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HYDROMAGNETIC TOKAMAK STABILITY

where z = r - rs and the solutions of this equation may
be written [85]
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FIG.33. The fundamental eigenfunction for the radial per-
turbed magnetic field, \p, for large-m tearing modes at marginal
stability (E = 1).

and the quantity A is then given by

A . - A

and this usually has to be calculated by solving
Eq.(34) numerically. The procedure is to find values
of Aj and A2 which give solutions i//+ and i//_ which
satisfy the boundary conditions appropriate to the
case in hand.

3.4.1. Localized tearing modes

For tearing modes with high m-numbers even the
outer solutions become localized so that it is possible
to derive a local stability criterion [86]. Thus, for suf-
ficiently large m, the outer solutions are also solutions
of Eq.(37), which may be rewritten

where x = mz/rs and E = (rs/m) (-j^q/q'B0)s, the
primes denoting derivates with respect to r. By solving
this equation in the regions x < 0 and x > 0 the
quantity A(E) can be obtained. There will be a
sequence, Eu, of the values of E for which A = 0. Each
of these corresponds to the marginal stability of a
given radial mode in the low |3 limit.

For E = 0, A < 0 and the first pair of values of Ev

are ± 1. Thus the high-m tearing modes will be stable
if | E | < 1, that is if

The form of \p for E = 1 is shown in Fig.33. If cri-
terion (38) is applied to the parabolic current profile
iifi = J(/>o 0 ~ r2/a2) it is found that stability is obtained
at all radii for m > 4. Numerical calculation for this
case shows that modes m < 4 are unstable and modes
m > 4 are stable except near the plasma surface where
the result depends upon the precise boundary con-
dition employed.

3.4.2. Low m-number tearing modes

For low m-number tearing modes it is necessary to
resort to models for the plasma. For a given configu-
ration both A and Ac have to be determined for each
mode. Shafranov [7] demonstrated that for a para-
bolic current profile modes m > 4 are stable. A similar
result was obtained by Furth, Rutherford and Selberg
[85 ] for current profiles of the type

J . - J.

For a = 1 it was found that only m = 2 and 3 had
A > 0. For the general case A takes limiting value,
A0(m), as r -> 0. This has been calculated by
Papaloizou [87] and the values for modes m = 2 to 4
are given below.

i t < m (38)
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FIG.32. Showing the movement of the solutions, y, of the
dispersion relation (35), A = fs(j/r)3/5f* V ~ds (r\mh)y2\
as A varies between ±°°. As A decreases from + °° the large
and small unstable roots approach and coalesce at A = Am.
Unstable complex conjugate roots then appear and these
become stable when A = Ac (at Rey= 0). As A now
approaches and passes through zero the roots become
increasingly damped.

For sufficiently large positive A, 7 is purely real.
There are two roots, the larger one being the usual
tearing mode. When A is reduced to a value Am, a
minimum in the plot of Ai against real 7 is reached, as
pointed out in Ref. [79]. However, instability persists
as A is lowered further, 7 becoming complex. Stabi-
lity is finally achieved when A reaches Ac. This cri-
tical value of A is greater than zero and an improve-
ment in stability is obtained.

3.3. Resistive interchange modes

For resistive interchange modes the stability crite-
rion is ds < 0. The specific form of this criterion for
the large-aspect-ratio, circular-cross-section case was
derived by Mikhajlovskij [83] and may be written

s&l($+&li-''>)«) > 0 (36)

as compared with the ideal criterion

r B 2

It is seen that the dominating shear term has been lost
but that since the integral term is positive it is still
adequate for stability to have q > 1 everywhere.

Numerical calculations comparing the ideal and
resistive stability for a given configuration have been
described by Johnson et al. [60].

3.4. Tearing modes

The value of Ac increases with |3 and, since j3
generally decreases with increasing aspect ratio, the
effect is significant only if the aspect ratio is not too
large. In the limit R/a -> °°, Ac -*• 0 and the condition
for stability of tearing modes becomes A < 0. In this
limit, "typical" current profiles, having either no, or
only one, inflexion point, can readily be stabilized
against high m-numbers by increasing the shear. It
has been shown by Glasser, Furth and Rutherford
[84] that it is also possible to stabilize the lower m-
numbers by "tailoring" the current profile, but for
typical current profiles the lower m-number modes,
m = 2 and 3, remain unstable. However, at higher j3,
Ac becomes significant and these modes can also be
stable. The finite |3 effect is important roughly when
0P > (R/a)12/5 S"2/s where S is the ratio of the magnetic
field diffusion time aa2 to the AlfvSn transit time
a.y/plBy. It is, therefore, possible to identify an inter-
mediate range of aspect ratios 1 < R/a < |3p/12 S1/6

where the finite |3 effects play a role and a large-
aspect-ratio theory is applicable.

In the very-large-aspect-ratio case the stability cri-
terion for tearing modes is

A < 0

where

"s e-»O
r = r + €

8
r - c

and \p+ and i//_ are the solutions of Eq.(34) which
satisfy the appropriate boundary conditions in the two
regions r > rs and r < rs. These solutions are singular
at the radius r = rs where m = nq and it is necessary to
take a limit to obtain A. In the neighbourhood of rs

Eq.(34) may be written

dz* (37)
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(Summary) Tearing Modes are Critically Important for Tokamaks

known in tokamaks; an example14 from MAST is shown in
Fig. 2. A resonant error field can drive a magnetic island in a
plasma that is otherwise stable to tearing modes. Plasma
rotation induces currents at the mode rational surface that
exclude the error field, and no island is formed. However, in
a non-ideal plasma, a phase shift of the induced currents cre-
ates a torque that slows the rotation. The electromagnetic
braking torque at the rational surface is balanced by viscous
coupling to the rotating plasma. However, as the rotation
slows, the electromagnetic torque increases nonlinearly. If
the error field is sufficiently large, a bifurcation in the torque
balance occurs, in which the rotation at the rational surface
suddenly drops to a very low value. At low rotation, the
screening by induced currents at the rational surface is lost,
and a non-rotating, or locked, n¼ 1 magnetic island sud-
denly appears, with no rotating precursor, as seen in Fig. 2.
The well-known low-density limit in ohmically heated toka-
mak plasmas, proportional to the error field amplitude, is
thought to be due to such error field penetration in the

presence of the natural rotation generated by neoclassical
effects.19,20

A simple paradigm, sometimes known as the “induction
motor model,” describes the bifurcation that leads to error
field penetration.21–23 In the frame of the rotating plasma,
the error field BE appears as a rotating perturbation with de-
pendence BEeixt. If the rational surface is considered as a
rotating shell with finite conductivity, helical currents (which
can only exist at a rational surface) would be induced with
an amplitude J / BEixs=ð1þ ixsÞ with s a characteristic
L/R time. The quadrature component of the current experien-
ces a torque from the original perturbation, so the electro-
magnetic torque would be TEM / BEImðJÞ / B2

Exs=
ð1þ x2s2Þ. Using a similar form of the electromagnetic tor-
que that now takes account of the tearing stability of the
plasma,23–25 the equation of motion for the plasma rotating
at frequency x can be written as

dx
dt
¼ x0 % x

sL
% KB2

E

xsrec

D0rsð Þ2 þ xsrecð Þ2
: (2.1)

The first term on the right includes the effects of a con-
stant external torque and an angular momentum confinement
time sL, both determined by viscous coupling to the bulk
plasma, resulting in an unperturbed rotation frequency x0.
The second term on the right represents the electromagnetic
torque at the rational surface, with a proportionality constant
K that includes the mutual inductance of the error field and
the rational surface. The finite resistivity of the plasma is
characterized by a reconnection time srec, and D0rs is the
tearing stability index (typically of order unity). In the
“visco-resistive” regime that is typical of large, ohmically
heated tokamak plasmas,23–25 srec ¼ 2:104s1=3

A s5=6
R s% 1=6

V ,
where sR is the resistive time, sA is the Alfvèn time, and sV

is the viscous time of the plasma.
For a stationary condition with the plasma in torque

equilibrium, the two terms on the right hand side must bal-
ance. As seen in Fig. 3, at small error field, the balance
occurs at x & x0, but as the error field increases, the torque
balance jumps to a new value at x' x0. In the limit

FIG. 2. Error field penetration and locked mode onset in MAST. A slowly
increasing n¼ 1 field [second panel of (a)] leads to the sudden onset of an
n¼ 1 instability [last panel of (a) and contour plot of dBr in (b)]. Note that
(a) and (b) come from different discharges with slightly different timing.
Reprinted with permission from Howell et al., Nucl. Fusion 47, 1336
(2007). Copyright 2007 International Atomic Energy Agency, Institute of
Publishing.14

FIG. 3. Torque balance in a simple model of error field penetration. A con-
stant input torque with constant momentum confinement time (dashed curve)
is opposed by the electromagnetic drag of the error field (solid curves). With
increasing error field, the torque balance (circled points) shifts slowly to the
left, then has a bifurcation from high to low rotation.
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Chapter 3: MHD stability, operational limits and disruptions
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Figure 3. Sketch of the time evolution of the island growth rate
as given by equation (6) at the onset of the NTM when the
critical seed island size (Wcrit) is exceeded and an NTM forms
at βp,onset . A slow decrease in beta from βp,onset to βp,marg (when
max(dW/dt) = 0) is assumed, as in power ramp-down experiments,
such that dW/dt ≈ 0 (reproduced from [54] ‘Marginal β-limit for
neoclassical tearing modes in JET H-mode discharges’).

the seed island formation or on the NTM physics, as they are
not necessarily related. However, additional effects on NTM
onset arise from resonant error fields which can seed NTMs
and slow plasma rotation [58]. Preliminary analysis suggests
decreased plasma rotation could be reducing the small island
polarization current threshold and thus making the 2/1 NTM
unstable at lower β, but further experiments are required to
elucidate this effect.

To understand the physics mechanisms at play, it is best
to describe in some detail the modified Rutherford equation,
which can be written symbolically as follows for the island
growth rate:

τR

rs

dW

dt
= rs#

′(W) + rsβp(#
′
BS − #′

GGJ − #′
pol) + rs#

′
CD.

(6)

Here W is the width of a magnetic island occurring at a radius
rs and τR is the local resistive diffusion time; #′ is the stability
index of the equilibrium current profile, #′

BS is the bootstrap
drive term, and #′

CGJ and #′
pol are the stabilizing curvature [59]

and polarization terms [60], respectively. The effect of current
drive represented by #′

CD will be discussed in the next section.
The island width dependence is #′

BS ∝ W/(W 2 + W 2
d ) and

#′
pol ∝ W 2

pol/W 3, where Wd describes a stabilizing effect at
small island width due to perpendicular thermal conduction
[61] and Wpol is a constant related to the stabilizing polarization
effect. A fuller description of these terms, used to compare
with experimental data, can be found in [54,62] and references
therein (see also [1]). The typical evolution of the island growth
rate in a full discharge, assuming a slow ramp-down of the
power, and thus a slow decrease in the terms proportional to
βp in equation (5), is shown in figure 3. At a given time in the
discharge, an island is triggered at a beta value βp,onset, in most
cases much larger than βp,marg, and subsequently grows to a
relatively large saturated island width. When βp ! βp,marg, the
mode is stabilized and the growth rate becomes rapidly very
negative. The hysteresis, ratio βp,onset/βp,marg, is significant
in standard scenarios with modest size sawteeth, it has been
measured much above unity in ASDEX Upgrade [51], DIII-
D [52], JET [4] and JT-60U [55]. This occurs because βp,marg,

the marginal beta limit above which NTMs are metastable, is
very low but generally the sawteeth (or other seeds) do not
form a large enough island (W < Wcrit) until βp increases well
above βp,marg. Since βp,marg scales approximately linearly with
ρ∗ [54] ITER is predicted to have βp > βp,marg as soon as it
is in the H-mode. Therefore the existence of NTMs in ITER
does not depend on β as such, but rather on the triggering of a
seed island Wseed > Wcrit . Thus, the predictions of seed island
widths and of the value of Wmarg are each of great importance
for burning plasmas.

The prediction of Wmarg indicates that its size normalized
by the minor radius will be much smaller in ITER than in
present experiments. Its value depends on all the terms
in equation (6) and their dependence at small W . The
understanding and relevance of each of these terms have been
further developed since [1]:

– The first term is the classical #′ term, which has a weak
dependence on W . It has been shown that classical
tearing modes can provide the seed islands for NTMs
[63,64], and this may be one of the possible explanations
of the ‘triggerless NTMs’ observed in other machines
like ASDEX Upgrade [65], JT-60U [55], T-10 [56] and
TFTR [66]. This usually happens when the current
profile is modified [63], and could become the main seed
island trigger mechanism in hybrid scenarios, or when
β approaches the ideal limit, as #′ can become large and
positive [64] and thus could become important in advanced
scenarios. In addition, using fast power shut-off, leading
to a rapid vanishing of the terms proportional to βp in
equation (6), it was possible to show the linear #′(W) on
W in TCV [17].

– The second term is the bootstrap drive, which is reduced
at small island width due to two main effects. First,
the ratio of perpendicular to parallel heating becomes
non-negligible and the pressure profile is not flattened
completely, reducing the perturbed bootstrap current [61,
67]. Anomalous perpendicular viscosity can also affect
the bootstrap drive. Its effect is frequency dependent and
can be stabilizing or destabilizing depending on the sign
of ω/ω∗pi [68], where ω is the mode frequency in the
electron frame and ω∗pi is the ion diamagnetic frequency.
Another effect which reduces the perturbed ion bootstrap
current even more is finite ion Larmor radius effects [69].
When the island width is less than ∼ 5ρb (ρb = ion banana
width) ions are still affected by the pressure gradient inside
and outside the island, leading to a finite bootstrap current
within the island.

– The third term describes the stabilization due to the effect
of curvature and is usually smaller than the bootstrap term
in present tokamak scenarios and therefore has often been
neglected in the past. It has been confirmed in MAST to
be significant for tight aspect ratio scenarios [70]. On the
other hand, it has been shown to yield a finite stabilizing
term for small island width [71] and therefore can be
significant at small island widths in present tokamaks and
for ITER aspect ratio as well.

– The fourth term is due to the polarization current,
resulting from the fluctuating electric field driven by the
different electron and ion responses to the rotating island.
Therefore it involves diamagnetic effects, effective mode
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Figure 1. ITER simulations using the GLF23 transport model and
both the complete (left) and incomplete (right) reconnection models.
The top frames show the axial q value, in the middle frames the
α-power is the solid line and stored energy the broken line and the
bottom frames show the axial temperature.

The results of two simulations are shown in figure 1, one
using complete reconnection and the other with incomplete
reconnection. Note that the sawtooth period is about 50 s
during the flattop for the complete reconnection, and 2–3 times
that frequent for the incomplete reconnection. Both the alpha
power and stored energy are essentially independent of the
sawtooth period, since the period is always longer than the
energy confinement time, the core electron temperature is so
high, and the magnetic diffusion time is long compared with
the energy confinement time. The q = 1 radius is about 42%
of the minor radius.

It is concluded that in ITER the sawtooth will lead to
periodic oscillations on a time that is considerably longer
than the energy confinement time, τSAW ≫ τE , and that the
temperature at the q = 1 surface is sufficiently high that
the sawteeth oscillations have negligible effect on both the
stored energy and the rate of neutron production (as can be
seen from figure 1). The incomplete reconnection sawteeth
have a period about half that of the complete reconnection,
but still long compared with τE . A consequence of these long
period sawteeth is the possibility of destabilizing NTMs (see
section 2.2.3) and thus sawtooth control (see section 2.1.2) is
important to consider. Also, heat pulses from sawteeth can be
linked to ELM triggering.

2.2. Neoclassical tearing modes

2.2.1. Physics of neoclassical tearing modes. The presence
of persistent magnetic islands in the plasma core is an important
issue for burning plasmas, as they can significantly limit the
performance of both the standard ELMy H-mode and advanced
scenarios. The neoclassical tearing modes (NTMs) are driven
by the local reduction of the bootstrap current due to the
pressure flattening across the island. This drive is inherently a
non-linear process as it relies on the existence of a fully formed

10

20

0

7000
(a)

(b)

(c)

(d)
n=1 MIRNOV (G)

25002000 3000 3500 4000

10

20

0

n=2 MIRNOV (G)

3

0

Due to 
3/2 & 2/1 NTMS

Pulse No: 114494

rf on 
(114504 only)

Locks
(114494 only)

2/1 NTM onset

Reduction in β
due to 3/2 NTMβN

0

45001500 5000
Time (ms)

Pulse No: 114504

PINJ (KW)

Figure 2. DIII–D discharges with (114504, dotted lines) and
without (114494, solid lines) ECCD suppression of an m/n = 3/2
neoclassical tearing mode. (a) Neutral beam power, (b) βN , (c)
n = 2 Mirnov |B̃θ |, (d) n = 1 Mirnov |B̃θ |. The degradation in
energy confinement due to the NTM from 3/2 and 2/1 NTMs can be
seen in the effect on βN .

island, large enough to increase the local radial transport and
flatten the pressure profile. The most significant NTMs are
those with m/n = 3/2 or 2/1 (with m the poloidal mode
number and n the toroidal mode number). The effect of
these NTMs on energy confinement is nicely illustrated by
comparison of two discharges one of which suffers from a 3/2
and then a 2/1 NTM, and an otherwise identical discharge in
which electron cyclotron current drive (ECCD) stabilizes the
3/2 NTM and a 2/1 NTM does not occur (see section 2.2.2 for
a discussion of NTM stabilization), as shown in figure 2.

Since the previous report [1], the studies have concentrated
either on the capabilities to predict the onset of NTMs
in ITER and on the possibilities to stabilize the modes if
they are triggered. Scalings at the mode onset and decay
including both collisionality and Larmor radius have been
extensively investigated, e.g. in ASDEX Upgrade [50, 51],
DIII-D [52], JET [53,54], JT-60U [55] and T-10 [56], leading to
a consensus on the stronger, approximately linear, dependence
on Larmor radius compared with collisionality. Cross-machine
comparisons of onset conditions have led to a scaling for the
onset beta of the m = 3/n = 2 NTM depending on νi∗
and mainly ρi∗ [57]. The difficulty of such a scaling is that
it needs to combine the seed island formation physics and
the NTM physics. A particular assumption made in [57] is
that the seed island width can be described as a function of
βp and 1/S = τA/τR, the inverse of the magnetic Reynolds
number. Recent JET experiments have shown however that
large seed islands and hence NTMs, can be triggered at the
sawtooth crash after long sawtooth free periods [4], even at
low β. Therefore more recent studies have concentrated on
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