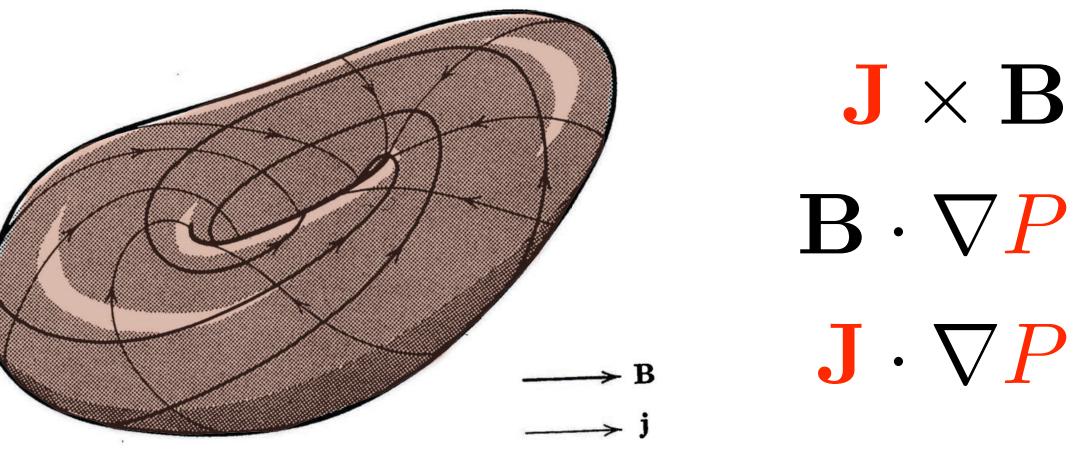
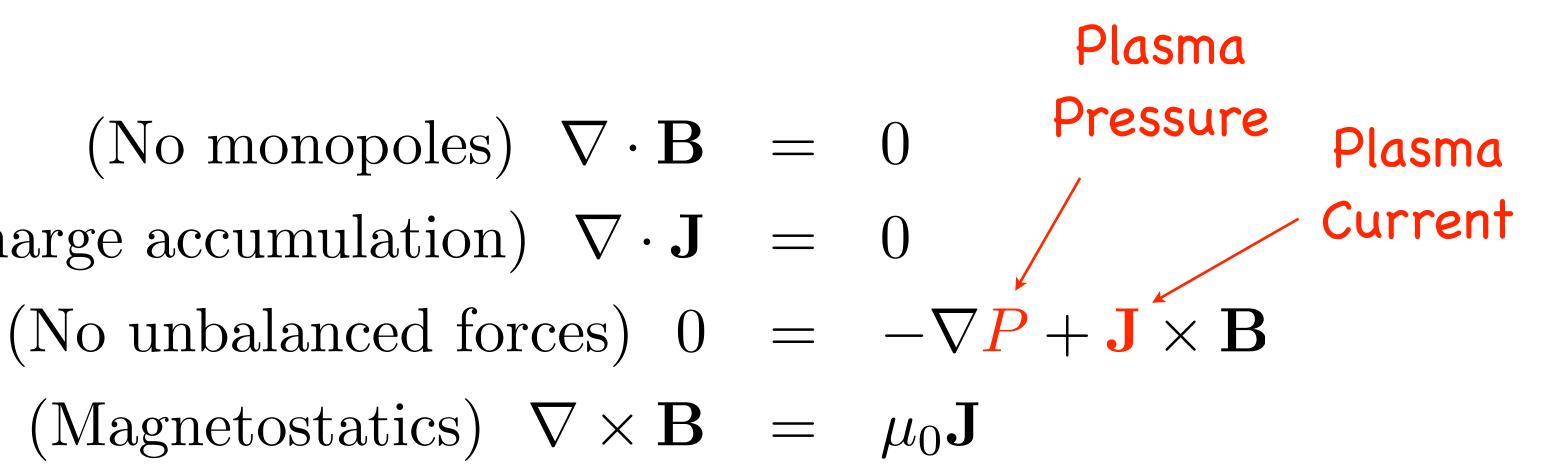
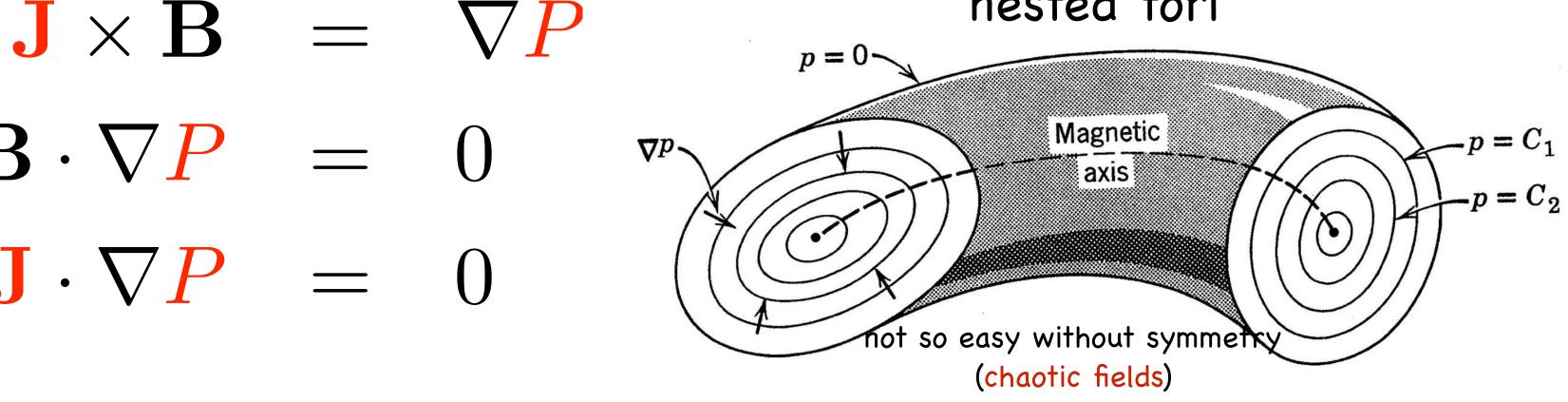
Plasma 2 Lecture 22: More Reduced MHD (and more equilibrium) APPH E6102y Columbia University

Toroidal Magnetic Confinement (and Instabilities)

(No monopoles) $\nabla \cdot \mathbf{B} = 0$ (No charge accumulation) $\nabla \cdot \mathbf{J} = 0$ (Magnetostatics) $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$







Tokamak Equilibrium

Review paper

NUCLEAR FUSION 11 (1971)

PLASMA EQUILIBRIUM IN A TOKAMAK

V.S. MUKHOVATOV, V.D. SHAFRANOV I.V Kurchatov Institute of Atomic Energy, Moscow, Union of Soviet Socialist Republics

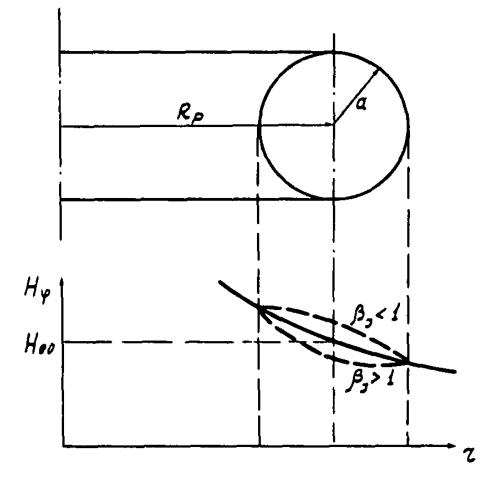
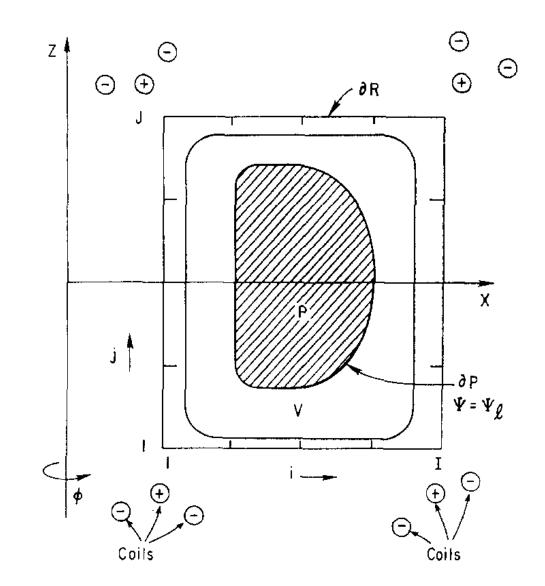


FIG.1. Distribution of a toroidal magnetic field.



Computational domain \mathcal{R} . FIG. 1.

MIDPLANE (meters)

FROM

6

VERTICAL

N017130

-0.4

0.4

0.2

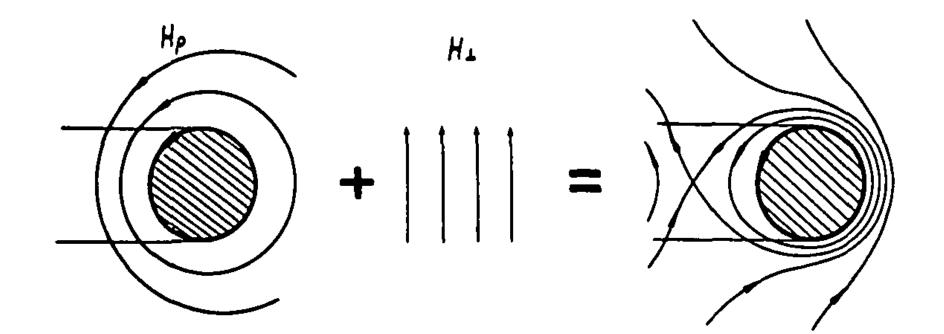


Diagram of the combination of the proper magnetic field of FIG.4. ring current with transverse balancing magnetic field.

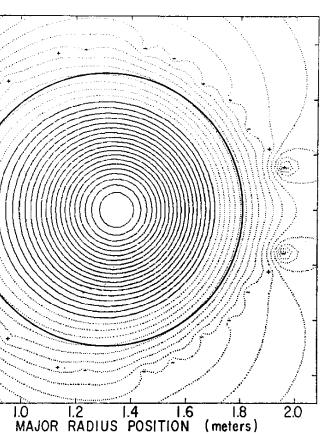


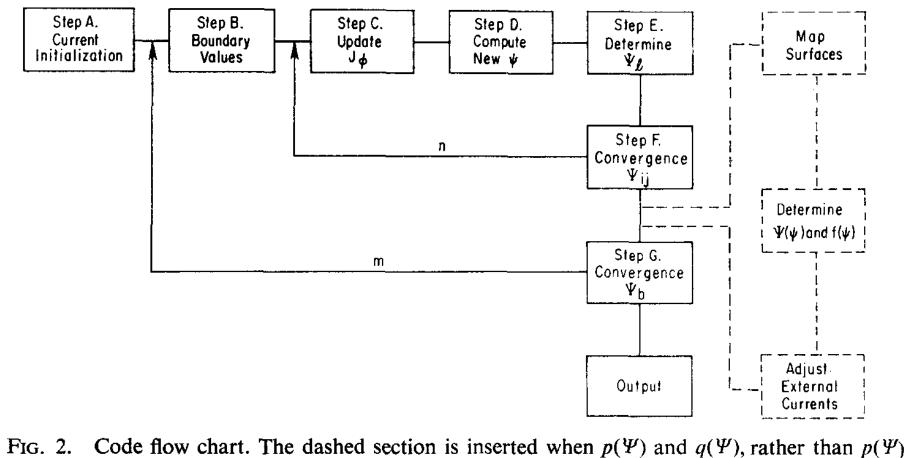
FIG. 4. A typical PLT equilibrium with $\beta_p = 0.23$ and 1.05 < q < 5.3. The solid curve marks the position of the vacuum vessel. The pluses and minuses denote the poloidal field coils.

JOURNAL OF COMPUTATIONAL PHYSICS 32, 212–234 (1979)

Numerical Determination of Axisymmetric Toroidal Magnetohydrodynamic Equilibria

J. L. JOHNSON,* H. E. DALHED, J. M. GREENE, R. C. GRIMM, Y. Y. HSIEH, S. C. JARDIN, J. MANICKAM, M. OKABAYASHI, R. G. STORER,⁺ A. M. M. TODD, D. E. VOSS, AND K. E. WEIMER

Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08544



and $g(\Psi)$ are specified.

Grad-Shafranov Equation

 $\mu, \overline{J} = \nabla X$ $\nabla P = J X B$ IN CYLINDRICAL COORDINATES (R, Q, Z)

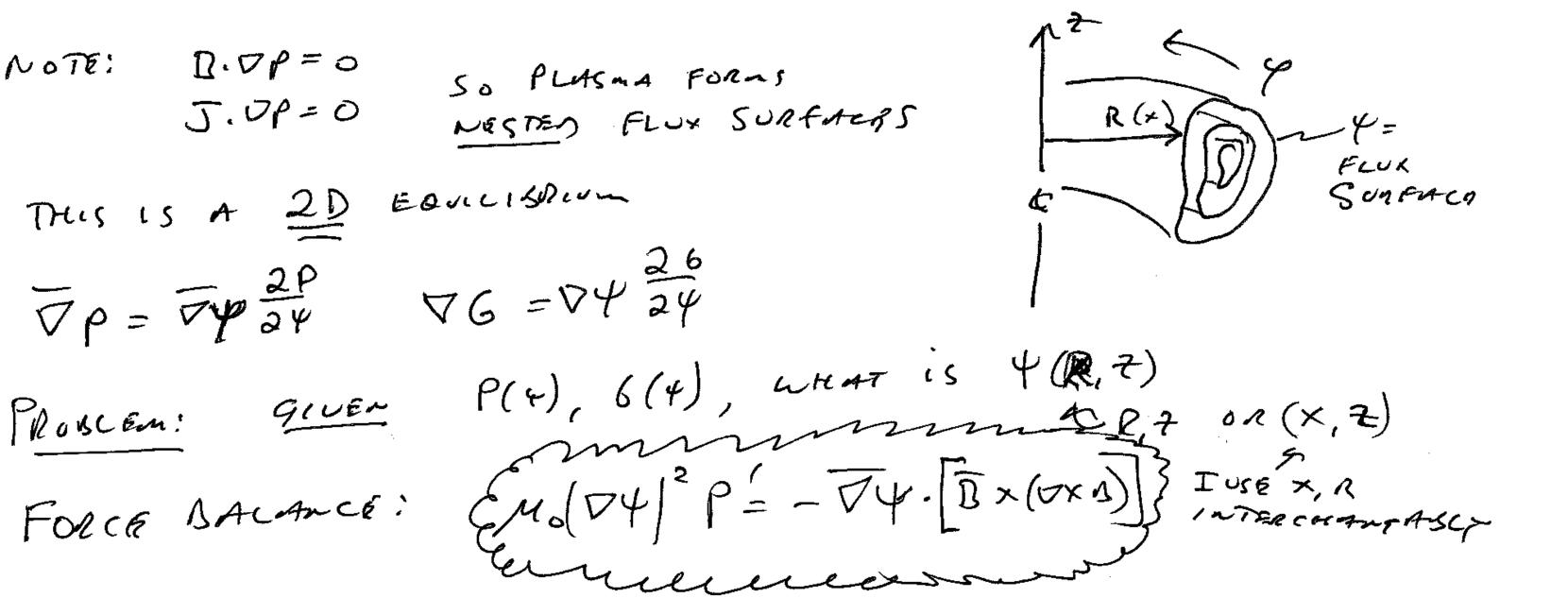
NOTE: D. DP=O SO PLASMA FORMS J. DP=O NESTED FLUX SURFACTS

This is A 2D EQUILISAIN $\overline{\nabla}\rho = \overline{\nabla}\psi \frac{2\rho}{2\psi} \quad \nabla G = \nabla \psi \frac{2\rho}{2\psi}$

FORCE BALANCE: EMO(D4)

20 EQUILISRIUN 1958 HAARD GRAD (NEU) VITALI SHAFRANDU (KUDCHATTON, MOSCOW)

 $\overline{R} = \nabla \varphi \times \nabla \Psi + \nabla \varphi G(\Psi) \quad \text{where } \nabla \varphi = \frac{\hat{\Psi}}{R}$



For Companision

WHERR
$$P(\psi) = P(n)$$

 $\nabla \psi n i \frac{2\psi}{2\pi}$

DUT
$$\forall x \overline{U} = \overline{\nabla} \times (\overline{z} \times \nabla 4) + \nabla \overline{z}$$

$$= \hat{z} \nabla^{2} + - \nabla + (\overline{v}, \overline{z}) = \frac{1}{2} \sqrt{z} + - (\overline{z} \times \nabla 4) C$$

$$= \hat{z} \nabla^{2} + - (\overline{z} \times \nabla 4) + (\overline{v} \times z) = (\overline{z} \times \nabla 4) \times (\overline{v} \times z) = (\overline{z} \times \nabla 4) \times (\overline{v} \times z) = (\overline{z} \times \nabla 4) \times (\overline{z} \times \overline{z}) = \overline{\nabla} + (\overline{v}^{2} \epsilon) + 66$$

$$= \overline{\nabla} + (\overline{v}^{2} \epsilon) + 66$$

Grad-Shafranov Equation (1D example) LET $\overline{B} = \frac{1}{2} \times \nabla \Psi + \frac{1}{2} 6(\Psi)$ Forcé DAutucé: $M_0(\nabla \Psi)^2 p' = -\nabla \Psi \cdot [D \times (\nabla \times \delta)]$ FLUX SUN FACAJ 7×(76) $(\nabla \psi \cdot \overline{\nabla})\hat{z} = (\hat{z} \cdot \nabla) \nabla \psi + 6 \nabla \times \hat{z} + 6 \nabla \psi \hat{z} + \hat{z}$ $\frac{1}{2}$ ~13)+ 67× (17×3) ~4) - 66' + (7 × 04) 104 E RADIAL FURCE BALDANCE IN A CYGLINDAICAL SCREW PINCH!

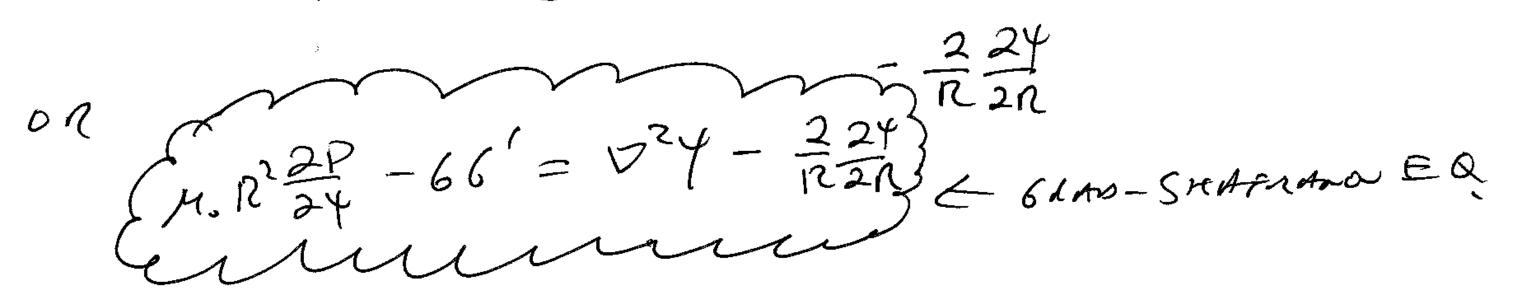
Grad-Shafranov Equation (2D example) $\nabla \mathbf{X} \mathbf{B} = \nabla \mathbf{X} (\nabla \varphi \mathbf{X} \nabla \psi) + \nabla \mathbf{X} (6 \overline{\partial} \varphi)$ $=\overline{\nabla}\rho \, \overline{\nabla}' + -\overline{\nabla} + (\overline{\rho}.\overline{\nu}\rho) + (\overline{\nu} + .\overline{\rho}) \overline{\nu} \rho - (\overline{\nu}\rho.\overline{\rho}) \overline{\nu} \rho$ $+ 6 0 \times 0 \varphi + 6' 0 \varphi \times 0 \varphi$ $= \overline{\forall} \varphi \left(\nabla^2 \psi \right) + 6' \left(\nabla \psi \times \nabla \varphi \right) + \left(\nabla \psi \cdot \overline{\partial} \right) \overline{\nabla} \varphi - \left(\overline{\partial} \varphi \cdot \overline{\partial} \right) \nabla \psi$ Dotte in & Direscrip 11 DX(XX) IN A 20 TONUS $\Omega \times (\nabla \times S) = (\nabla P \times \nabla F) \times (\nabla \times S) + 6 \overline{\nabla} P \times (\nabla \times S)$ $= (\nabla \times \overline{B}) \times (\nabla \Psi \times \nabla \varphi) + 6 \overline{\nabla} \varphi \times [B'(\nabla \Psi \times \nabla \varphi) + \overline{\nabla} \varphi (\dots)]$ $= \overline{\nabla Y} (\nabla \varphi \cdot \nabla x \delta) - \overline{\nabla \varphi} (\nabla \psi \cdot \nabla x \delta) + 66' \nabla \varphi \times (\nabla \psi \times \delta \varphi)$ AU12 FY $= \overline{\nabla} \Psi \Big[|\nabla \psi|^2 \nabla^2 \psi + \overline{\nabla} \psi \cdot (\nabla \psi \cdot \overline{\nabla}) \overline{\nabla} \psi - \overline{\nabla} \psi \cdot (\nabla \psi \cdot \overline{\nabla}) \overline{\nabla} \psi \Big]$ $-\overline{\nabla}\psi\left[\overline{\nabla}\overline{\psi}\cdot(\cdots)\right] + \overline{\nabla}\psi\left[\overline{\nabla}\psi\right]^{2}66'$

Grad-Shafranov Equation (2D example)

 $: \overline{\nabla \Psi} \cdot (\overline{R} \times (\nabla \times B)) = |\nabla \Psi|^2 ||\nabla \Psi|^2 \nabla^2 \Psi + \overline{\nabla \Psi} \cdot (\nabla \Psi \cdot \overline{D}) \nabla \Psi - \overline{\nabla \Psi} \cdot (\overline{\nabla \Psi} \cdot \overline{D}) \nabla \Psi - \overline{\nabla \Psi} \cdot (\overline{\nabla \Psi} \cdot \overline{D}) \nabla \Psi$

BUT $(\Theta \psi \cdot \nabla) \nabla \varphi = \hat{\varphi} \frac{24}{2\pi} \frac{2}{2\pi} \left(\frac{1}{2\pi} \right) = \overline{\nabla} \varphi R \frac{24}{2\pi} \frac{2}{2\pi} \left(\frac{1}{2\pi} \right)$ $(\nabla \varphi \cdot \overline{\nabla}) \overline{\nabla} \psi = \hat{\varphi} \frac{1}{2} \frac{2\psi}{2\lambda} = \overline{\nabla} \varphi \frac{1}{2} \frac{2\psi}{2R}$

THERSEORP $M_{0} = \frac{1}{24} \left[\frac{\sqrt{4}}{\sqrt{4}} + \frac{1}{66} + \frac{24}{\sqrt{26}} - \frac{1}{\sqrt{24}} \right]$



+ 10412/2013 66

7

Cylindrical Reduced MHD

the order of $\epsilon^2 B_0$. To lowest order in ϵ this unknown variation of the toroidal field can be eliminated from the problem by taking the curl of the momentum equation. The resulting equations are the standard low- β tokamak reduced equations that describe free-boundary kink modes³:

$$R_{0}^{2} \frac{d\nabla^{2}u}{dt} = \mathbf{B} \cdot \nabla \nabla_{1}^{2} \psi, \qquad A_{\phi} = A_{\parallel} \approx A_{z} = \frac{\partial \psi}{\partial t} = R_{0}^{2} \mathbf{B} \cdot \nabla u, \qquad \text{important}$$

$$B = \nabla \psi \times \nabla \zeta + I_{0} \nabla \zeta,$$

$$V = R_{0}^{2} \nabla u \times \nabla \zeta,$$

$$\nabla_{1}^{2} = \frac{\partial^{2}}{\partial R^{2}} + \frac{\partial^{2}}{\partial z^{2}}.$$
"In mer
[https://

Here $I_0 = B_0 R_0$ and $\nabla \zeta = \zeta / R_0$.

Plasma Physics Series

Tokamak Plasma:

A Complex Physical System

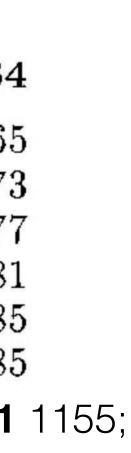
B B Kadomtsev

I V Kurchatov Institute of Atomic Energy, Moscow, Russia

 $= I_0(r/2)$ $=\psi_0(r)+\tilde{\psi}(r,\phi)$

Translation Editor: Professor E W Laing

5 F	Plas	ma Stability	6
5	5.1	Kink Instability	6
5	5.2	Tearing Instability	7
5	5.3	Flute Instability	7
5	5.4	The Ballooning Instability	8
		Internal Kink Mode	8
5	5.6	Drift Instabilities	8
nory d	of B	oris Kadomtsev," by E P Velikhov et al 1998, <i>PhysUsp</i> .	41
doi.o	rg/1	0.1070/PU1998v041n11ABEH000508]	
	-	Institute of Physics Publishing	
8		Bristol and Philadelphia	



Basic Derivation

REF: IOP (1992) $\overline{B} = \overline{B}_{\perp} + \widehat{\mathcal{F}} \overline{B}_{Z}$ with $\overline{B}_{2} = \overline{\mathcal{C}} ons \overline{\mathcal{F}} \overline{\mathcal{F}} \overline{\mathcal{F}}$ MHO : $p \frac{d\overline{v}_{1}}{d\overline{t}} = -\nabla p + \overline{J} \times \overline{0}$ Ē=- VXB (IDEAL) $\overline{V} \cdot \widehat{z} = 0$ $V \cdot \overline{V} = 0$ $V \cdot \overline{V} = 0$

KADOMTSEU, " TOKAMAK PLASMA: A COMPLEX SHYSICA SESTERS

Jécundrica Coordinates

MAXWELL'S EM

J= TXB (NO DISPLACEMENT) OURMENT

2B JE = - VXE

IDEAL MHO DESCRIBE PLASMA DEMAMICS AT ALFVEN TIME SCALE: VNVAN B/MOP (FAST!)

Stream Function and Poloidal Flux

WITH BZ = CONSTANT, THE REDUCED MHD DENANCES is -2-0 DESCRIAN BY FOUR UNKNOWN FUNCTIONS OF (1, C, C). $\overline{B}_{L}(1,0,t)$ And $\overline{V}_{L}(1,0,t)$ TWO POTENTIALS INSTEAD OF TWO VECTOR FIELDS WE 'GREATLY SIMPLIFY THE MATH BY INTRODUCING THE STREAM FUNCTION, X, AND THE POLOIDAL FLUX FULCTION, 4

$$\overline{B}_{f}(n, \theta, \epsilon) = \overline{F} \times \nabla \Psi$$

$$\nabla \cdot \overline{B} = 0$$

AMPENE'S LAW

 $F = t_0 \forall x (\neq x \forall)$ $\mathcal{H}_{o}\overline{\mathcal{F}} = \widehat{\mathcal{F}} \nabla^{2} \mathcal{Y} - (\widehat{\mathcal{F}},\overline{\mathcal{F}}) \overline{\mathcal{F}} \mathcal{Y}$

V1 17, 5, 71=7× VX 0.0=0

AXIAL VORTICIT $\mathcal{N}_{t} = \overline{2} \cdot \nabla \times \overline{V}_{t} = \overline{\nabla^{2}} \lambda$ 4(1,0,2,t) X(1,0,7,t)

10

Simplifying the MHD Equations

 $p \frac{dV_{+}}{dL} = -\nabla p + \frac{1}{A_{0}}(\nabla xB) \times B$

 $= -\nabla \left(P + \frac{B'_{2n}}{2n} \right) + \frac{1}{n} \left(\overline{D} \cdot \overline{P} \right) \overline{B}$

2. VX [1. = 11] Assume p= UniForm

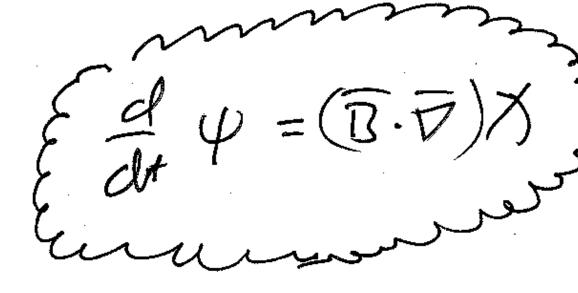
 $P_{at}^{d}(\widehat{z} \cdot \nabla \times V_{1}) = \lim_{n \to \infty} (\overline{B} \cdot \overline{B}) (\widehat{z} \cdot \nabla \times \overline{B})$

 $p \stackrel{d}{=} (V_1^2 \chi) = \frac{1}{4} (\overline{U} \cdot \overline{U}) \stackrel{d}{=} (\overline{U} \cdot \overline{U}$

According 70 FIELD-ALIGNES VARCATION OF AXIM COPRENT "

 $\frac{2}{2} = \nabla \times (\overline{V} \times \overline{B}) = \overline{V} \overline{B} \cdot \overline{B} + \overline{D} \overline{B} \cdot \overline{U} + \overline{D} \cdot \overline{D} \cdot \overline{D} - (\overline{V} \cdot \overline{D}) \overline{B}$ $= \nabla \times (\overline{\nu}_{+} \times \overline{B}_{+}) + \overline{B}_{+} \frac{2}{2t}$ $= (\overline{B}_{+} \cdot \overline{\nu}) \overline{\nu}_{+} - (\overline{\nu}_{+} \cdot \overline{\nu}) \overline{B}_{+} + \overline{B}_{+} \frac{2}{2t}$

 $\frac{\partial \overline{B}_{1}}{\partial t} + (\overline{V} \cdot \overline{P}) \overline{B}_{1} = \frac{\partial (\overline{B}_{1}}{\partial t} = (\overline{B} \cdot \overline{P}) \overline{V}_{1} \qquad SUBSTITUTING FLUX FUNCTIONS$



Simplifying the Induction Equation

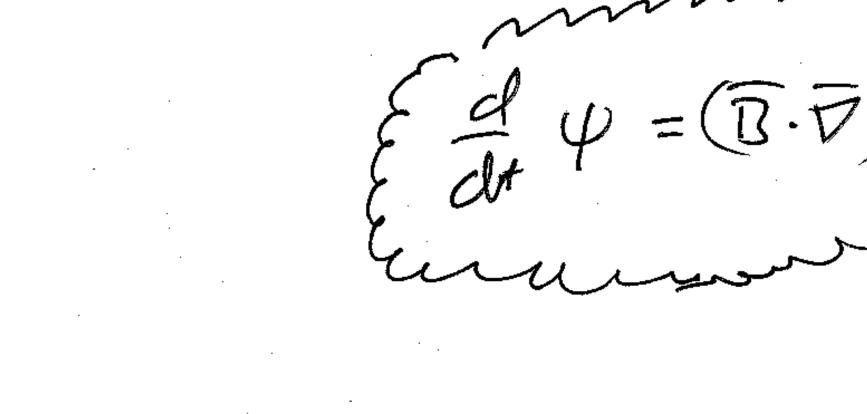
POLOO FLUX EVOLUES DY~AMICALY

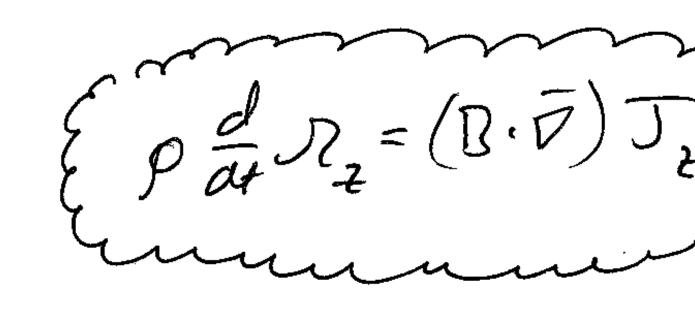
DUB TO FIELD-ALIENED CHANGES IN THE STREAM FUNCTION "

"Simplest" Kink Mode Theory

Reduced MHD (plasma torus with a strong toroidal field)

• Kink modes





POLOID FLUX EVOLUES DY~AMICALY DUB TO FIELD-ALIENED CHANGES IN THE STREAM FUNCTION "

13 VORTICITY CFIANG ACCORDING TO

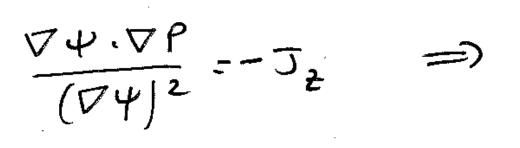
FIELD-ALIANAS VARIATION OF AXIAC CURRENT "

Importance of $B \cdot \nabla$ $P dt V_{1}^{2} \chi = \frac{1}{4}(B,\overline{D}) V_{1}^{2} \psi$ (mr.D) $\frac{d}{dt} \psi = (\overline{B} \cdot \overline{D}) \chi \qquad (1 \wedge \partial \cup c \overline{T} \circ \partial)$ $=i\overline{h}\cdot\overline{B}_{0} \qquad =i\overline{h}\cdot\overline{B}_{0} \qquad =i\overline{h}\cdot\overline{B}_{1} + \frac{m}{n}\overline{\theta} \quad (p_{\text{LUSRADIAL TERMS}})$ $=i\overline{h}\cdot\overline{B}_{0} \qquad =i\overline{h}\cdot\overline{B}_{0} \qquad =i\overline{h}\cdot\overline{B}_{0} + i\frac{m}{n}B_{0} = i\frac{Bp(n)}{n}(m-mq(n))$ WITH B(n) = - BZ = SAFETY FACTOR RBp(n) B.V-> O WHEN m/m = g(n) (RESONANCE) WHEN B. F. FO, THEN IDEAL REDUCED MAD MAKE SENSP B. V=0, THEN REDUCES MHD DOES NOT DESCRIBE DYNAMICS DEFINES "INTENCHAnge" MODIS. (SIDE BAR! D-D=0

TRIFISTE WARG THE DOMINANT MODES IN MAGNETOSPHERES AND DIPOLES, ETC)

 $V_{1}=0, \overline{J}_{e}=0, \quad O=-\nabla P+J \times B$ $=-\nabla P+J \times (\overline{z} \times \nabla \Psi)$

50



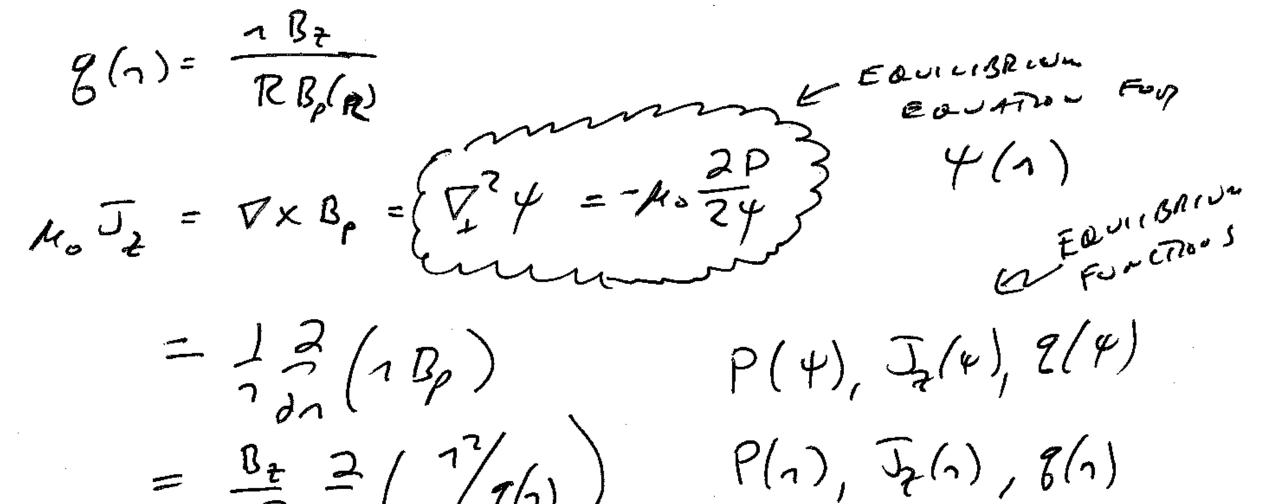
 $= \frac{1}{2} \frac{2}{1} \left(\frac{1}{1} \frac{B_{p}}{P_{p}} \right)$ $=\frac{B_{t}}{1R}\frac{2}{2}\left(\frac{1^{2}}{1}(h)\right)$

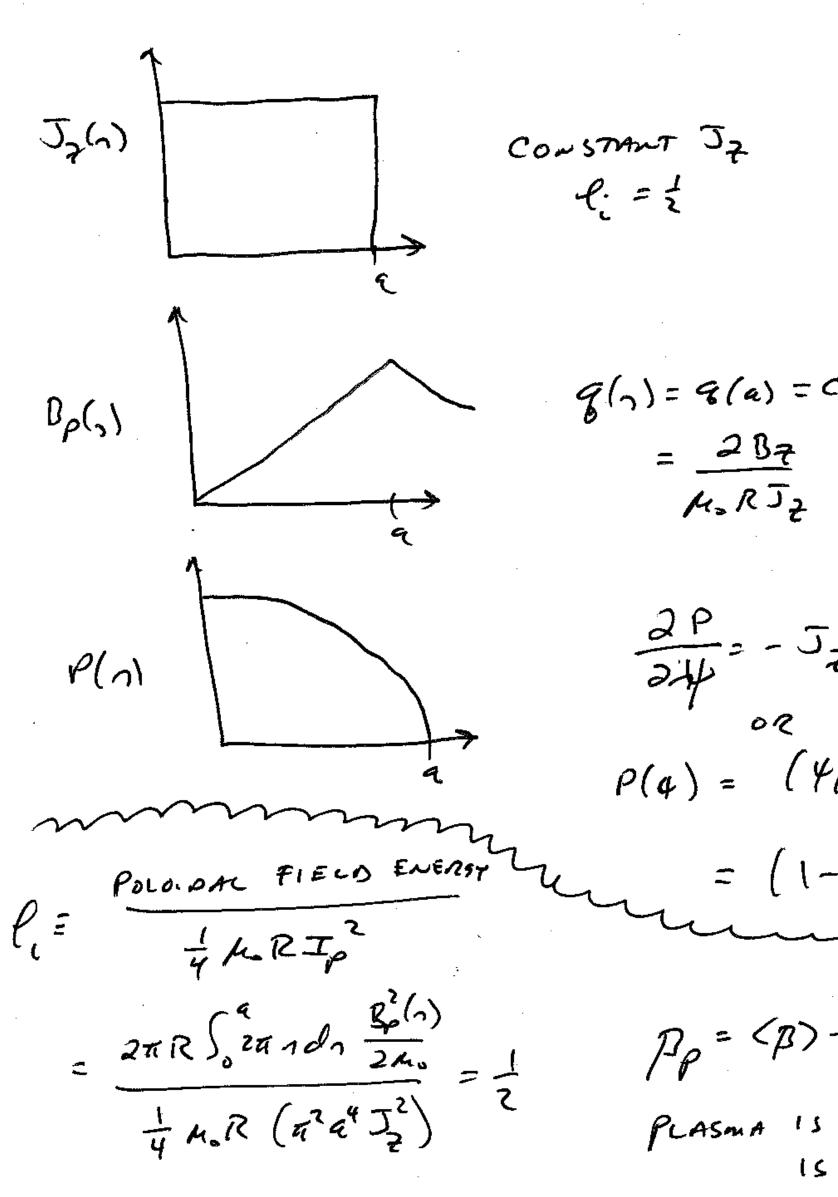
First: Equilibrium

 $= -\nabla P - J_2 \nabla \Psi$

ALL EQUILIBRIUN VARIATION IS RADIAL, IN FY DIRECTION

 $\frac{\nabla \psi \cdot \nabla P}{(\nabla \psi)^2} = -J_2 \implies \frac{2P}{2\psi} = -J_2 \qquad \left(= Constant \right)$ $\frac{\partial \psi}{\partial \psi} = -J_2 \qquad \left(= Constant \right)$ $\frac{\partial \psi}{\partial \psi} = -J_2 \qquad \left(= Constant \right)$





Step 1: Equilibrium (Shafranov's Simplest Case)

$$B_p(a) = \frac{A \mu_0 J_z}{2} \qquad B_p(n) = \frac{1 \mu_0 J_z}{2}$$

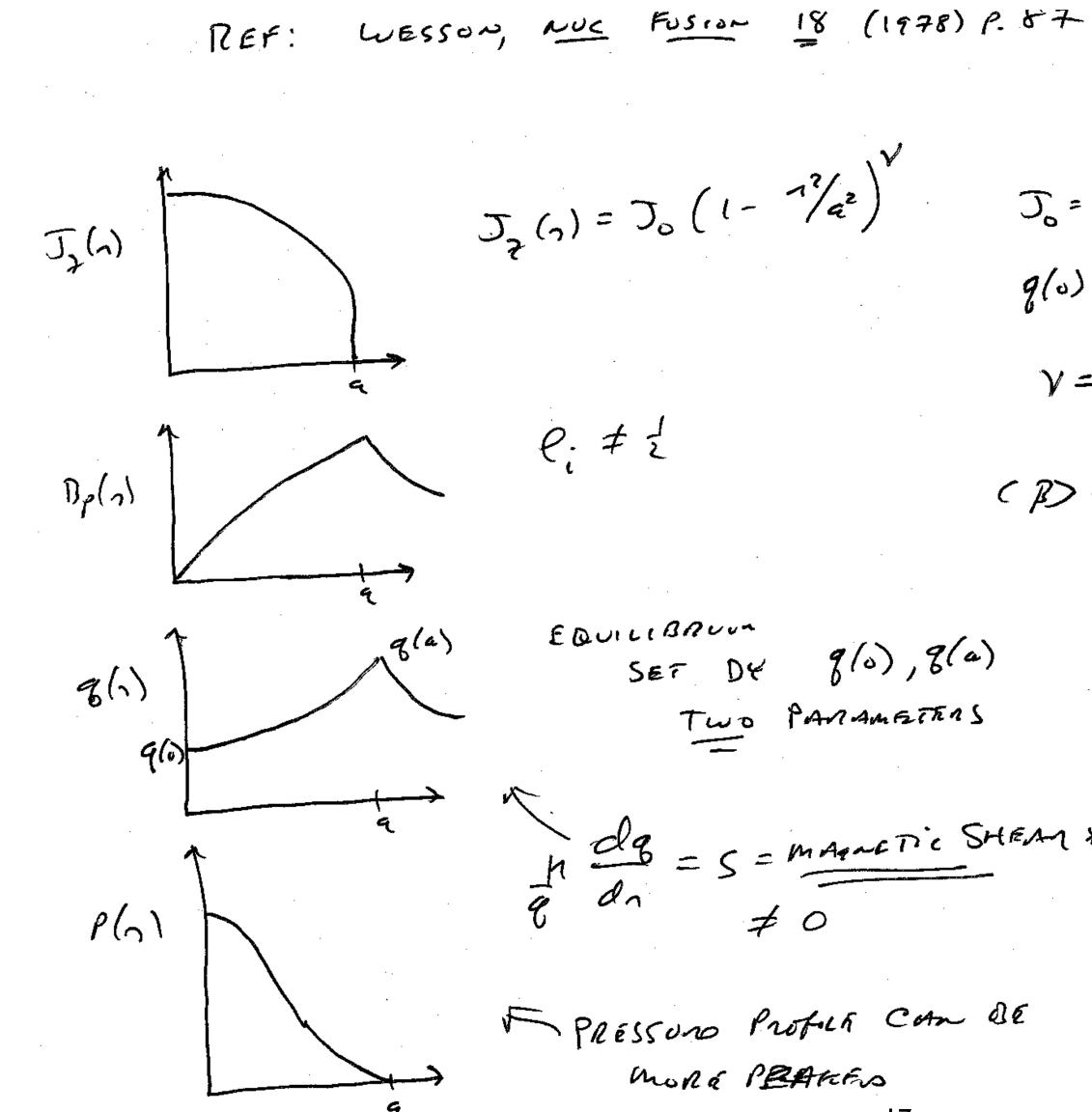
$$Construct ## Bp(n) = \frac{2}{2} \times \nabla \psi$$

$$\psi(n) = \frac{1^{2} Bp(a)}{2a} = \frac{1}{2} Bp(n)$$

$$= \frac{1^{2} Bp(a)}{a 2a} = \frac{1}{2} Bp(n)$$

$$= \frac{1^{2} Q}{a^{2}} \left(\frac{aBp}{a}\right)$$

$$= \frac{1^{2} Q}{a$$



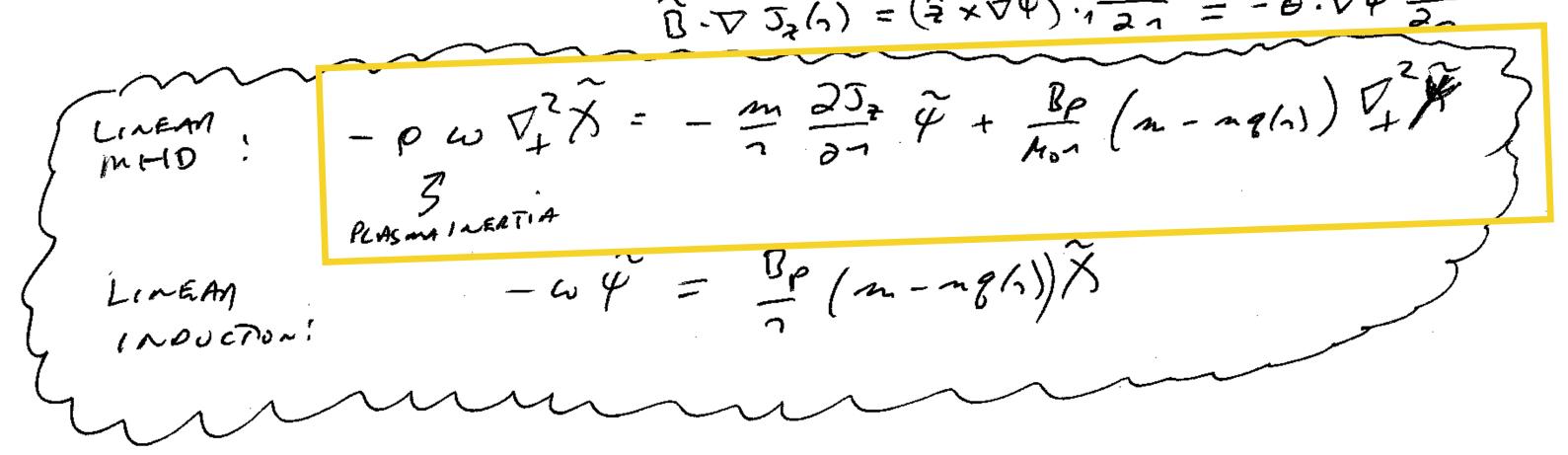
Wesson's Cylindrical Equilibrium

 $J_{2}(n) = J_{0}\left(1 - \frac{n^{2}/a^{2}}{a^{2}}\right)^{V}$ $J_{0} = CENTRAL CURRENT OFNSITP$ $g(o) = \frac{2B_{2}}{M_{o}RJ_{o}} \qquad M_{o}T_{p} = \frac{2\pi^{2}a^{2}B_{2}}{M_{o}g(o)R(1+V_{o})}$ $V = \frac{g(a)}{g(o)} - 1$ $(P) \sim \frac{e^{2}}{g_{e}^{2}} \qquad B_{p} - 1 \qquad CB_{n}J \sim \frac{20e^{2}}{g_{e}}$

Two PANAMETERS = dg = S = MAgnetic SHEAN ## U.V. -> D AT INTERNAL $M_{q(n)}) = 0$ 17

Linearized Reduced MHD

 $(\overline{B}.\overline{D})\overline{V}_{1}^{2}\Psi = (\overline{B}.\overline{D})\overline{V}_{1}^{2}\Psi_{0} + (\overline{B}_{0}.\overline{D})\overline{V}_{1}^{2}\Psi_{1}^{2} + noncinean TERMS$

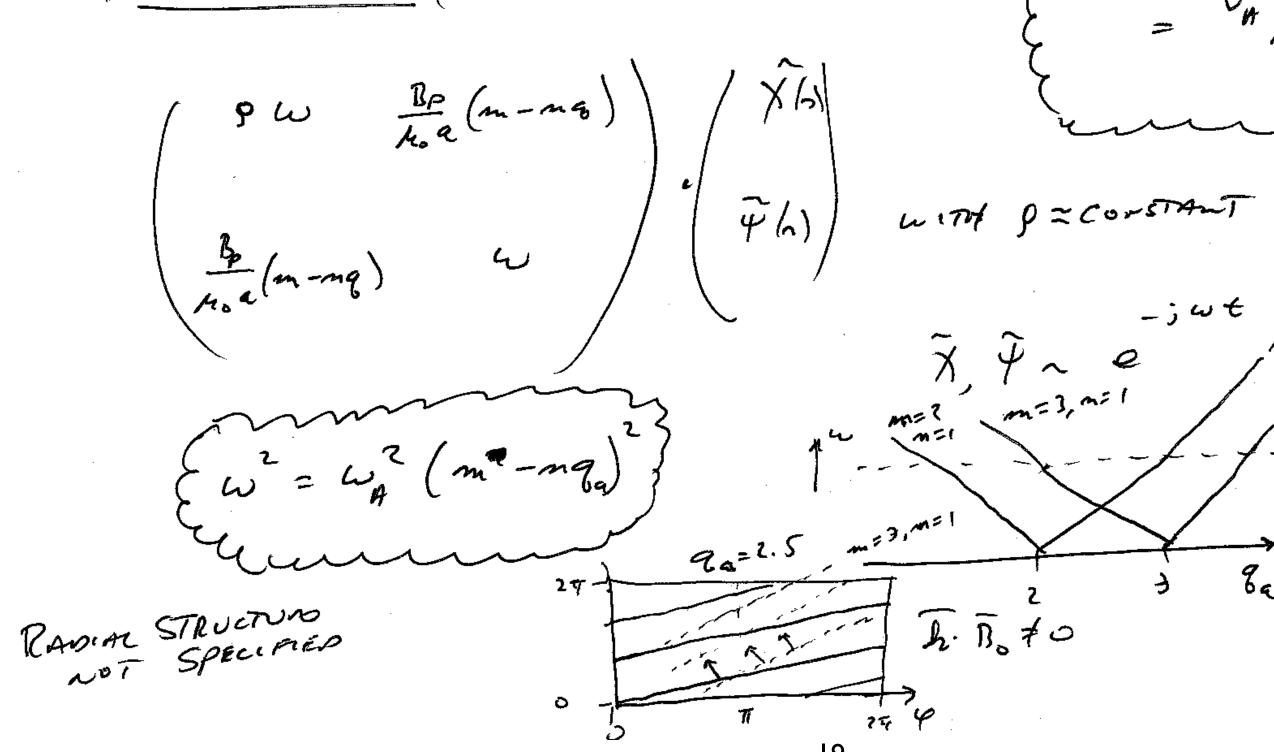


MHO: $\int \frac{d}{dt} \nabla_{+}^{2} X = \frac{1}{h_{0}} (\overline{B} - \nabla) \nabla_{+}^{2} \psi$ $\frac{d}{dt} = -i\omega$ $\frac{d}{dt} = (D - \nabla) \overline{\lambda}$ $B_{0} \nabla \rightarrow i \frac{B_{0}(n)}{n} (m - m P(n))$

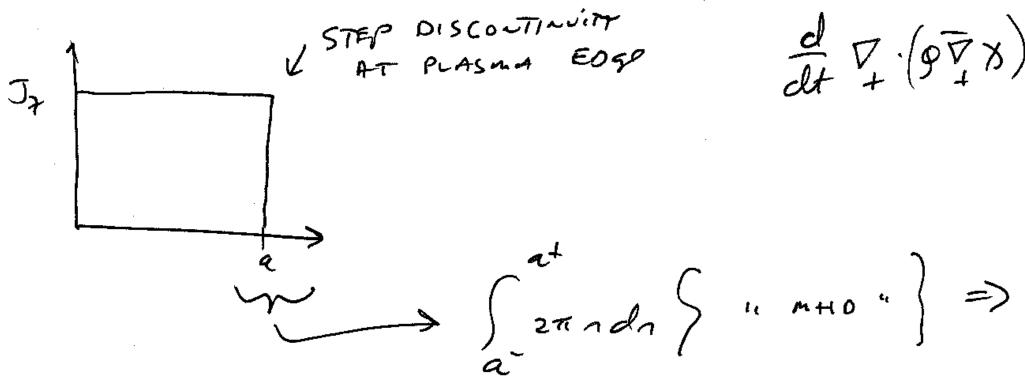
Mo J(A) E WHEN EQUILISDIAM VANIES WITHIN PLASMA WAG CURRENT DENSITY VANIES WITHIN PLASMA

 $\widehat{B} \cdot \nabla J_{z}(h) = (\widehat{A} \times \nabla \Psi) \cdot \frac{2J_{z}}{2n} = -\widehat{B} \cdot \nabla \Psi \frac{2J_{z}}{2n}$

Alfvén Waves in Shafranov's Equilibrium



 $(\gamma, \beta) = \frac{1}{2} \hat{\psi}$ $(\gamma,$ $\tilde{\chi}$ $\tilde{\chi}$ 2a=2.5 m=3,m=1 8a 3 h. B. to 5.2. 259 4 19



Global Kink Eigenmodes $\nabla \cdot \hat{A} = \frac{1}{2} \frac{2}{2} \left(\frac{1}{2} A_{1} \right) + \cdots$ $\frac{d}{dt} \nabla \cdot \left(\begin{array}{c} \overline{\varphi} \overline{\nabla} \end{array} \right)^{2} = \left(\begin{array}{c} \overline{\varphi} \times \overline{\varphi} \end{array} \right) \cdot \hat{\eta} \frac{2J_{2}}{2\eta} + i \frac{B_{2}}{4\eta} \left(\begin{array}{c} \overline{\eta} - \eta \end{array} \right) \nabla_{\mu}^{2} \widehat{\psi}$ M VERY DIG AT ENSE $\omega \varphi \frac{2\chi}{2\pi} = \frac{2mB_{p}(a)}{\mu_{o}a^{2}} \hat{\psi} + \frac{B_{p}(a)}{\mu_{o}a} (m-mg) \hat{\psi} = \frac{1}{\hat{\psi}} \frac{2\hat{\psi}}{2\pi} - \frac{1}{\hat{\psi}} \frac{2\hat{\psi}}{2\pi} \Big|$
$$\begin{split} & \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{A} \in \mathcal{A} \\ a \in \mathcal{A}}} \sum_{\substack{a \in$$
20

Global Kink Eigenmodes

724=0 V2X =0

PLASMA? WHAT FINE (4(1), X(1)) INSIDE AND OUTSIDE **Boundary conditions** VY = 0 (NO CURRENT) OUTSIDE PLASMA VX=0 (no FLOW, VONTICITY, NOSRIA) (no CURRENTS INSIDE PLASMA TOO) (NO VORTICITY WITHIN PLASMA) PERTURSES FIELOS + PLASMA MOTION DUT NO CORRENTS OR VORTICITY WITH WACL NOWALL $\psi(n) - \left(\frac{n}{a}\right)^m nca - \left(\frac{n}{a}\right)^m nca$ $\binom{a}{n}$ n > a $\sim \frac{\binom{b}{n}^{m} - \binom{n}{b}}{\binom{b}{a}^{m} - \binom{a}{b}}$ $\overline{V}_{1} = \frac{2}{2} \times \nabla \mathbf{X} = \hat{\Theta} \frac{m}{n} \left(\frac{1}{a}\right)^{m} - \hat{\eta} \frac{im}{n} \left(\frac{n}{a}\right)^{m}$ inside $= -\hat{\Theta} \frac{m}{n} \left(\frac{a}{n}\right)^{n} - \hat{\eta} \frac{im}{n} \left(\frac{a}{n}\right)^{n}$ outside $= 2\mathbf{I}$

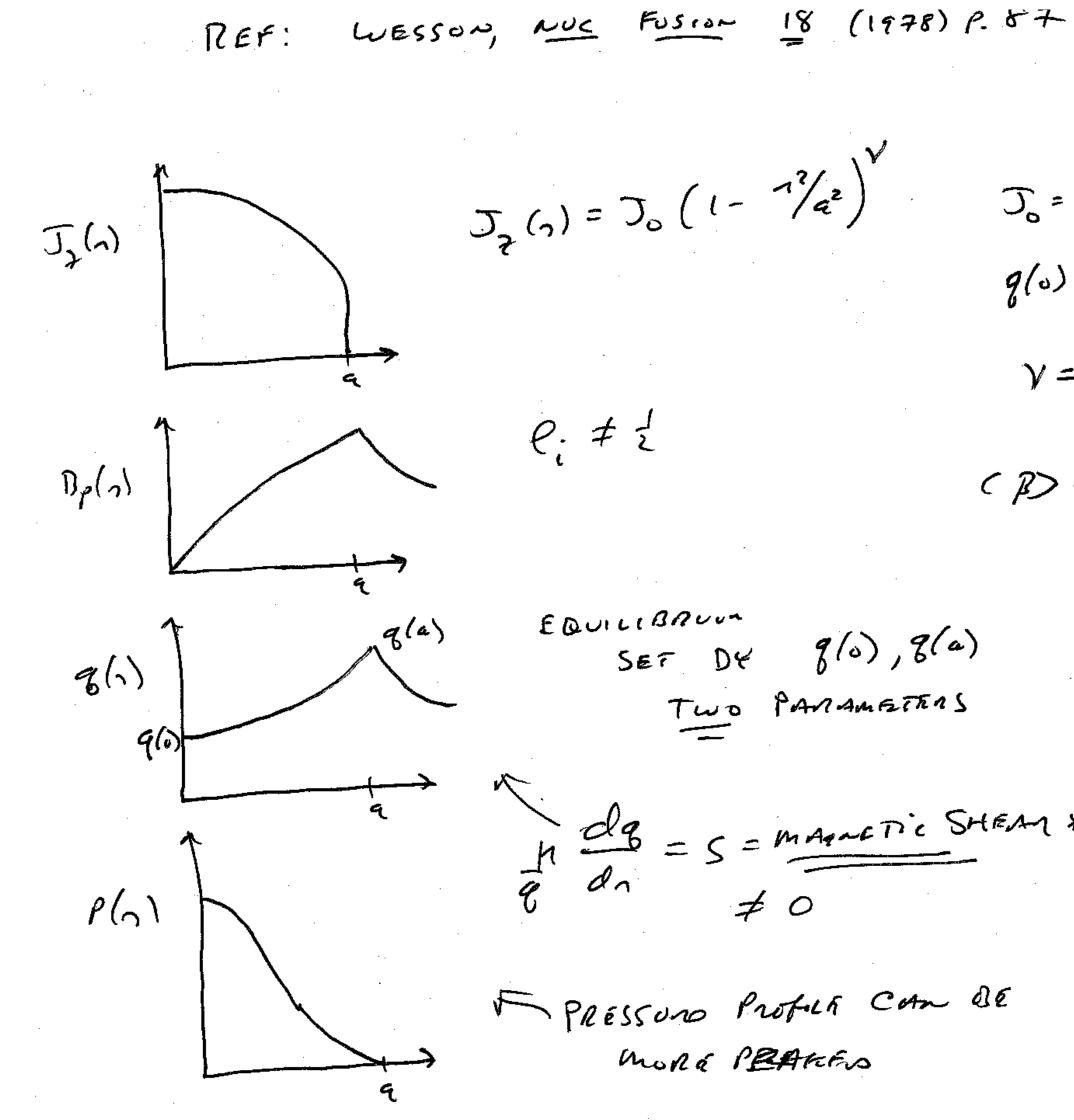
Kink Mode

 $-\omega \hat{\psi}_{a} = \frac{B\rho}{2} (m - m\tau) \hat{X}_{a}$ $G \left[\frac{2N}{2n} \right]_{-}^{-} = \frac{2mBp}{M_{s}a^{2}} \left[\frac{1}{m} \left[\frac{-\Delta'/a}{2m/a} \right]_{-1}^{-1} \right]$

 $\Delta'(a) = -\frac{2m}{a} \frac{(b/a)^m}{(b/a)^m - (a)^m} \quad \text{For } A \quad \text{where } A = b$ $\begin{cases} \overline{A}a & -\frac{w}{a}Ba \\ \overline{A}a & -\frac{$ $\begin{aligned} \omega^2 &= 2 \omega_q^2 \left(m - nq \right) \\ \times \left[\left(m - nq \right) \left(\frac{\Lambda + 1}{2} \right) - 1 \right] \end{aligned}$ $\cdot \lambda$ $\Delta'(a) = -\frac{m}{a}(\Lambda + 1)$ SHAFRANOU'S FURMULA STARL

GLOBAL KINK MODES

Wesson's Cylindrical Equilibrium



 $J_{2}(y) = J_{0}\left(1 - \frac{n^{2}}{a^{2}}\right)^{V}$ $J_{0} = CENTRAL CURRENT OFNSITE$ $g(o) = \frac{2B_{2}}{M_{0}RJ_{0}} \qquad M_{0}T_{p} = \frac{2\tau^{2}q^{2}B_{2}}{M_{0}g(o)R(1+V_{0})}$ $V = \frac{g(o)}{g(o)} - 1$ $(R) - \frac{e^{2}}{g_{0}}^{2} \qquad R_{p} - 1 \qquad CB_{n} - \frac{20E_{1}}{2}$

B.V ->0 n dg = S = MAgneTic SHEAN #* g dn

AND PETTURSED PULLION FLUX (4) $-\omega \tilde{\psi} = \frac{B}{2} (m - mq) \tilde{\chi}$ LET'S TARK Q= UNIFORM, WITH A SHARP JUMP AT THE PLASMAS EDSE: WITH INDUCTION EQUATION: $\left(\frac{\omega^2}{\omega^2} - \frac{\omega_A^2}{m - mg_a} \right)^2 \Delta(a) \frac{\lambda_a}{2\chi_a} \frac{\lambda_a}{2\chi_a}$

Wesson's Kink Modes LINEARIZED EQUATIONS FOR PERTURSED STREAM FUNCTION (X) $-9\omega\nabla_{1}^{2}\tilde{X}=-\frac{m}{n}\frac{2J_{2}}{\partial n}\tilde{\psi}+\frac{Bp}{Am}(m-mg)\nabla_{1}^{2}\tilde{\psi}$ putio)

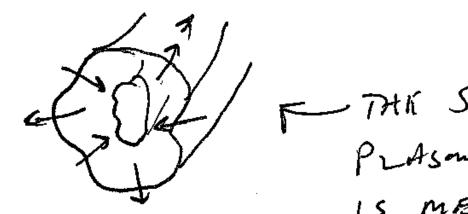
(induction)

EDSE: $\begin{bmatrix} D \\ Z \\ M \end{bmatrix} = \frac{B_{f}(a)}{M_{0}a} \begin{pmatrix} m - mg_{a} \end{pmatrix} \overline{\Psi}_{a} \begin{bmatrix} \Delta'(a) \\ \Delta'(a) \\ M \end{bmatrix} \xrightarrow{PENTURSES} \\ SUNFACE CURRENT$ AT RASand's Edge INSTABILITY REQUIRES ((a))0

SINCO [W] < WA, THE KINK MODE CAUSES THE INTERNAL " PLASMA TO RESPOND "QUICKLY", 50 QUICKLY THAT WE CAN 19000 THER TIMO CT TARIAS TO FORM A DISTORTED, JD, QUASI-EQUILIANUM INSIDE, THE PLASMA IS A "FORCES" EDULIBRIUM

OUTSIDE, THE RESPONSE IS THER "UACUUM" RESPONSE.

WITH J2(n), WE HAVE TO SOLVE FOR Q USING a COMPUTER. (THIS IS VERY EASY FOR THE CELLIDRICAL 'T death of



Wesson's Kink Modes

On - m d Jz F + Bp (m-mg) V2 4

F THE SURFACE CURRENT PUSHES "PULLS" PLASMA, AND THE DISTURTED' PLASMA IS MEASURED BY \$ (1, 0, 2)

Next Lecture:

• Examining the properties of kink modes in the (straight) reduced MHD formalism.