikz eiω∗(−k, t)dk. (11.1.29)

Comparing the right-hand side of the above equation with the left-hand side of the
previous equation, we obtain the identities

Φ̂1(k) = Φ̂∗1(−k) (11.1.30)

and

ω(k, t) = −ω∗(−k, t). (11.1.31)

The above equation implies that

ωr(k, t) = −ωr(−k, t), γ(k, t) = γ(−k, t). (11.1.32)

To obtain the quasi-linear diffusion equation from Eq. (11.1.15), consider the
expression

∂

∂υz

〈
fs1
∂Φ1

∂z

〉
=

∂

∂υz

1
2L

∫ L

−L

∂Φ1

∂z
fs1dz

=
∂

∂υz

1
2L

∫ L

−L

[{
∂

∂z

∫ ∞

−∞
Φ̃1(k, t) eikzdk

}

×
∫ ∞

−∞
f̃s1(k′,υz, t) eik′z dk′

]
dz, (11.1.33)

where we have used the Fourier transformation equations (11.1.19) and (11.1.20).
If we now change the order of differentiation with respect to z and the integration
with respect to k in the first integrand (in parentheses), take the limit of a large box
(L→∞), and use the identity

lim
L→∞

∫ L

−L
ei(k+ k′)zdz = 2πδ(k+ k′), (11.1.34)

where δ(k+ k′) is the Dirac delta function; we obtain

∂

∂υz

〈
fs1
∂Φ1

∂z

〉
= −π

L
∂

∂υz

∫ ∞

−∞
ikΦ̃1(−k, t) f̃s1(k,υz, t)dk. (11.1.35)
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The above equation implies that the spectral density E (k, t) obeys the differential
equation

∂E (k, t)
∂t

= 2γ(k, t)E (k, t), (11.1.43)

where the time dependence of γ(k, t) is suppressed in integrating E (k, t), because
γ(k, t) varies much more slowly with time than the fluctuating energy E (k, t). Using
the identity Ê1(−k) = Ê∗1(k) and Eq. (11.1.42), Eq. (11.1.39) can be written in the
form of a diffusion equation,

∂

∂t
⟨ fs⟩(υz, t) =

∂

∂υz

[
Dq(υz, t)

∂

∂υz
⟨ fz⟩(υz, t)

]
, (11.1.44)

which is called the quasi-linear diffusion equation, where

Dq(υz, t) =
2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

iE (k, t)
ω− kυz

dk (11.1.45)

is the diffusion coefficient. Since Eq. (11.1.44) is the time evolution equation for
a real distribution function ⟨ fs⟩(υz, t), the coefficient Dq(υz, t), given by the above
equation, must also be real. This can be seen by writing

iE (k, t)
ω− kυz

=
iE (k, t)

ωr + iγ− kυz
=

iE (k, t)[ωr − kυz − iγ]
(ωr − kυz)2 +γ2 . (11.1.46)

Using the fact that E (k, t) is even in k (i.e., E (k, t) = E (−k, t)) and ωr(k, t) is odd
in k (by identity (11.1.32)), it follows that the imaginary part of the integral in
Eq. (11.1.45) vanishes identically because the integrand is odd in k. We are thus
left with the diffusion coefficient

Dq(υz, t) =
2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

E (k, t)γ(k, t)
[ωr(k, t)− kυz]2 +γ2(k, t)

dk, (11.1.47)

which is manifestly real and positive for growing modes.
Equations (11.1.42) and (11.1.44), with the diffusion coefficient specified by

Eq. (11.1.47), are the basic equations of quasi-linear theory.

11.1.2 Application to the Bump-on-Tail Instability

To illustrate an application of quasi-linear theory, we next discuss the time
evolution of the electron bump-on-tail instability. Such a distribution function was
first discussed in Section 9.5.4, and is shown in Figure 11.1. The phase velocities,
ω/k, of the unstable Langmuir waves that arise from this distribution function lie
in the region where fe0 = ⟨ fe⟩(υz, t = 0) is an increasing function of υz, i.e., where
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The above equation implies that the spectral density E (k, t) obeys the differential
equation

∂E (k, t)
∂t

= 2γ(k, t)E (k, t), (11.1.43)

where the time dependence of γ(k, t) is suppressed in integrating E (k, t), because
γ(k, t) varies much more slowly with time than the fluctuating energy E (k, t). Using
the identity Ê1(−k) = Ê∗1(k) and Eq. (11.1.42), Eq. (11.1.39) can be written in the
form of a diffusion equation,

∂

∂t
⟨ fs⟩(υz, t) =

∂

∂υz

[
Dq(υz, t)

∂

∂υz
⟨ fz⟩(υz, t)

]
, (11.1.44)

which is called the quasi-linear diffusion equation, where

Dq(υz, t) =
2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

iE (k, t)
ω− kυz

dk (11.1.45)

is the diffusion coefficient. Since Eq. (11.1.44) is the time evolution equation for
a real distribution function ⟨ fs⟩(υz, t), the coefficient Dq(υz, t), given by the above
equation, must also be real. This can be seen by writing

iE (k, t)
ω− kυz

=
iE (k, t)

ωr + iγ− kυz
=

iE (k, t)[ωr − kυz − iγ]
(ωr − kυz)2 +γ2 . (11.1.46)

Using the fact that E (k, t) is even in k (i.e., E (k, t) = E (−k, t)) and ωr(k, t) is odd
in k (by identity (11.1.32)), it follows that the imaginary part of the integral in
Eq. (11.1.45) vanishes identically because the integrand is odd in k. We are thus
left with the diffusion coefficient

Dq(υz, t) =
2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

E (k, t)γ(k, t)
[ωr(k, t)− kυz]2 +γ2(k, t)

dk, (11.1.47)

which is manifestly real and positive for growing modes.
Equations (11.1.42) and (11.1.44), with the diffusion coefficient specified by

Eq. (11.1.47), are the basic equations of quasi-linear theory.

11.1.2 Application to the Bump-on-Tail Instability

To illustrate an application of quasi-linear theory, we next discuss the time
evolution of the electron bump-on-tail instability. Such a distribution function was
first discussed in Section 9.5.4, and is shown in Figure 11.1. The phase velocities,
ω/k, of the unstable Langmuir waves that arise from this distribution function lie
in the region where fe0 = ⟨ fe⟩(υz, t = 0) is an increasing function of υz, i.e., where
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The above equation implies that the spectral density E (k, t) obeys the differential
equation

∂E (k, t)
∂t

= 2γ(k, t)E (k, t), (11.1.43)

where the time dependence of γ(k, t) is suppressed in integrating E (k, t), because
γ(k, t) varies much more slowly with time than the fluctuating energy E (k, t). Using
the identity Ê1(−k) = Ê∗1(k) and Eq. (11.1.42), Eq. (11.1.39) can be written in the
form of a diffusion equation,

∂

∂t
⟨ fs⟩(υz, t) =

∂

∂υz

[
Dq(υz, t)

∂

∂υz
⟨ fz⟩(υz, t)

]
, (11.1.44)

which is called the quasi-linear diffusion equation, where

Dq(υz, t) =
2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

iE (k, t)
ω− kυz

dk (11.1.45)

is the diffusion coefficient. Since Eq. (11.1.44) is the time evolution equation for
a real distribution function ⟨ fs⟩(υz, t), the coefficient Dq(υz, t), given by the above
equation, must also be real. This can be seen by writing

iE (k, t)
ω− kυz

=
iE (k, t)

ωr + iγ− kυz
=

iE (k, t)[ωr − kυz − iγ]
(ωr − kυz)2 +γ2 . (11.1.46)

Using the fact that E (k, t) is even in k (i.e., E (k, t) = E (−k, t)) and ωr(k, t) is odd
in k (by identity (11.1.32)), it follows that the imaginary part of the integral in
Eq. (11.1.45) vanishes identically because the integrand is odd in k. We are thus
left with the diffusion coefficient

Dq(υz, t) =
2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

E (k, t)γ(k, t)
[ωr(k, t)− kυz]2 +γ2(k, t)

dk, (11.1.47)

which is manifestly real and positive for growing modes.
Equations (11.1.42) and (11.1.44), with the diffusion coefficient specified by

Eq. (11.1.47), are the basic equations of quasi-linear theory.

11.1.2 Application to the Bump-on-Tail Instability

To illustrate an application of quasi-linear theory, we next discuss the time
evolution of the electron bump-on-tail instability. Such a distribution function was
first discussed in Section 9.5.4, and is shown in Figure 11.1. The phase velocities,
ω/k, of the unstable Langmuir waves that arise from this distribution function lie
in the region where fe0 = ⟨ fe⟩(υz, t = 0) is an increasing function of υz, i.e., where
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Using Eqs. (11.1.23) and (11.1.24), we can write the above equation as

∂

∂υz

〈
fs1
∂Φ1

∂z

〉
=− π

L
∂

∂υz

∫ ∞

−∞
ik Φ̂1(−k) f̂s1(k,υz)e−i[ω(k, t)+ω(−k, t)]tdk

=− π
L
∂

∂υz

∫ ∞

−∞
ik Φ̂1(−k) f̂s1(k,υz)e2γ(k, t)tdk, (11.1.36)

where we have used identities (11.1.32) to obtain

ω(k, t)+ω(−k, t) =ωr(k, t)+ iγ(k, t)+ωr(−k, t)+ iγ(−k, t)

= 2iγ(k, t). (11.1.37)

Substituting expression (11.1.25) for f̂s1(k,υz) into Eq. (11.1.36), we obtain

∂

∂υz

〈
fs1
∂Φ1

∂z

〉
=
π

L
es

ms

∂

∂υz

∫ ∞

−∞
ik2 Φ̂1(k) Φ̂1(−k)

ω− kυz

∂

∂υz
⟨ fs⟩e2γ(k, t)tdk, (11.1.38)

which, when substituted into the right-hand side of Eq. (11.1.15), gives

∂

∂t
⟨ fs⟩ =

π

L

(
es

ms

)2
∂

∂υz

[∫ ∞

−∞
Ê1(k) Ê1(−k)e2γ(k, t)t i

ω− kυz

∂

∂υz
⟨ fs⟩

]
dk, (11.1.39)

where Ê1(k) = −ikΦ̂1(k). The above equation can be written more compactly in
terms of the averaged electrostatic energy, which is defined as

⟨WE⟩ =
ϵ0

4L

∫ L

−L
|E1(z, t)|2dz, (11.1.40)

where ϵ0|E1(z, t)|2/2 is the electrostatic energy density. Using the identity (11.1.34),
it can be shown that

⟨WE⟩ =
πϵ0

2L

∫ ∞

−∞
Ẽ1(k, t)Ẽ1(−k, t)dk =

πϵ0

2L

∫ ∞

−∞
Ẽ1(k, t)Ẽ∗1(k, t)dk

=
πϵ0

2L

∫ ∞

−∞
|Ẽ1(k, t)|2 dk

=

∫ ∞

−∞
E (k, t)dk, (11.1.41)

where E (k, t)= (πϵ0/2L)|Ẽ1(k, t)|2 is called the spectral density of the electric field.
We can also write E (k, t) in the equivalent form:

E (k, t) =
πϵ0

2L
|Ê1(k)|2 e2γ(k, t)t. (11.1.42)
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The above equation implies that the spectral density E (k, t) obeys the differential
equation

∂E (k, t)
∂t

= 2γ(k, t)E (k, t), (11.1.43)

where the time dependence of γ(k, t) is suppressed in integrating E (k, t), because
γ(k, t) varies much more slowly with time than the fluctuating energy E (k, t). Using
the identity Ê1(−k) = Ê∗1(k) and Eq. (11.1.42), Eq. (11.1.39) can be written in the
form of a diffusion equation,

∂

∂t
⟨ fs⟩(υz, t) =

∂

∂υz

[
Dq(υz, t)

∂

∂υz
⟨ fz⟩(υz, t)

]
, (11.1.44)

which is called the quasi-linear diffusion equation, where

Dq(υz, t) =
2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

iE (k, t)
ω− kυz

dk (11.1.45)

is the diffusion coefficient. Since Eq. (11.1.44) is the time evolution equation for
a real distribution function ⟨ fs⟩(υz, t), the coefficient Dq(υz, t), given by the above
equation, must also be real. This can be seen by writing

iE (k, t)
ω− kυz

=
iE (k, t)

ωr + iγ− kυz
=

iE (k, t)[ωr − kυz − iγ]
(ωr − kυz)2 +γ2 . (11.1.46)

Using the fact that E (k, t) is even in k (i.e., E (k, t) = E (−k, t)) and ωr(k, t) is odd
in k (by identity (11.1.32)), it follows that the imaginary part of the integral in
Eq. (11.1.45) vanishes identically because the integrand is odd in k. We are thus
left with the diffusion coefficient

Dq(υz, t) =
2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

E (k, t)γ(k, t)
[ωr(k, t)− kυz]2 +γ2(k, t)

dk, (11.1.47)

which is manifestly real and positive for growing modes.
Equations (11.1.42) and (11.1.44), with the diffusion coefficient specified by

Eq. (11.1.47), are the basic equations of quasi-linear theory.

11.1.2 Application to the Bump-on-Tail Instability

To illustrate an application of quasi-linear theory, we next discuss the time
evolution of the electron bump-on-tail instability. Such a distribution function was
first discussed in Section 9.5.4, and is shown in Figure 11.1. The phase velocities,
ω/k, of the unstable Langmuir waves that arise from this distribution function lie
in the region where fe0 = ⟨ fe⟩(υz, t = 0) is an increasing function of υz, i.e., where
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The above equation implies that the spectral density E (k, t) obeys the differential
equation

∂E (k, t)
∂t

= 2γ(k, t)E (k, t), (11.1.43)

where the time dependence of γ(k, t) is suppressed in integrating E (k, t), because
γ(k, t) varies much more slowly with time than the fluctuating energy E (k, t). Using
the identity Ê1(−k) = Ê∗1(k) and Eq. (11.1.42), Eq. (11.1.39) can be written in the
form of a diffusion equation,

∂

∂t
⟨ fs⟩(υz, t) =

∂

∂υz

[
Dq(υz, t)

∂

∂υz
⟨ fz⟩(υz, t)

]
, (11.1.44)

which is called the quasi-linear diffusion equation, where

Dq(υz, t) =
2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

iE (k, t)
ω− kυz

dk (11.1.45)

is the diffusion coefficient. Since Eq. (11.1.44) is the time evolution equation for
a real distribution function ⟨ fs⟩(υz, t), the coefficient Dq(υz, t), given by the above
equation, must also be real. This can be seen by writing

iE (k, t)
ω− kυz

=
iE (k, t)

ωr + iγ− kυz
=

iE (k, t)[ωr − kυz − iγ]
(ωr − kυz)2 +γ2 . (11.1.46)

Using the fact that E (k, t) is even in k (i.e., E (k, t) = E (−k, t)) and ωr(k, t) is odd
in k (by identity (11.1.32)), it follows that the imaginary part of the integral in
Eq. (11.1.45) vanishes identically because the integrand is odd in k. We are thus
left with the diffusion coefficient

Dq(υz, t) =
2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

E (k, t)γ(k, t)
[ωr(k, t)− kυz]2 +γ2(k, t)

dk, (11.1.47)

which is manifestly real and positive for growing modes.
Equations (11.1.42) and (11.1.44), with the diffusion coefficient specified by

Eq. (11.1.47), are the basic equations of quasi-linear theory.

11.1.2 Application to the Bump-on-Tail Instability

To illustrate an application of quasi-linear theory, we next discuss the time
evolution of the electron bump-on-tail instability. Such a distribution function was
first discussed in Section 9.5.4, and is shown in Figure 11.1. The phase velocities,
ω/k, of the unstable Langmuir waves that arise from this distribution function lie
in the region where fe0 = ⟨ fe⟩(υz, t = 0) is an increasing function of υz, i.e., where
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The above equation implies that the spectral density E (k, t) obeys the differential
equation

∂E (k, t)
∂t

= 2γ(k, t)E (k, t), (11.1.43)

where the time dependence of γ(k, t) is suppressed in integrating E (k, t), because
γ(k, t) varies much more slowly with time than the fluctuating energy E (k, t). Using
the identity Ê1(−k) = Ê∗1(k) and Eq. (11.1.42), Eq. (11.1.39) can be written in the
form of a diffusion equation,

∂

∂t
⟨ fs⟩(υz, t) =

∂

∂υz

[
Dq(υz, t)

∂

∂υz
⟨ fz⟩(υz, t)

]
, (11.1.44)

which is called the quasi-linear diffusion equation, where

Dq(υz, t) =
2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

iE (k, t)
ω− kυz

dk (11.1.45)

is the diffusion coefficient. Since Eq. (11.1.44) is the time evolution equation for
a real distribution function ⟨ fs⟩(υz, t), the coefficient Dq(υz, t), given by the above
equation, must also be real. This can be seen by writing

iE (k, t)
ω− kυz

=
iE (k, t)

ωr + iγ− kυz
=

iE (k, t)[ωr − kυz − iγ]
(ωr − kυz)2 +γ2 . (11.1.46)

Using the fact that E (k, t) is even in k (i.e., E (k, t) = E (−k, t)) and ωr(k, t) is odd
in k (by identity (11.1.32)), it follows that the imaginary part of the integral in
Eq. (11.1.45) vanishes identically because the integrand is odd in k. We are thus
left with the diffusion coefficient

Dq(υz, t) =
2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

E (k, t)γ(k, t)
[ωr(k, t)− kυz]2 +γ2(k, t)

dk, (11.1.47)

which is manifestly real and positive for growing modes.
Equations (11.1.42) and (11.1.44), with the diffusion coefficient specified by

Eq. (11.1.47), are the basic equations of quasi-linear theory.

11.1.2 Application to the Bump-on-Tail Instability

To illustrate an application of quasi-linear theory, we next discuss the time
evolution of the electron bump-on-tail instability. Such a distribution function was
first discussed in Section 9.5.4, and is shown in Figure 11.1. The phase velocities,
ω/k, of the unstable Langmuir waves that arise from this distribution function lie
in the region where fe0 = ⟨ fe⟩(υz, t = 0) is an increasing function of υz, i.e., where
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Figure 9.15 The nonlinear effects of particle trapping tend to increase the wave
amplitude relative to the predictions of linear Landau damping.

their relative phases. However, as in the linear phase, if there is even a small rate
of irreversible interactions, such as due to collisions, the phase-mixed distribution
is eventually converted to a completely random distribution.

9.3 The Plasma Dispersion Function

Next we discuss the dispersion relation for a Maxwellian distribution function,
which in normalized one-dimensional form is given by

F0(υz) =
( m
2πκT

)1/2
exp

[
−mυ2

z

2κT

]
. (9.3.1)

Unfortunately, for a Maxwellian distribution function, the integral in the dispersion
relation equation (9.2.23) cannot be evaluated using the residue theorem. The
reason is that when the integration contour is closed at infinity the integral diverges.
Nevertheless, approximations can be carried out in certain limits, and it is useful to
develop the tools necessary to carry out these approximations, since we will have
use for these tools later. If we make a change of variables to

z =

√
m

2κT
υz and ζ =

√
m

2κT

(
ip
k

)
, (9.3.2)

it is easy to show that the dispersion relation equation (9.2.23) can be rewritten in
the form

Ð(k, p) = 1+
1

(kλD)2

1√
π

∫

C

z e−z2

z− ζ dz = 0, (9.3.3)

where we have made use of the fact that
√
κT/m=ωpλD. The integral in the above

expression can be rewritten in a standard form by the algebraic reorganization

1√
π

∫

C

z e−z2

z− ζ dz =
1√
π

∫

C

(
1+

ζ

z− ζ

)
e−z2

dz

= 1+ ζZ(ζ), (9.3.4)
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velocities are then given by

υz = ±
√

2
m

(W −qΦ), (9.2.51)

where the (+) sign is for particles moving in the +z direction, and the (−) sign is
for particles moving in the −z direction. For an electrostatic potential of the form
Φ(z) =Φ0 coskz, the trajectories in (z,υz) phase space are as shown in Figure 9.13.
The slightly darker lines in the phase-space plot that separate trapped particles
from untrapped particles are called separatrices. The total energy of particles on
the separatrices is given by W0 =qΦ0, whereΦ0 is the amplitude of the electrostatic
potential. Particles with total energies W < W0 are trapped and particles with
total energies W > W0 are untrapped. The velocity distribution of particles on
these trajectories is determined by the zero-order distribution function, F0(υz).
Once the initial particle distribution function is determined, trapped particles,
such as A and B, follow the ellipse-shaped trajectories inside the separatrices, and
untrapped particles, such as A ′ and B′, stream freely along the trajectories outside
the separatrices. The oscillation frequency of the trapped particles depends on how
deep the particles are in the potential well. Particles trapped near the bottom of the
potential well, where the potential is parabolic, oscillate at a frequency called the
bounce frequency, which is given by

ωb = k

√
qΦ0

m
. (9.2.52)

Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
particles at the top of the well. Since the oscillation frequency decreases with
increasing energy, as the particles move along the ellipse-shaped trajectories, they
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such as A and B, follow the ellipse-shaped trajectories inside the separatrices, and
untrapped particles, such as A ′ and B′, stream freely along the trajectories outside
the separatrices. The oscillation frequency of the trapped particles depends on how
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potential well, where the potential is parabolic, oscillate at a frequency called the
bounce frequency, which is given by
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Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
particles at the top of the well. Since the oscillation frequency decreases with
increasing energy, as the particles move along the ellipse-shaped trajectories, they
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potential. Particles with total energies W < W0 are trapped and particles with
total energies W > W0 are untrapped. The velocity distribution of particles on
these trajectories is determined by the zero-order distribution function, F0(υz).
Once the initial particle distribution function is determined, trapped particles,
such as A and B, follow the ellipse-shaped trajectories inside the separatrices, and
untrapped particles, such as A ′ and B′, stream freely along the trajectories outside
the separatrices. The oscillation frequency of the trapped particles depends on how
deep the particles are in the potential well. Particles trapped near the bottom of the
potential well, where the potential is parabolic, oscillate at a frequency called the
bounce frequency, which is given by
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Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
particles at the top of the well. Since the oscillation frequency decreases with
increasing energy, as the particles move along the ellipse-shaped trajectories, they

(8C"D�$9�)D8��4*4�!45!8�4(��((%D-��+++�64"5C�7:8�$C:�6$C8�(8C"D���((%D-��7$��$C:�������
�,
���	,�����,����
/$+#!$4787�9C$"��((%D-��+++�64"5C�7:8�$C:�6$C8��2846�8CD�.$!!8:8�1�5C4C,� �.$!)"5�4�3#�*8CD�(,��$#����04#������4(��
-
	-
	��D)5 86(�($�(�8�.4"5C�7:8�.$C8

9.2 The Landau Approach 343

qΦ

υz

z

z

B

A

B 

A

ω
k

B A  and

A and B

Figure 9.13 Phase-space trajectories in a frame of reference (z,υz) moving at the
phase velocity for a sinusoidal electrostatic potential Φ(z) =Φ0 coskz.

velocities are then given by

υz = ±
√

2
m

(W −qΦ), (9.2.51)

where the (+) sign is for particles moving in the +z direction, and the (−) sign is
for particles moving in the −z direction. For an electrostatic potential of the form
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potential. Particles with total energies W < W0 are trapped and particles with
total energies W > W0 are untrapped. The velocity distribution of particles on
these trajectories is determined by the zero-order distribution function, F0(υz).
Once the initial particle distribution function is determined, trapped particles,
such as A and B, follow the ellipse-shaped trajectories inside the separatrices, and
untrapped particles, such as A ′ and B′, stream freely along the trajectories outside
the separatrices. The oscillation frequency of the trapped particles depends on how
deep the particles are in the potential well. Particles trapped near the bottom of the
potential well, where the potential is parabolic, oscillate at a frequency called the
bounce frequency, which is given by
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Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
particles at the top of the well. Since the oscillation frequency decreases with
increasing energy, as the particles move along the ellipse-shaped trajectories, they
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untrapped particles, such as A ′ and B′, stream freely along the trajectories outside
the separatrices. The oscillation frequency of the trapped particles depends on how
deep the particles are in the potential well. Particles trapped near the bottom of the
potential well, where the potential is parabolic, oscillate at a frequency called the
bounce frequency, which is given by
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Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
particles at the top of the well. Since the oscillation frequency decreases with
increasing energy, as the particles move along the ellipse-shaped trajectories, they
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Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
particles at the top of the well. Since the oscillation frequency decreases with
increasing energy, as the particles move along the ellipse-shaped trajectories, they
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Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
particles at the top of the well. Since the oscillation frequency decreases with
increasing energy, as the particles move along the ellipse-shaped trajectories, they
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Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
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Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
particles at the top of the well. Since the oscillation frequency decreases with
increasing energy, as the particles move along the ellipse-shaped trajectories, they
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where the (+) sign is for particles moving in the +z direction, and the (−) sign is
for particles moving in the −z direction. For an electrostatic potential of the form
Φ(z) =Φ0 coskz, the trajectories in (z,υz) phase space are as shown in Figure 9.13.
The slightly darker lines in the phase-space plot that separate trapped particles
from untrapped particles are called separatrices. The total energy of particles on
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total energies W > W0 are untrapped. The velocity distribution of particles on
these trajectories is determined by the zero-order distribution function, F0(υz).
Once the initial particle distribution function is determined, trapped particles,
such as A and B, follow the ellipse-shaped trajectories inside the separatrices, and
untrapped particles, such as A ′ and B′, stream freely along the trajectories outside
the separatrices. The oscillation frequency of the trapped particles depends on how
deep the particles are in the potential well. Particles trapped near the bottom of the
potential well, where the potential is parabolic, oscillate at a frequency called the
bounce frequency, which is given by
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and

υm+1 = υm − 2πϵ2 sin(2πzm+1). (11.1.57)

The Standard Map, which is originally due to Chirikov (1969) and Taylor (1969), is
one of the most widely studied examples of chaos in Hamiltonian systems, and its
application to quasi-linear theory is discussed by Stix (1992). Because this map
is already in finite difference form, it can be integrated easily on a computer.
The computing strategy is as follows. To start, choose a set of initial conditions
(z0,υ0). For each initial condition, a series of iterants (z1,υ1), (z2,υ2), . . ., is then
calculated and plotted as points in z − υ phase space. Figure 11.2 shows such a
plot for ϵ = 0.10. The υn values cover a range suitable for showing two of the
infinite number of waves. We note the strong similarity to Figure 9.13, except
that there are now trapping regions associated with each of the waves, only two
of which are shown. As the wave amplitude increases, ϵ becomes larger, and the
trapping regions increase in size. This trend can be seen in Figure 11.3, which is
for ϵ = 0.30. Well before the trapping regions become large enough to touch each
other, we note the appearance of smaller trapping regions between the separatrices
of the main trapping regions associated with the two waves.

For an even larger wave amplitude, ϵ = 0.50, shown in Figure 11.4, the phase
space becomes a mixture of some regions that contain trapped particles and other
regions that contain particles that appear to be randomly located. As ϵ becomes
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even larger, the trapping regions are destroyed and the particle trajectories are no
longer constrained by nice, well-behaved functions that are constants of motion.
Instead, the trajectories wander over and tend to fill most of the phase space,
as shown in Figure 11.5 for ϵ = 1.00. Such behavior is characteristic of chaos,
similar to the example discussed in Section 3.10. It is worth emphasizing again
that the onset of chaos does not mean that the particle motions are random. Since
the mapping is strictly deterministic, the final location of the particle in phase
space is unique, no matter how large the value of ϵ may be. However, even small
differences in the initial conditions or the wave amplitudes and phases can lead to
very widely diverging final results when the particle motion is chaotic. In many
situations of physical interest, such as a plasma comprising many particles, it is
impossible to specify exactly the initial conditions of all the particles. The particle
trajectories in phase space then become unpredictable, and hence random. This
simple demonstration of chaotic particle motions provides a powerful justification
for the basic assumption of quasi-linear theory, which is that the growth of waves
over a range of phase velocities leads to the rapid diffusion of particles in velocity
space and an eventual flattening of the distribution function in the unstable region
of velocity space.

A good example of such velocity space diffusion can be seen in the spectra
of solar flare electrons responsible for type III solar radio bursts. As discussed
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the instability. It is interesting to investigate exactly how this diffusion takes place.
In Section 9.2.5 we discussed the trapping and phase mixing of particles in phase
space when one wave is present. To investigate the nonlinear effects that occur
when a broad spectrum of waves is present, let us consider what happens when
we superpose an infinite number of sinusoidal waves of the same amplitude and
wavelength. For such a superposition, the equations of motion are

dz
dt
= υz (11.1.51)

and

m
dυz

dt
= q E

N∑

n=−N

cos(kz− nωt), (11.1.52)

where N →∞. To simplify the equations, we define dimensionless variables ξ =
kz,τ=ωt, and υ= υz/(ω/k). The above equations can then be rewritten in the form

dξ
dτ
= υ (11.1.53)

and

dυ
dτ
= ϵ2

N∑

n=−N

cos(ξ− nτ), (11.1.54)

where ϵ2 = qkE/(mω2) is a parameter that measures the depth of the potential well
formed by a given wave. In the limit N→∞, it can be shown that the summation
in the above equation can be written

N∑

n=−N

cos(ξ− nτ)
N→∞⇒ 2πcosξ

∞∑

n=−∞
δ(τ− 2πn), (11.1.55)

where δ(τ− 2πn) is the Dirac delta function. In other words, the charged particle
is subject to a sequence of instantaneous kicks when τ = 2πn, which produces a
series of discontinuous changes in its velocity. In between each kick, the particle
moves with a uniform velocity. The process can be described rigorously by a series
of difference equations, obtained by integrating the differential equations (11.1.53)
and (11.1.54) with respect to time until just after the (m+1)st kick. Defining a new
variable zn = ξn/2π−1/4, it can be shown that Eqs. (11.1.54) and (11.1.55) reduce
to the so-called Standard Map, given by the difference equations

zm+1 = zm +υm (11.1.56)
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and
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The Standard Map, which is originally due to Chirikov (1969) and Taylor (1969), is
one of the most widely studied examples of chaos in Hamiltonian systems, and its
application to quasi-linear theory is discussed by Stix (1992). Because this map
is already in finite difference form, it can be integrated easily on a computer.
The computing strategy is as follows. To start, choose a set of initial conditions
(z0,υ0). For each initial condition, a series of iterants (z1,υ1), (z2,υ2), . . ., is then
calculated and plotted as points in z − υ phase space. Figure 11.2 shows such a
plot for ϵ = 0.10. The υn values cover a range suitable for showing two of the
infinite number of waves. We note the strong similarity to Figure 9.13, except
that there are now trapping regions associated with each of the waves, only two
of which are shown. As the wave amplitude increases, ϵ becomes larger, and the
trapping regions increase in size. This trend can be seen in Figure 11.3, which is
for ϵ = 0.30. Well before the trapping regions become large enough to touch each
other, we note the appearance of smaller trapping regions between the separatrices
of the main trapping regions associated with the two waves.

For an even larger wave amplitude, ϵ = 0.50, shown in Figure 11.4, the phase
space becomes a mixture of some regions that contain trapped particles and other
regions that contain particles that appear to be randomly located. As ϵ becomes
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Experimental Test of Quasilinear Theory*

C. Roberson, K. %. Gentle, and P. Nielsen
Center for Plasma Physics, University of Texas, Austin, Texas 78718

(Received 5 November 1970)

The shape and amplitude of the electron-plasma wave spectrum resulting from a
"gentle bump" on the tail of the electron velocity distribution of a plasma is measured
and found to be in good agreement with quasilinear theory.

Nonlinear theories of unstable plasmas are
usually concerned with two principal problems:
estimating the final wave spectrum and calculat-
ing the effect of the waves on the particles. The
simplest instability that may be followed analy-
tically to its nonlinear limit is a "gentIe bump"
on the tail of the electron velocity distribution.
The amplitude and shape of the spectrum as well
as the change in the velocity distribution may be
cal.culated from quasilinear theory. "
In this Letter we report an experiment designed

to test the validity of this theory by measuring
the electron-plasma wave spectrum resulting
from the injection of an electron beam of suffi-
ciently low density and large velocity spread to
satisfy the assumptions of quasilinear theory.
In prior beam-plasma experiments the initial
velocity spread of the beam electrons was not
sufficient to meet the requirements. ' '
When the beam electrons form a "gentle bump"

on the plasma electron velocity distribution, the
dispersion relation is determined by the plasma

electrons, and the only effect of the beam is to
cause exponential growth of the waves (or plasma
noise) with phase velocities corresponding to
the positive slope of the beam distribution. As
the waves become sufficiently large they cause

' a diffusion of the beam electrons in velocity.
The growth rate of the waves therefore decreases
and eventually goes to zero when the velocity
distribution becomes flattened in the beam region.
Hence, we can calculate the dispersion relation
and initial growth rate from linear theory and
the equilibrium spectrum from the quasilinear
theory.
To determine the dispersion relation, we con-

sider a long cylinder of collisionless plasma in
a strong magnetic field aligned with the axis.
The plasma density is a function of radius only.
In the limit that the phase velocity of the waves
is small compared with the velocity of light, the
electric field may be derived from a scalar po-
tential, and for the radially symmetric modes
the dispersion relation may be found from

d'4(r) 1 d4(r), ~,'(r)

where 4 is the wave potential, k and ~ are the
complex wave number and angular frequency of
the wave, co~'(r) is the radially dependent plasma
frequency, v, the mean thermal velocity of the
plasma electrons, and W is related to the plas-
ma dispersion function' by W(x) =2Z'(-x/W2).
Using the experimentally observed density pro-
file, the numerical solution of Eq. (1) yields the
potential profile 4 (r) and the complex wave num-
ber as a function of frequency in the absence of
the beam.
Vfhen the beam in injected into the plasma, the

real part of the dispersion relation is unchanged
and the growth due to the beam is given by'

nv, ' f, rdr 4'(r)[sf, (v, r)/Bv]„»
v,m, ' f,"rdr 'C( )Xr(r)

where e is the imaginary part of the wave num-

! ber, v, is the group velocity, N(r) the plasma
density, 8'~' the derivative of the real part of
the W function, and f, the beam-velocity distri-
bution function. The growth rate depends on the
ratio of the beam density integrated over its
cross-sectional area to the plasma density in-
tegrated over the plasma cross section. Both
low density and small cross section in the beam
contribute to the required weakness of the insta-
bility.
Drummond' has considered the quasilinear de-

velopment of spatial. ly growing waves in a plas-
ma, column immersed in a strong magnetic field
and finds a local diffusion equation similar to
the one-dimensional case. When the diffusion
equation is integrated over the cross section of
the plasma and combined with the equation for
the rate of change in wave energy, we find the
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on the plasma electron velocity distribution, the
dispersion relation is determined by the plasma

electrons, and the only effect of the beam is to
cause exponential growth of the waves (or plasma
noise) with phase velocities corresponding to
the positive slope of the beam distribution. As
the waves become sufficiently large they cause

' a diffusion of the beam electrons in velocity.
The growth rate of the waves therefore decreases
and eventually goes to zero when the velocity
distribution becomes flattened in the beam region.
Hence, we can calculate the dispersion relation
and initial growth rate from linear theory and
the equilibrium spectrum from the quasilinear
theory.
To determine the dispersion relation, we con-

sider a long cylinder of collisionless plasma in
a strong magnetic field aligned with the axis.
The plasma density is a function of radius only.
In the limit that the phase velocity of the waves
is small compared with the velocity of light, the
electric field may be derived from a scalar po-
tential, and for the radially symmetric modes
the dispersion relation may be found from

d'4(r) 1 d4(r), ~,'(r)

where 4 is the wave potential, k and ~ are the
complex wave number and angular frequency of
the wave, co~'(r) is the radially dependent plasma
frequency, v, the mean thermal velocity of the
plasma electrons, and W is related to the plas-
ma dispersion function' by W(x) =2Z'(-x/W2).
Using the experimentally observed density pro-
file, the numerical solution of Eq. (1) yields the
potential profile 4 (r) and the complex wave num-
ber as a function of frequency in the absence of
the beam.
Vfhen the beam in injected into the plasma, the

real part of the dispersion relation is unchanged
and the growth due to the beam is given by'

nv, ' f, rdr 4'(r)[sf, (v, r)/Bv]„»
v,m, ' f,"rdr 'C( )Xr(r)

where e is the imaginary part of the wave num-

! ber, v, is the group velocity, N(r) the plasma
density, 8'~' the derivative of the real part of
the W function, and f, the beam-velocity distri-
bution function. The growth rate depends on the
ratio of the beam density integrated over its
cross-sectional area to the plasma density in-
tegrated over the plasma cross section. Both
low density and small cross section in the beam
contribute to the required weakness of the insta-
bility.
Drummond' has considered the quasilinear de-

velopment of spatial. ly growing waves in a plas-
ma, column immersed in a strong magnetic field
and finds a local diffusion equation similar to
the one-dimensional case. When the diffusion
equation is integrated over the cross section of
the plasma and combined with the equation for
the rate of change in wave energy, we find the
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FIG. 2. (a) Wave growth and saturation versus dis-
tance (b.) Saturation power level versus beam current.

The spatial growth of the noise as a result of
the beam is measured by connecting the receiv-
ing antenna directly to a broad-band amplifier
and a sampling rf voltmeter. The log of the volt-
meter output is plotted on the Y axis and dis-
tance from beam injection point on the X axis of
the recorder'. The results [Fig. 2(a)] have the
qualitative features expected from the theory:
slow exponential growth to reach a quasiequilib-
rium saturation level without overshoot.
To determine the wave power in the spectrum

we must know the absolute coupling constant of
the probes. No precise way of obtaining this is
available, but the total coupling through the plas-
ma for a paix of probes can easily be measured.
For three probes, three transmitter-receiver
pairs are possible. This gives three equations
for the three unknown single-probe coupling
coefficients. A calibrated receiver is positioned
200 cm from the beam injection point and the
wave power is measux ed as a function of beam
current. The wave power is linearly proportion-
al to the beam current [Fig. 2(b)] as predicl:ed
by Eq. (4). For our beam distribution, we cal-
culate that 14% of the beam power should be con-
verted to wave power. We obsex've approximate-
ly 10% conversion, which is excellent agreement
for R measurement of absolute power level. "
The shape of the equilibrium spectrum is mea-

sured using an adjustable narrow-band (3%) filter
in the receiving line. The powex and coupling
constant are measured at a series of fixed fre-
quencies. The amplitude of the spectrum as cal-
culated from Eq. (3) is normalized to the mea-
sured value at one point and the comparison of
theory and experiment is shown in Fig. 3(a).
The ShRpe Rnd width of the spectrUIQ Rle found
to be in excellent agreement with theory.
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FIG. 3. (a) Shape of wave spectrum. Solid line is
theory, circles are experimental values. Beam cur-
rent is 2 mA. (b) Inferred beam-velocity distribution
versus energy analyzer distribution. The solid curve
is obtained from an electronically differentiated output
of the analyzer.

We have also measured the growth rates of the
spectral components by using the adjustable fil-
ter and plotting the log of the receiver power
versus distance for a number of frequencies.
These growth rates were used in Eq. (2) to find
the avexaged beam-velocity distribution function
assuming that the wave potential is constant
over the beam diameter; the beam is sufficiently
small to justify this easily. This inferred beam
distribution is compared with the direct measure-
ment using an energy analyzer. The results are
shown in Fig. 3(b), where the width of the shaded
region is an indication of the estimated error in
determining the inferred distribution. No "nox'-
DlRllzRtlon plocedure 18 used 1n this conlpari-
son.
In summary, we find that the quasilinear theory
correctly predicts the manner in which the elec-
tron-plasma wave spectrum from a "gentle bump"
grows and saturates. The theory gives the pro-
per dependence of saturation level as a function
of beam current, the shape of the spectrum,
and the magnitude of the equilibrium power level.


