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Figure 9.13 Phase-space trajectories in a frame of reference (z,υz) moving at the
phase velocity for a sinusoidal electrostatic potential Φ(z) =Φ0 coskz.

velocities are then given by

υz = ±
√

2
m

(W −qΦ), (9.2.51)

where the (+) sign is for particles moving in the +z direction, and the (−) sign is
for particles moving in the −z direction. For an electrostatic potential of the form
Φ(z) =Φ0 coskz, the trajectories in (z,υz) phase space are as shown in Figure 9.13.
The slightly darker lines in the phase-space plot that separate trapped particles
from untrapped particles are called separatrices. The total energy of particles on
the separatrices is given by W0 =qΦ0, whereΦ0 is the amplitude of the electrostatic
potential. Particles with total energies W < W0 are trapped and particles with
total energies W > W0 are untrapped. The velocity distribution of particles on
these trajectories is determined by the zero-order distribution function, F0(υz).
Once the initial particle distribution function is determined, trapped particles,
such as A and B, follow the ellipse-shaped trajectories inside the separatrices, and
untrapped particles, such as A ′ and B′, stream freely along the trajectories outside
the separatrices. The oscillation frequency of the trapped particles depends on how
deep the particles are in the potential well. Particles trapped near the bottom of the
potential well, where the potential is parabolic, oscillate at a frequency called the
bounce frequency, which is given by

ωb = k

√
qΦ0

m
. (9.2.52)

Due to the increasing width of the potential well at higher energies, the oscillation
frequency decreases with increasing total energy, ultimately going to zero for
particles at the top of the well. Since the oscillation frequency decreases with
increasing energy, as the particles move along the ellipse-shaped trajectories, they
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Figure 9.14 The relative phase-space locations of trapped particles at three
successive phases of the bounce cycle.

gradually get out of phase, as illustrated in Figure 9.14. Although the trapped
particle motions may be highly correlated initially, they eventually become well
mixed throughout the trapping region.

The main difference between the phase mixing of the trapped and untrapped
particles is that the average velocity of the trapped particles must move at the phase
velocity of the wave, whereas the non-trapped particles are able to stream freely
relative to the phase of the wave. Although both contribute to the overall phase
mixing, as we discuss below, the nonlinearly trapped particles produce effects
on the long-term evolution of the wave amplitude that deviate considerably from
the exponential damping that is characteristic of the early linear phase of Landau
damping.

For sufficiently small wave amplitudes, Eq. (9.2.52) shows that the bounce
period of the trapped particles is very long, much longer than the oscillation period
of the electrostatic wave. Therefore, during the initial phase, particle trapping
effects are not important, since the particles have not had time to complete even a
small fraction of a bounce cycle on the time-scale of the exponential decay. It is
during this initial phase that Landau’s linear analysis applies. The duration of the
linear phase is bounded by

0 < t≪ω−1
b =

1
k

√
m

qΦ0
. (9.2.53)

The easiest way to develop a quantitative understanding of the mechanism
responsible for damping of the wave in both the linear and nonlinear phases
is to investigate the kinetic energy of the particles interacting with the wave.
Since the total energy of the system is conserved, if the kinetic energy of the
particles increases, then the electrostatic energy of the wave must decrease.
Whether the kinetic energy of the particles increases or decreases in response to
the presence of the wave depends on the initial distribution of particle velocities, as
characterized by the zero-order particle distribution function, F0(υz). If the slope
of the zero-order distribution function, ∂F0(υz)/∂υz, is negative (at υz ≈ω/k),
the number of particles initially moving slower than the phase velocity (for
example, particles A and A ′ in Figure 9.13) is greater than the number of particles
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Since the total energy of the system is conserved, if the kinetic energy of the
particles increases, then the electrostatic energy of the wave must decrease.
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Figure 9.15 The nonlinear effects of particle trapping tend to increase the wave
amplitude relative to the predictions of linear Landau damping.

their relative phases. However, as in the linear phase, if there is even a small rate
of irreversible interactions, such as due to collisions, the phase-mixed distribution
is eventually converted to a completely random distribution.

9.3 The Plasma Dispersion Function

Next we discuss the dispersion relation for a Maxwellian distribution function,
which in normalized one-dimensional form is given by

F0(υz) =
( m
2πκT

)1/2
exp

[
−mυ2

z

2κT

]
. (9.3.1)

Unfortunately, for a Maxwellian distribution function, the integral in the dispersion
relation equation (9.2.23) cannot be evaluated using the residue theorem. The
reason is that when the integration contour is closed at infinity the integral diverges.
Nevertheless, approximations can be carried out in certain limits, and it is useful to
develop the tools necessary to carry out these approximations, since we will have
use for these tools later. If we make a change of variables to

z =

√
m

2κT
υz and ζ =

√
m

2κT

(
ip
k

)
, (9.3.2)

it is easy to show that the dispersion relation equation (9.2.23) can be rewritten in
the form

Ð(k, p) = 1+
1

(kλD)2

1√
π

∫

C

z e−z2

z− ζ dz = 0, (9.3.3)

where we have made use of the fact that
√
κT/m=ωpλD. The integral in the above

expression can be rewritten in a standard form by the algebraic reorganization

1√
π

∫

C

z e−z2

z− ζ dz =
1√
π

∫

C

(
1+

ζ

z− ζ

)
e−z2

dz

= 1+ ζZ(ζ), (9.3.4)
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of helium involves the balance between the pro-
duction of helium molecular ions during the after-
glow and their disappearance through recombina-
tion. It should be noted in passing that under the
conditions of these experiments, charged particle
diffusion is expected to be negligible with respect
to volume recombination.
It is generally accepted that the predominant

electron volume loss mechanism in a decaying
helium plasma of low charge density is recom-
bination with helium molecular ions, the He, +
being formed during the afterglow. At reduced
ion and electron temperatures, the associated
recombination coefficient, n, is expected to in-
crease' whereas the molecular-ion production rate
may be decreased. Thus by cryogenically cooling
the plasma, the possibility exists of obtaining, in
helium, a situation in which the electron loss
rate is predominantly controlled by the produc-
tion of its voracious recombination partner.
Temporary heating of the electron gas, with its
subsequent decrease in e, would then allow a
new higher steady-state concentration of He, +
to be approached at a rate dependent upon the
neutral-atom and electron number densities.
Removal of the source of heat with the attendant
relaxation of T would, in such a situation, re-

suit in a relatively large temporary increase in
the afterglow luminosity.
Such temporal variations in the relative ion

concentrations could also affect the microwave
absorption properties of the plasma through elec-
tron collisional excitation of low-lying rotational
states of the He, + molecule. Stabler' has in-
dicated that the cross section for such excita-
tion is large. Such considerations account qual-
itatively for the observed waveforms and their
behavior as a function of "heating" pulse length.
Attempts at experimental verification of the
various hypotheses are in progress.

L. Goldstein, J. M. Anderson, and G. L. Clark,
Phys. Rev. 90, 486 (1953).
~C. Chen, C. Leiby, and L. Goldstein, Phys. Rev.

121, 1391 (1961).
3J. M. Anderson and L. Goldstein, Phys. Rev. 100,

1037 (1955).
4P. D. Goldan, J. H. Cahn, and L. Goldstein, Bull.

Am. Phys. Soc. 9, 185 (1964).
5V. A. Bailey and D. F. Martyn, Phil. Mag. 18, 369

(1934).
~L. Goldstein, M. A. Lampert, and R. H. Geiger,
Elec. Commun. 29, 243 (1952).
~R. C. Stabler, Phys. Rev. 131, 679 (1963).

COLLISIONLESS DAMPING OF ELECTROSTATIC PLASMA WAVES*

J. H. Malmberg and C. B.Wharton
John Jay Hopkins Laboratory for Pure and Applied Science,

General Atomic Division of General Dynamics Corporation, San Diego, California
(Received 6 July 1964)

It has been predicted by Landau~ that electro-
static electron waves in a plasma of finite tem-
perature will be damped, even in the absence of
collisions. Landau's theory has been challenged
on various grounds' and a number of experiments
designed to detect the effect for electrostatic
electron waves or ion acoustic waves have been
reported. ' The existence of the damping is of
interest not only for its own sake, but because
the method of calculation has been widely used
for related problems. We report here prelimi-
nary results of an experiment designed to mea-
sure the Landau damping of electrostatic electron
waves. We observe heavy damping which exhibits
the expected dependence on phase velocity.
The machine which produces the plasma has

been described in detail elsewhere. ' The plasma
is produced in a duoplasmatron-type hydrogen arc

source and drifts from it into a long uniform
magnetic field of a few hundred gauss. The entire
machine is steady state. The resulting plasma
has, in a typical case, a radius of 7 mm, a
length of 230 cm, a density of 5x 108 electrons/
cm', and a temperature of 12+ 3 eV as measured
by Langmuir probes. . The background pressure
is 1.7x10 ~ Torr (mostly H,}. Hence, the Debye
length is about 1 mm, the electron mean free
path for electron-ion collisions is of the order
of 1000 meters and for electron-neutral collisions
is about 40 meters. The plasma is surrounded
by a stainless steel tube 3.8 cm in radius which
acts as a waveguide beyond cutoff to reduce elec-
tromagnetic coupling between probes. The plasma
density depends somewhat on distance from the
source.
Two probes, each consisting of a 0.2-mm di-
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ameter radial tungsten wire, are placed in the
plasma. One probe is connected by coaxial cable
to a chopped signal generator. The other probe
is connected to a receiver which includes a sharp
high-frequency filter, a string of broad-band
amplifiers, an rf detector, a video amplifier,
and a coherent detector operated at the trans-
mitter chopping frequency. Provision is made
to add a reference signal from the transmitter
to the receiver rf signal, i.e., we may use the
system as an interferometer. The transmitter
is set at a series of fixed frequencies, and at
each, the receiving probe is moved longitudinally.
The position of the receiving probe, which is
transduced, is applied to the x axis of an x-y
recorder, and the interferometer output or the
logarithm of the received power is applied to the
$ axis.
Typical raw data are shown in Fig. 1. The slope

of the power curve is the e-folding length for pow-
er damping of the wave. In the case shown this
is accurately exponential for two orders of mag-
nitude, and in fact more, since the range is lim-
ited by the range of the logging circuit. The wave
power in the plasma is of the order of 1 p,W/cm'.
A 30-dB reduction in transmitter power does not
change the damping length. The signal decreases
smoothly as the probe is retracted radially with
a half-maximum diameter about equal to that of
the density profile. The distance between peaks
on the interferometer curve is the wavelength,
which can be determined to 3$ over most of the
range of the experiment. From the measured
wavelengths and the transmitter frequencies we
plot the dispersion relation of the waves, Fig. 2.
These data have not been analyzed in detail, but
the absolute magnitude and shape of the curve
are approximately as expected for longitudinal

FIG. 2. Plasma-wave dispersion data. Ordinate is
angular frequency. Abscissa is parallel wave number.
Size of circles indicates errors.

electron oscillations in a strong magnetic field
when the radial density distribution and finite
temperature are included in the theory. '
In Fig. 3, the ordinate is the logarithm of

damping length. The confidence limits shown
indicate the uncertainty in fitting the slope of the
attenuation curves. The abscissa is the square
of the phase velocity, determined by multiplying
the measured wavelength by transmitter frequency.
This is our major experimental result. The solid
curve is the theory of Landau for a Maxwellian
distribution corrected approximately for the finite
size of the plasma. ' The theory predicts

v2 3 (1+3x ')"—,+
( )

x 'exp(-,'x'),

where x = phase velocity/mean thermal velocity,
a =radius of the plasma, A =damping length for
power, K =parallel wave number. 7he mean
thermal velocity is not known with sufficient ac-
curacy from probe measurements for use in this
formula, so the theory has been normalized to the
data at one point. This normalization gives a
plasma electron temperature of 10.5 eV in good
agreement with probe data. Data from transmis-
sion in opposite directions differ only slightly.
The particles responsible for the damping have
three to four and one half times the mean thermal
velocity. Also kA+& 1 over the range of data.
This is the region in which the approximations of
the theory are most accurate. The theory assumes
a Mmovellian distribution function, but there is
no reason to believe that the distribution function
is exactly Maxwellian this far out on the tail. A
high-precision comparison to the theory would
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John Malmberg and Chuck Wharton

The first experimental measurement of Landau Damping



John Malmberg 
(obit, Nov 1992)

Prof. Malmberg joined UCSD from General Atomics in 1969 as a professor of physics. Much of his work

revolved around theoretical and experimental investigations of fully ionized gases or plasmas. The field could offer

insights into how stars work and how to ignite and control thermonuclear reactions to produce fusion energy--the

power that drives the sun.


A plasma is the fourth state of matter, with solids, liquids and gases making up the other three. Most of the

matter in the Universe is in the plasma state; for example, the matter of stars is composed of plasmas.


In recent years, Prof. Malmberg had been experimenting with pure electron plasmas that were trapped in

a magnetic bottle. By contrast with electrically neutral plasmas that contain an equal number of positive and

negative electrons, pure electron plasmas are rare in nature.


Before joining UCSD, Prof. Malmberg was director of the Plasma Turbulence group at General Atomics, where

he carried out some of the first and most important experiments to test the basic principals of plasma physics.

Perhaps his most important experiment involved the confirmation of the phenomenon called "Landau damping,"

where electrons surf on a plasma wave, stealing energy from the wave and causing it to damp (decrease in

amplitude).


For his pioneering work in testing the basic principals of plasma, and for his more recent work with electron

plasmas, Prof. Malmberg was named the recipient of the American Physical Society's James Clerk Maxwell Prize

in Plasma Physics in 1985.



Chuck Wharton 
(emeritus, Cornell)
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Schematic of experiment used to investigate plasma wave echoes. [After j, H. 
Malmberg, et al., Proceedings of Conference on Phenomenes d'ionization dans les 
Gaz, 4; 229 (1963).1 

If L is large compared with the Landau damping length, and if w,/(w, - WI) 
is of order unity, this third electric field, which is the spatial plasma echo, appears 
at a position well separated from the first two electric field excitation positions. 
The experiment used by Malmberg et al. 1 to study the spatial plasma wave echoes 
is depicted schematically in Fig. 10.8.4. The plasma column is 180 cm long and 
5 cm in diameter, with a central density of 1.5 x 108 cm- 3. The axial magnetic 
field is 300 G and can be regarded as infinite for the purposes of the experiment. 
The plasma has a temperature of 9.4 eV and a Debye length of 2 mm. The 
electron mean free path is 105 cm for electron-ion collisions and 4 x 104 cm for 
electron-neutral collisions. The plasma column is surrounded by a 5.2-cm-
radius cylinder that acts as a waveguide beyond cutoff and reduces the stray 
electromagnetic coupling between the excitation and detection probes. 

A plasma wave echo obtained with this experiment is shown in the lower 
trace of Fig. 10.8.5. The upper trace is the spatial distribution of the 120-MHz 
signal in the vicinity of the excitation probe at x O. The middle trace is the 
spatial distribution of the l30-MHz signal in the vicinity of the second probe at 

1 J. H. Malmberg, C. B. Wharton, R. W. Gould, and T. M. O'Neil, Phys. Fluids, 
11: 1147 (1968). 
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Landau Damping: 
The Measurement
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qualitative features of collisional and Landau
damping. Using derived experimental param-
eters (f& and Te), there is quantitative agree-
ment with the predicted dispersion.
The results reported provide a previously

unavailable empirical foundation for the study
of idealized electrostatic plasma waves. These
experiments are under continuing developments,
but it is felt that the measurements described
here form a basis for further study of the damp-
ing constants and nonlinear effects which de-
pend closely on phase velocity.
I wish to express my appreciation for the

considerable support and interest of Professor
P. A. Sturrock and the indispensable advice
and encouragement given by Professor G. S.
Kino. T. Mantei, H. Ikegami, and R. Harp have
been very helpful in respect to experimental
problems, and J. MacGowan in the construc-
tion of the couplers. Finally, it is a pleasure
to acknowledge the independent observations
of my colleagues of this Institute, H. Derfler
and T. Simonen, ' who have been obtaining sin.
ilar results from an entirely different concep-
tion at the same time.

sive and modern treatment of this subject in English,
including a complete bibliography. A form similar to
Eq. (1) was first predicted in 1933 by J. J. Thomson
and G. R. Thomson and the proper asymptotic velocity
deduced by A. A. Vlasov in 1945.
3J. M. Pavkovich, Stanford University Microwave

Laboratory Report No. 1093, 1963 (unpublished).
4H. Derfler and T. Simonen, Stanford University

Electronics Laboratories, Final Documentary Report,
Contract No. AF 33{615)1504, 1965 (unpublished).
H. H. Kuehl, G. E. Stewart, and C. Yeh, Phys.

Fluids 8, 723 (1965).
J. D. Jackson, J. Nucl. Energy 1, 171 (1960).
~J. H. Malmberg and C. B.%harton, Phys. Rev. Let-

ters 13, 184 (1964); Presentation at the International
Conference on Controlled Fusion, Culham, United
Kingdom, paper CN 21/116 (with W. E. Drummond),
1965 (unpublished).
SH. Derfler and T. Simonen, following Letter [Phys.

Rev. Letters 17, 172 (1966)).
~M. H. Cohen, Phys. Rev. 126, 398 {1962).
~~F. %. Crawford and J, A. Tataronis, Phys. Letters
17, 247 (1965); Intern. J. Electron. 19, 557 (1966).
The imaginary part of the wave number, due to col-

lisions, has the well-known variation with frequency

de= p — =v —v for —»vic c dk ck T A.

*This research has been supported by the U. S. Air
Force Office of Scientific Research, Office of Aero-
space Research under Contract No. AF 49(638)1321.
L. Landau, J. Phys. {U.S.S.R.) 10, 25 (1946).
D. Bohm and E. P. Gross, Phys. Rev. 75, 1851

(1949). This reference contains the first comprehen-

This result, and the spectral "window" formed before
Landau damping becomes dominant, have been detailed
in some computer calculations by T. Simonen and
H. Derfler (private communication).
2R. S. Harp, A. B. Cannara, F.%. Crawford, and

G. S. Kino, Rev. Sci. Instr. 36, 960 (1965).

LANDAU %AVES: AN EXPERIMENTAL FACT*

H. Derfler and T. C. Simonen
Institute for Plasma Research, Stanford University, Stanford, California

(Received 4 April 1966}

In 1933 Thomson and Thomson' predicted that
the electrostatic plasma oscillations observed
by Tonks and Langmuir' would propagate be-
cause of the finite temperature of plasma elec-
trons.
Introducing the formalism of the linearized

Boltzmann equation, Vlasov' showed that in
a plasma mith a velocity distribution function
f, (v), frequency &u and wave number k are re-
lated by the dispersion relation

, |+~sf„(v) dv
p g-oo Bv v-(d jk

Landau~ pointed out an error in Vlasov's inter-

pretation of this integra1, and he predicted that
electrostatic waves are damped. Neglecting
damping, Bohm and Gross, ' as well as Landau,
obtained the dispersion relation

(u'=(u '+ (3~x/m)k'

which is valid for large phase velocities. To
our knowledge, the dispersion characteristics
of these electrostatic plasma waves have, until
nom, never been measured experimentally.
Though Malmberg and %harton' in a notable
experiment 'established the effect of Landau
damping, their measurements mere done be-
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FIG. 1. Diagram of. the sodium plasma tube shouting
the probe arrangement.

low plasma frequency on a narrow column with-
in a magnetic field. As such they verified damp-
ing of Trivelpiece' modes rather than Bohm
and Gross waves.
We report here preliminary measurements

of the dispersion characteristics of electrostat-
ic waves in a one-dimensional plasma in the
absence of a magnetic field. The observed waves
exhibit all the features of the dispersion rela-
tion (1) for a Maxwellian plasma including Lan-
dau damping.
A sodium plasma in thermodynamical equilib-

rium is produced by resonance ionization be-
tween two 4.5-em diam tantalum buttons which
are spaced 2.5 cm apart as depicted in Fig. 1.
The entire tube is immersed in an oil bath to
regulate the sodium vapor pressure. This tube
produces a tenuous, virtually collision-free
plasma with an electron-rich, thus stable, '
sheath at the incandescent emitters. As such,
it is ideally suited as a carrier for Bohm and
Gross waves. Specifically, we used a cathode
temperature of 2040'K as measured with an
optical pyrometer and an oil-bath temperature
of 80'C. The resulting plasma had a density
of 2x 10' electrons jcm' and a temperature of
2200'K as measured by a planar guard-ring
Langmuir probe. The Debye length was thus
0.7 mm. Since the background pressure was
only 2x10 ' mm Hg, collisional effects are
completely negligible.
Electrostatic waves are excited in the plas-

ma by the parallel plane grids' shown in Fig. 1.
Direct coupling between grids is reduced to

FIG. 2. Interferometer output at 95 Mc/sec as a
function of grid separation.

less than -80 dB by completely enclosing the
transmitting grid. The -,'-, -in. diameter grids
are fabricated from 0.005-in. etched molybde-
num mesh having 20 lines per inch. Both grids
are attached to mechanical drive mechanisms
with 50-0 molybdenum rf coaxial systems.
Typically the grids are biased to plasma po-
tential (+0.5 V above ground) to eliminate the
dc plasma sheath around the grid wires. Elec-
trons are thus allowed to pass through the grid
assembly very much like in a microwave kly-
stron.
An interferometer having a sensitivity of -90

dB (reference level 1 mW) detects the phase
of the received signal. A cw oscillator provides
both the local oscillator for the receiving mix-
er and the rf input to a 1-kc/sec modulator
whose output is applied to the transmitting grid.
The received signal is detected by the mixer
which drives a coherent detector operated by
the 1-kc/sec generator. At a fixed frequency,
as the transmitting grid is moved, the output
of the interferometer is recorded as a function
of position on an g -y recorder.
Figure 2 shows a typical curve of the inter-

ferometer output when a 400-mV, 95-Mc/sec
signal was applied to the transmitting grid.
The received signal is down 50 dB at 4 mm.
Reducing the input to 40 mV changed only the
amplitude of the received signal. From a set
of such data taken at various frequencies, the
wave numbers kr (2v/wavelength) and the volt-
age damping constants k; have been determined
as shown in Fig. 3. Confidence limits indicate
the uncertainty in interpreting the raw data.
We show for reference the thermal velocity
3x 10' mm/sec (2040'K). The two curves la-

173

Vor.UMa 17, NUMszR 4 PH YSICAI. REVIE% LZ TTZRS 25 JUr. v I966

FXC ITAT ION GR I Q
I&

GUARQ RING

LLJ

O

20.0

TANTALUM
BUTTON

ARATION (mm)

il
RECEIVING GRID

FIG. 1. Diagram of. the sodium plasma tube shouting
the probe arrangement.

low plasma frequency on a narrow column with-
in a magnetic field. As such they verified damp-
ing of Trivelpiece' modes rather than Bohm
and Gross waves.
We report here preliminary measurements

of the dispersion characteristics of electrostat-
ic waves in a one-dimensional plasma in the
absence of a magnetic field. The observed waves
exhibit all the features of the dispersion rela-
tion (1) for a Maxwellian plasma including Lan-
dau damping.
A sodium plasma in thermodynamical equilib-

rium is produced by resonance ionization be-
tween two 4.5-em diam tantalum buttons which
are spaced 2.5 cm apart as depicted in Fig. 1.
The entire tube is immersed in an oil bath to
regulate the sodium vapor pressure. This tube
produces a tenuous, virtually collision-free
plasma with an electron-rich, thus stable, '
sheath at the incandescent emitters. As such,
it is ideally suited as a carrier for Bohm and
Gross waves. Specifically, we used a cathode
temperature of 2040'K as measured with an
optical pyrometer and an oil-bath temperature
of 80'C. The resulting plasma had a density
of 2x 10' electrons jcm' and a temperature of
2200'K as measured by a planar guard-ring
Langmuir probe. The Debye length was thus
0.7 mm. Since the background pressure was
only 2x10 ' mm Hg, collisional effects are
completely negligible.
Electrostatic waves are excited in the plas-

ma by the parallel plane grids' shown in Fig. 1.
Direct coupling between grids is reduced to

FIG. 2. Interferometer output at 95 Mc/sec as a
function of grid separation.

less than -80 dB by completely enclosing the
transmitting grid. The -,'-, -in. diameter grids
are fabricated from 0.005-in. etched molybde-
num mesh having 20 lines per inch. Both grids
are attached to mechanical drive mechanisms
with 50-0 molybdenum rf coaxial systems.
Typically the grids are biased to plasma po-
tential (+0.5 V above ground) to eliminate the
dc plasma sheath around the grid wires. Elec-
trons are thus allowed to pass through the grid
assembly very much like in a microwave kly-
stron.
An interferometer having a sensitivity of -90

dB (reference level 1 mW) detects the phase
of the received signal. A cw oscillator provides
both the local oscillator for the receiving mix-
er and the rf input to a 1-kc/sec modulator
whose output is applied to the transmitting grid.
The received signal is detected by the mixer
which drives a coherent detector operated by
the 1-kc/sec generator. At a fixed frequency,
as the transmitting grid is moved, the output
of the interferometer is recorded as a function
of position on an g -y recorder.
Figure 2 shows a typical curve of the inter-

ferometer output when a 400-mV, 95-Mc/sec
signal was applied to the transmitting grid.
The received signal is down 50 dB at 4 mm.
Reducing the input to 40 mV changed only the
amplitude of the received signal. From a set
of such data taken at various frequencies, the
wave numbers kr (2v/wavelength) and the volt-
age damping constants k; have been determined
as shown in Fig. 3. Confidence limits indicate
the uncertainty in interpreting the raw data.
We show for reference the thermal velocity
3x 10' mm/sec (2040'K). The two curves la-

173

VOLUME 17, NUMazR 4 25 Joz.v 1966

120'

100

80

rical parameters used in our experiment one
should see resonances at &u=~&/v2 for all k~
=nv/d ~ 0.124 mm ', where d = 1 in. is the sep-
aration distance of the emitter buttons. No such
resonances were observed nor did we see the
exponential variation of the corresponding radi-
al electric field

E ~I (k ~)-(2m' ~) '"exp(k r)j 1 z
(5)

60
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FIG. 3. Dispersion diagram: Circles vrith bars
through them, experimental measurements; kz and k~
Landau Eq. (1); dotted curves, thermal speed ~jk
=~3KT'/m; and dash-dotted curves, Bohm and Gross,
Eq. (2).

in our interferometer traces such as shown
in Fig. 2. Having established that surface waves
are absent we conclude that the cut-off frequen-
cy in our experiment is indeed the plasma fre-
quency &u and not &e~/W2. This statement is
further corroborated by the close agreement
between the cut-off frequency (30 Mc/sec) and
the experimental plasma frequency (34 Mc/sec).
Theoretical studies show that higher order

Landau modes become important whenever +
»u&p and x»AD. In this case Landau damping
increases somewhat less than exponential like

I E i ~ exp'[-';(u&x/(u & )"'l.

becomes independent of the electron thermal
velocity U~ = (2~T/m)'". Consequently, they
obey the approximate dispersion relation, "

(~ /(u)'=2+21n '(a/b)(k b) (4)

where a =2.22 in. and 5 = 1 in. are the wall and
plasma radii, respectively. With the geomet-

beled kz and k; are the real and imaginary com-
ponents of the wave numbers as computed from
the dispersion relation (1) using a. Maxwell dis-
tribution of electron velocities. " The plasma
frequency used in computation was 30 Mc/sec,
while Langmuir probe data. give 34 Mc/sec when
the grids are immersed in the plasma. Because
of the limited size of the plasma, the longest
measurable wavelength was 15 mm at 37 Mc/
sec. No waves were observed below this fre-
quency or above 115 Mc/sec.
An interpretation of these experimental re-

sults requires discrimination between Landau
waves and surface waves, the only other modes
which may exist in the absence of an applied
magnetic field. The wave number parallel to
the electric field k'=0&'+kz' vanishes for sur-
face waves'" so that the associated plasma
conductivity"

o=-i(ue ((u /v k)'Z'(~/v k)= —iu)c ((u /(u)' (3)0

This seems to be borne out by our experimen-
tal data, Fig. 3, for &u& 3&up. The techniques
of our measurements are currently being re-
fined considerably to allow a quantitative in-
vestigation of these secondary effects. The
preliminary results presented here do, how-
ever, exhibit all the features of Landau waves
with reasonable quantitative agreement between
the experimental data and the predominant so-
lution of Landau's dispersion relation.
We gratefully acknowledge the assistance of

M. Omura in performing the probe measure-
ments and the help of %. Holmes and J. Schick
in designing and constructing the experimental
tube. Finally, we are pleased that similar re-
sults have been obtained concurrently by our
colleague G. Van Hoven using a reflex excita-
tion scheme in an entirely different type of
plasma.

*This research was supported by the U. S. Air Force
under Contract No. AF33(615)-1504.
J. J. Thomson and G. P. Thomson, Conduction of

Electricity through Gases (Cambridge University
Press, Cambridge, 1933}, p, 353.
L. Tonks and l. Langmuir, Phys. Rev. 33, 195

(1929).
A. A. Vlasov, Zh. Eksperim. i Teor. Fiz. 8, 291

(1938).
L, Landau, J. Phys. 10, 45 (1946}.
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9.1 The Vlasov Approach 321

and substituting into Eq. (9.1.7) gives

k2Φ̃ =
e2

ϵ0m
kΦ̃

∫ ∞

−∞

(∂ f0/∂υz)
(kυz −ω)

d3υ. (9.1.9)

Rearranging the terms and factoring out Φ̃ then gives the homogeneous equation
[
1− e2

ϵ0mk2

∫ ∞

−∞

∂ f0/∂υz

(υz −ω/k)
d3υ

]
Φ̃ = 0. (9.1.10)

For the potential Φ̃ to have a non-trivial solution, the term in the brackets must be
zero, which gives the dispersion relation

Ð(k,ω) = 1− e2

ϵ0mk2

∫ ∞

−∞

∂ f0/∂υz

(υz −ω/k)
d3υ = 0. (9.1.11)

At this point, it is useful to define a new normalized one-dimensional distribution
function:

F0(υz) =
1
n0

∫ ∞

−∞
f0(v)dυx dυy. (9.1.12)

The function F0(υz) is sometimes called the reduced distribution function. Note
that by dividing by n0 the reduced distribution function is normalized such that∫

F0(υz)dυz = 1. Recognizing thatω2
p = n0e2/(ϵ0m), the dispersion relation equation

(9.1.11) can be written

Ð(k,ω) = 1−
ω2

p

k2

∫ ∞

−∞

∂F0/∂υz

(υz −ω/k)
dυz = 0. (9.1.13)

In some applications it is useful to put the dispersion relation into a slightly
different form by integrating by parts once, which gives

∫ ∞

−∞

∂F0/∂υz

(υz −ω/k)
dυz =

[
F0

(υz −ω/k)

]∞

−∞
+

∫ ∞

−∞

F0

(υz −ω/k)2 dυz. (9.1.14)

Since F0 goes to zero at υz =±∞, the first term in the integration by parts vanishes,
so the dispersion relation becomes

Ð(k,ω) = 1−
ω2

p

k2

∫ ∞

−∞

F0

(υz −ω/k)2 dυz = 0. (9.1.15)

Both of the above forms of the dispersion relation suffer from a serious problem.
Because the denominator goes to zero at υz = ω/k, the integrals do not converge
unless F0 and ∂F0/∂υz are zero at υz = ω/k. Physically, the dispersion relation
exists only if there are no particles moving with a velocity equal to the phase
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expansion equation (9.3.15), substituting ζ = x + iy, and expanding in powers of
the small quantity y/x, the dispersion relation becomes

Ð(k, p) = 1− 1
(kλD)2

[
1

2x2 +
3

4x4 − i
(

y
x3 +

k
|k|
√
πx e−x2

)]
= 0. (9.3.17)

Setting the real and imaginary parts of the above equation equal to zero and using
the definitions (Eq. (9.3.7)) for x and y, it can be shown that the frequency and
growth rate are given by

ω2 =ω2
p + 3

(κT
m

)
k2 (9.3.18)

and

γ = −
√
π

8
ωp

|kλD|3
exp

[
− 1

2(kλD)2 −
3
2

]
, (9.3.19)

where, as in Section 9.1.1, the successive approximation method has been used to
solve for ω2. These results are identical to those obtained from the weak growth
rate approximation; see Eq. (9.2.47).

9.4 The Dispersion Relation for a Multi-component Plasma

From inspection of the relevant equations, it is easy to see that the analysis of
electrostatic waves in a hot multi-component plasma proceeds in a manner that
is exactly the same as for a plasma of hot electrons and immobile ions, the only
difference being that the dispersion relation now involves a sum over all species

Ð(k, p) = 1−
∑

s

ω2
ps

k2

∫

C

∂Fs0/∂υz

υz − ip/k
dυz = 0, (9.4.1)

where the integration contour C must pass below the pole at υz = ip/k when k is
positive, and above the pole when k is negative.

To illustrate the effects introduced by ions, it is convenient to limit our initial
discussion to the case of electrons and a single species of positively charged ions.
In this case, the sum in the dispersion can be simplified by taking advantage of the
fact that ne = ni, which allows us to write

∑

s

ω2
psFs0(υz) =ω2

pe

[
Fe0(υz)+

me

mi
Fi0(υz)

]
. (9.4.2)

One can then define an equivalent reduced distribution function:

F0(υz) = Fe0(υz)+
me

mi
Fi0(υz). (9.4.3)
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F0 (υz)

Electrons

Ions
Ci

υz

(Te = Ti) (Te >> Ti)

ω
k

ω
k

Figure 9.17 When Te≫ Ti, the ion acoustic wave is weakly damped because the
phase velocity, ω/k, is much greater than the ion thermal speed, Ci. When Te = Ti,
the damping is very large because ω/k≃Ci.

temperature is increased, the phase velocity increases and the damping decreases,
since the slope of the ion distribution decreases. Except for extremely high phase
velocities (Te≫ Ti), electrons contribute very little to the damping. This is because
the slope of the electron velocity distribution is very small at low velocities. In
Figure 9.17 the ion thermal speed has been greatly exaggerated in relation to the
electron thermal speed. For realistic electron-to-ion mass ratios and temperatures,
the electron thermal speed is usually a factor of fifty to one hundred times larger
than the ion thermal speed.

Maxwellian Electron and Ion Distributions
To gain experience using the plasma dispersion function, it is instructive to repeat
the above analysis using Maxwellian distributions for the electrons and ions. By a
simple extension of Eq. (9.3.14), it is easy to show that the dispersion relation for
a multi-component Maxwellian plasma is given by

Ð(k, p) = 1−
∑

s

1
(kλDs)2

1
2

Z ′(ζs) = 0, (9.4.18)

where Z ′(ζs) is the derivative of the plasma dispersion function, and ζs and λDs are
defined by

ζs =

√
ms

2κTs

(
ip
k

)
and λ2

Ds =
ϵ0κTs

nse2 . (9.4.19)

For a plasma consisting of electrons and one species of positive ion, the dispersion
relation can be rewritten in the following form:

Ð(k, p) = 1− 1
(kλDe)2

1
2

[
Z ′(ζe)+

Te

Ti
Z ′(ζi)

]
= 0, (9.4.20)

where we have made use of the fact that ne = ni and λ2
De = (Te/Ti)λ2

Di.
To obtain a completely general solution, the dispersion relation must be

evaluated numerically. However, an approximate solution can be obtained for the
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ion acoustic mode if one assumes that the phase velocity is large compared to
the ion thermal velocity and small compared to the electron thermal velocity. The
large-argument expansion is then used for the ions

Z ′(ζi) = − i
k
|k|
√
π2ζi e− ζ

2
i +

1
ζ2

i

, (9.4.21)

where we have only included the 1/ζ2
i term, and the small-argument expansion is

used for the electrons

Z ′(ζe) = − i
k
|k|
√
π2ζe e− ζ

2
e − 2, (9.4.22)

where we have only included the second term on the right of Eq. (9.3.16).
Substituting these expansions into the dispersion relation, expanding ζi = xi+ iyi in
powers of yi/xi, and assuming yi≪ xi, the dispersion relation becomes

Ð(k, p) = 1+
1

(kλDe)2

{
1 − 1

2

(
Te

Ti

)
1
x2

i

(
1 − i

2yi

xi

)

+ i
k
|k|
√
πxi

⎡
⎢⎢⎢⎢⎣
√

me

mi

√
Ti

Te
+

(
Te

Ti

)
e− x2

i

⎤
⎥⎥⎥⎥⎦
}
= 0, (9.4.23)

where we have made use of the relation xe = xi
√

me/mi
√

Ti/Te. Separating the
real and imaginary parts, and writing xi and yi in terms of ω and γ then gives the
following equations for the phase velocity and the growth rate:

ω

k
= ±

√
κTe

mi

1
(1+ k2λ2

De)1/2
(9.4.24)

and

γ

ω
= −

√
π

8

⎡
⎢⎢⎢⎢⎢⎣
√

me

mi
+

(
Te

Ti

)3/2

exp
⎛
⎜⎜⎜⎜⎝−

Te

2Ti

1
(1+ k2λ2

De)

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

1
(1+ k2λ2

De)3/2
. (9.4.25)

Note that in the short-wavelength limit, kλDe≫ 1, the frequency has an upper limit
given by the ion plasma frequency, ωpi = (

√
κTe/mi)/λDe, in agreement with the

results obtained in Section 5.5.2 from the moment equations (see Figure 5.6). In the
long-wavelength limit, kλDe≪ 1, the equations for the phase velocity and growth
rate simplify considerably and are given by

ω

k
= ±

√
κTe

mi
(9.4.26)
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ion acoustic mode if one assumes that the phase velocity is large compared to
the ion thermal velocity and small compared to the electron thermal velocity. The
large-argument expansion is then used for the ions

Z ′(ζi) = − i
k
|k|
√
π2ζi e− ζ

2
i +

1
ζ2

i

, (9.4.21)

where we have only included the 1/ζ2
i term, and the small-argument expansion is

used for the electrons

Z ′(ζe) = − i
k
|k|
√
π2ζe e− ζ

2
e − 2, (9.4.22)

where we have only included the second term on the right of Eq. (9.3.16).
Substituting these expansions into the dispersion relation, expanding ζi = xi+ iyi in
powers of yi/xi, and assuming yi≪ xi, the dispersion relation becomes

Ð(k, p) = 1+
1

(kλDe)2

{
1 − 1

2

(
Te

Ti

)
1
x2

i

(
1 − i

2yi

xi

)

+ i
k
|k|
√
πxi

⎡
⎢⎢⎢⎢⎣
√

me

mi

√
Ti

Te
+

(
Te

Ti

)
e− x2

i

⎤
⎥⎥⎥⎥⎦
}
= 0, (9.4.23)

where we have made use of the relation xe = xi
√

me/mi
√

Ti/Te. Separating the
real and imaginary parts, and writing xi and yi in terms of ω and γ then gives the
following equations for the phase velocity and the growth rate:

ω

k
= ±

√
κTe

mi

1
(1+ k2λ2

De)1/2
(9.4.24)

and

γ

ω
= −

√
π

8

⎡
⎢⎢⎢⎢⎢⎣
√

me

mi
+

(
Te

Ti

)3/2

exp
⎛
⎜⎜⎜⎜⎝−

Te

2Ti

1
(1+ k2λ2

De)

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

1
(1+ k2λ2

De)3/2
. (9.4.25)

Note that in the short-wavelength limit, kλDe≫ 1, the frequency has an upper limit
given by the ion plasma frequency, ωpi = (

√
κTe/mi)/λDe, in agreement with the

results obtained in Section 5.5.2 from the moment equations (see Figure 5.6). In the
long-wavelength limit, kλDe≪ 1, the equations for the phase velocity and growth
rate simplify considerably and are given by

ω

k
= ±

√
κTe

mi
(9.4.26)
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430 Nonlinear Effects

We start the discussion of quasi-linear theory by defining the spatial average of
the time-dependent distribution function fs1(z,υz, t) as

⟨ fs⟩(υz, t) =
1

2L

∫ L

− L
fs(z,υz, t)dz, (11.1.5)

where the spatial integration is carried out over the entire length 2L of a
one-dimensional plasma. We further require that the spatially averaged distribution
function be identical to the zero-order distribution function at t = 0,

⟨ fs⟩(υz, t = 0) = fs0(υz), (11.1.6)

but allow ⟨ fs⟩ to deviate from fs0(υz) for t > 0. The total distribution function is
then written as the sum of the averaged distribution function ⟨ fs⟩ plus a fluctuation,
fs1, i.e.,

fs(z,υz, t) = ⟨ fs⟩(υz, t)+ fs1(z,υz, t). (11.1.7)

Note that at t = 0, Eq. (11.1.7) reduces identically to Eq. (11.1.4). The main
difference between linear theory and quasi-linear theory lies in what one linearizes
about: in linear theory, one linearizes about a time-independent equilibrium
distribution function fs0(υz), whereas in quasi-linear theory one linearizes about a
spatially averaged distribution function ⟨ fs0⟩(υz, t), which is allowed to vary slowly
in time.

Taking the spatial average of both sides of Eq. (11.1.7) in the manner of
Eq. (11.1.5), it follows that the spatial average of the first-order perturbation of
the velocity distribution function is zero:

⟨ fs1(z,υz, t)⟩ = 0. (11.1.8)

For electrostatic perturbations, we can write the perturbed electric field as

E1(z, t) = − ∂
∂z
Φ1(z, t). (11.1.9)

Taking the spatial average of Eq. (11.1.9) and requiring that Φ1(z, t) decays to zero
at the system boundaries, we can show that the spatial average of the first-order
electric field is also zero:

⟨E1(z, t)⟩ = − 1
2L

∫ L

− L

∂Φ1(z, t)
∂z

dz = 0. (11.1.10)

11.1.1 The Quasi-linear Diffusion Equation

Next, we develop an equation called the quasi-linear diffusion equation, which
describes the time evolution of the average distribution function. This equation is
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obtained by taking the spatial average of the Vlasov equation (11.1.1), which can
be written

∂

∂t
⟨ fs⟩+

〈
υz
∂ fs

∂z

〉
=

es

ms

〈
∂Φ

∂z
∂ fs

∂υz

〉
. (11.1.11)

The second term on the left-hand side of the above equation can be rewritten as
〈
υz
∂ fs

∂z

〉
=

〈
∂

∂z
(υz fs)

〉
= 0, (11.1.12)

because the integrand is a perfect differential and we require that the perturbation
fs1(z,υz, t) vanish at the boundaries of the system. One way to ensure that this
condition is satisfied is to take L to be very large and require that fs decay to zero
at large values of z. The term on the right-hand side of Eq. (11.1.11) can then be
written

es

ms

〈
∂Φ

∂z
∂ fs

∂υz

〉
=

es

ms

〈(
∂Φ0

∂z
+
∂Φ1

∂z

)(
∂⟨ fs⟩
∂υz
+
∂ fs1

∂υz

)〉
. (11.1.13)

Since ∂Φ0/∂z = 0 in equilibrium and ⟨∂Φ1/∂z⟩ = 0 by Eq. (11.1.10), we obtain

es

ms

〈
∂Φ

∂z
∂ fs

∂υz

〉
=

es

ms

〈
∂Φ1

∂z
∂ fs1

∂υz

〉
=

es

ms

∂

∂υz

〈
fs1
∂Φ1

∂z

〉
. (11.1.14)

Using Eqs. (11.1.12) and (11.1.14), we can then reduce Eq. (11.1.11) to

∂

∂t
⟨ fs⟩ =

es

ms

∂

∂υz

〈
fs1
∂Φ1

∂z

〉
. (11.1.15)

To derive an equation for fs1(z,υz, t), we subtract the averaged equation (11.1.15)
from the full Vlasov equation (11.1.1), to give

(
∂

∂t
+υz

∂

∂z

)
fs1(z,υz, t) =

es

ms

∂Φ1

∂z
∂⟨ fs⟩
∂υz

+
es

ms

∂

∂υz

[
∂Φ1

∂z
fs1 −

〈
∂Φ1

∂z
fs1

〉]
. (11.1.16)

Both Eqs. (11.1.15) and (11.1.16) are exact. However, they are not a closed set,
because a time evolution equation for the second-order fluctuations (∂Φ1/∂z) fs1

(and its average) is needed. Any effort to determine such a time evolution
equation will inevitably bring in third-order fluctuations. In turn, a time-dependent
equation for third-order fluctuations will involve fluctuations of the fourth order.
This process, when continued, produces a hierarchy of indefinitely higher order.
Therefore, there is a closure problem, similar to the closure problem encountered
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Experimental Test of Quasilinear Theory*

C. Roberson, K. %. Gentle, and P. Nielsen
Center for Plasma Physics, University of Texas, Austin, Texas 78718

(Received 5 November 1970)

The shape and amplitude of the electron-plasma wave spectrum resulting from a
"gentle bump" on the tail of the electron velocity distribution of a plasma is measured
and found to be in good agreement with quasilinear theory.

Nonlinear theories of unstable plasmas are
usually concerned with two principal problems:
estimating the final wave spectrum and calculat-
ing the effect of the waves on the particles. The
simplest instability that may be followed analy-
tically to its nonlinear limit is a "gentIe bump"
on the tail of the electron velocity distribution.
The amplitude and shape of the spectrum as well
as the change in the velocity distribution may be
cal.culated from quasilinear theory. "
In this Letter we report an experiment designed

to test the validity of this theory by measuring
the electron-plasma wave spectrum resulting
from the injection of an electron beam of suffi-
ciently low density and large velocity spread to
satisfy the assumptions of quasilinear theory.
In prior beam-plasma experiments the initial
velocity spread of the beam electrons was not
sufficient to meet the requirements. ' '
When the beam electrons form a "gentle bump"

on the plasma electron velocity distribution, the
dispersion relation is determined by the plasma

electrons, and the only effect of the beam is to
cause exponential growth of the waves (or plasma
noise) with phase velocities corresponding to
the positive slope of the beam distribution. As
the waves become sufficiently large they cause

' a diffusion of the beam electrons in velocity.
The growth rate of the waves therefore decreases
and eventually goes to zero when the velocity
distribution becomes flattened in the beam region.
Hence, we can calculate the dispersion relation
and initial growth rate from linear theory and
the equilibrium spectrum from the quasilinear
theory.
To determine the dispersion relation, we con-

sider a long cylinder of collisionless plasma in
a strong magnetic field aligned with the axis.
The plasma density is a function of radius only.
In the limit that the phase velocity of the waves
is small compared with the velocity of light, the
electric field may be derived from a scalar po-
tential, and for the radially symmetric modes
the dispersion relation may be found from

d'4(r) 1 d4(r), ~,'(r)

where 4 is the wave potential, k and ~ are the
complex wave number and angular frequency of
the wave, co~'(r) is the radially dependent plasma
frequency, v, the mean thermal velocity of the
plasma electrons, and W is related to the plas-
ma dispersion function' by W(x) =2Z'(-x/W2).
Using the experimentally observed density pro-
file, the numerical solution of Eq. (1) yields the
potential profile 4 (r) and the complex wave num-
ber as a function of frequency in the absence of
the beam.
Vfhen the beam in injected into the plasma, the

real part of the dispersion relation is unchanged
and the growth due to the beam is given by'

nv, ' f, rdr 4'(r)[sf, (v, r)/Bv]„»
v,m, ' f,"rdr 'C( )Xr(r)

where e is the imaginary part of the wave num-

! ber, v, is the group velocity, N(r) the plasma
density, 8'~' the derivative of the real part of
the W function, and f, the beam-velocity distri-
bution function. The growth rate depends on the
ratio of the beam density integrated over its
cross-sectional area to the plasma density in-
tegrated over the plasma cross section. Both
low density and small cross section in the beam
contribute to the required weakness of the insta-
bility.
Drummond' has considered the quasilinear de-

velopment of spatial. ly growing waves in a plas-
ma, column immersed in a strong magnetic field
and finds a local diffusion equation similar to
the one-dimensional case. When the diffusion
equation is integrated over the cross section of
the plasma and combined with the equation for
the rate of change in wave energy, we find the
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The shape and amplitude of the electron-plasma wave spectrum resulting from a
"gentle bump" on the tail of the electron velocity distribution of a plasma is measured
and found to be in good agreement with quasilinear theory.

Nonlinear theories of unstable plasmas are
usually concerned with two principal problems:
estimating the final wave spectrum and calculat-
ing the effect of the waves on the particles. The
simplest instability that may be followed analy-
tically to its nonlinear limit is a "gentIe bump"
on the tail of the electron velocity distribution.
The amplitude and shape of the spectrum as well
as the change in the velocity distribution may be
cal.culated from quasilinear theory. "
In this Letter we report an experiment designed

to test the validity of this theory by measuring
the electron-plasma wave spectrum resulting
from the injection of an electron beam of suffi-
ciently low density and large velocity spread to
satisfy the assumptions of quasilinear theory.
In prior beam-plasma experiments the initial
velocity spread of the beam electrons was not
sufficient to meet the requirements. ' '
When the beam electrons form a "gentle bump"

on the plasma electron velocity distribution, the
dispersion relation is determined by the plasma

electrons, and the only effect of the beam is to
cause exponential growth of the waves (or plasma
noise) with phase velocities corresponding to
the positive slope of the beam distribution. As
the waves become sufficiently large they cause

' a diffusion of the beam electrons in velocity.
The growth rate of the waves therefore decreases
and eventually goes to zero when the velocity
distribution becomes flattened in the beam region.
Hence, we can calculate the dispersion relation
and initial growth rate from linear theory and
the equilibrium spectrum from the quasilinear
theory.
To determine the dispersion relation, we con-

sider a long cylinder of collisionless plasma in
a strong magnetic field aligned with the axis.
The plasma density is a function of radius only.
In the limit that the phase velocity of the waves
is small compared with the velocity of light, the
electric field may be derived from a scalar po-
tential, and for the radially symmetric modes
the dispersion relation may be found from

d'4(r) 1 d4(r), ~,'(r)

where 4 is the wave potential, k and ~ are the
complex wave number and angular frequency of
the wave, co~'(r) is the radially dependent plasma
frequency, v, the mean thermal velocity of the
plasma electrons, and W is related to the plas-
ma dispersion function' by W(x) =2Z'(-x/W2).
Using the experimentally observed density pro-
file, the numerical solution of Eq. (1) yields the
potential profile 4 (r) and the complex wave num-
ber as a function of frequency in the absence of
the beam.
Vfhen the beam in injected into the plasma, the

real part of the dispersion relation is unchanged
and the growth due to the beam is given by'

nv, ' f, rdr 4'(r)[sf, (v, r)/Bv]„»
v,m, ' f,"rdr 'C( )Xr(r)

where e is the imaginary part of the wave num-

! ber, v, is the group velocity, N(r) the plasma
density, 8'~' the derivative of the real part of
the W function, and f, the beam-velocity distri-
bution function. The growth rate depends on the
ratio of the beam density integrated over its
cross-sectional area to the plasma density in-
tegrated over the plasma cross section. Both
low density and small cross section in the beam
contribute to the required weakness of the insta-
bility.
Drummond' has considered the quasilinear de-

velopment of spatial. ly growing waves in a plas-
ma, column immersed in a strong magnetic field
and finds a local diffusion equation similar to
the one-dimensional case. When the diffusion
equation is integrated over the cross section of
the plasma and combined with the equation for
the rate of change in wave energy, we find the
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FIG. 2. (a) Wave growth and saturation versus dis-
tance (b.) Saturation power level versus beam current.

The spatial growth of the noise as a result of
the beam is measured by connecting the receiv-
ing antenna directly to a broad-band amplifier
and a sampling rf voltmeter. The log of the volt-
meter output is plotted on the Y axis and dis-
tance from beam injection point on the X axis of
the recorder'. The results [Fig. 2(a)] have the
qualitative features expected from the theory:
slow exponential growth to reach a quasiequilib-
rium saturation level without overshoot.
To determine the wave power in the spectrum

we must know the absolute coupling constant of
the probes. No precise way of obtaining this is
available, but the total coupling through the plas-
ma for a paix of probes can easily be measured.
For three probes, three transmitter-receiver
pairs are possible. This gives three equations
for the three unknown single-probe coupling
coefficients. A calibrated receiver is positioned
200 cm from the beam injection point and the
wave power is measux ed as a function of beam
current. The wave power is linearly proportion-
al to the beam current [Fig. 2(b)] as predicl:ed
by Eq. (4). For our beam distribution, we cal-
culate that 14% of the beam power should be con-
verted to wave power. We obsex've approximate-
ly 10% conversion, which is excellent agreement
for R measurement of absolute power level. "
The shape of the equilibrium spectrum is mea-

sured using an adjustable narrow-band (3%) filter
in the receiving line. The powex and coupling
constant are measured at a series of fixed fre-
quencies. The amplitude of the spectrum as cal-
culated from Eq. (3) is normalized to the mea-
sured value at one point and the comparison of
theory and experiment is shown in Fig. 3(a).
The ShRpe Rnd width of the spectrUIQ Rle found
to be in excellent agreement with theory.

9 10 I I l2
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8
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FIG. 3. (a) Shape of wave spectrum. Solid line is
theory, circles are experimental values. Beam cur-
rent is 2 mA. (b) Inferred beam-velocity distribution
versus energy analyzer distribution. The solid curve
is obtained from an electronically differentiated output
of the analyzer.

We have also measured the growth rates of the
spectral components by using the adjustable fil-
ter and plotting the log of the receiver power
versus distance for a number of frequencies.
These growth rates were used in Eq. (2) to find
the avexaged beam-velocity distribution function
assuming that the wave potential is constant
over the beam diameter; the beam is sufficiently
small to justify this easily. This inferred beam
distribution is compared with the direct measure-
ment using an energy analyzer. The results are
shown in Fig. 3(b), where the width of the shaded
region is an indication of the estimated error in
determining the inferred distribution. No "nox'-
DlRllzRtlon plocedure 18 used 1n this conlpari-
son.
In summary, we find that the quasilinear theory
correctly predicts the manner in which the elec-
tron-plasma wave spectrum from a "gentle bump"
grows and saturates. The theory gives the pro-
per dependence of saturation level as a function
of beam current, the shape of the spectrum,
and the magnitude of the equilibrium power level.


