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TOKAMAK EQUILIBRIUM

FIG.l . Distribution of a toroidal magnetic field.

The pressure-balance equation, when the curva-
ture of the torus is neglected, takes the form [l]

determination of Oi - 1) it is necessary to know
the position of the plasma column inside the cham-
ber. When the value of the longitudinal field at
the centre of the chamber is used as Heo, the dif-
ference (/3 - 1) is determined with relative er ror
(A/R), where A is the amount of displacement of
the centre of the plasma column cross-section
relative to the centre of the chamber cross-
section.

2.2. POLOIDAL MAGNETIC FIELD
(GENERAL FORMULAE)

A poloidal magnetic field can be conveniently
expressed with the help of the transverse-flux
function ip

-<HJ> (3)

where H ĵ is the strength of the longitudinal mag-
netic field inside the column and the angle
brackets denote averaging over the plasma column
cross-section. For a given plasma current Ip and
pressure <CpX the difference H | o - <( H ĵ )> is ad-
justed in such a way that the pressure-balance
equation is satisfied. This occurs because of the
appearance of a corresponding diamagnetic or
paramagnetic current in the plasma. In a
Tokamak H^e^ H2; therefore, the relative mag-
nitude of diamagnetism (or paramagnetism) is

2 ^ ̂

(4)

where 6$ = 7ra2<^He0 - H^)* is the diamagnetic
flux of the longitudinal magnetic field in the plas-
ma column. Substituting this expression into the
pressure-balance equation, we obtain a convenient
formula for determining the parameter

(5)

from the values of Ip, 6$ and Heo measured ex-
perimentally. This formula is
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If the torus curvature is taken into account, cor-
rections of the type ( a /R) 2 ^ , (a/R)2j32 appear
in the right-hand part of this relation [2-3]. When
0! « R/a, these corrections are insignificant.
The only peculiarity of using formula (6) in toroid-
al geometry is that He0 should be taken as denot-
ing the value of the longitudinal magnetic field on
line r = RD passing through the centre of the plas-
ma column cross-section. Thus, for correct

Here ev is a unit vector tangent to the axial line
of the torus. The equation

, z) = const. (8)

determines the form of the magnetic surfaces.
Outside the toroidal loop, along which the longi-
tudinal current I flows, this function expressed in
quasicyclindrical coordinates p, tp, u (Fig.2) in
the first approximation of the expansion for p/R
has the form [4]

4TTR
c
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COSU) (9)

where Q.x and C2 are constants determined by
the boundary conditions.

FIG.2. Quasicylindrical coordinate system p, <p, w.

In this formula, the expression in brackets
containing In 8R/p is an approximate value, valid
for p « R , of the function specific for toroidal
geometry, which becomes zero when p •* °o. Thus,
at infinity the function (// takes the form <// = C2 P cos w,
i.e. represents the homogeneous magnetic field
of the external sources

H - (10)
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accuracy (error not greater than 30%) only if
R /a>4 (Fig.3b). When R /a<3 , this formula is not
generally applicable (error exceeds 100%)*.

The example of current distribution in a super-
conducting ring, helps one to understand the need
for external fields for confining a plasma in equi-
librium. In one respect a plasma column is simi-
lar to a superconductor. Since the plasma pres-
sure is established as constant along the magnetic
lines of force, the normal component of the mag-
netic field equals zero both at the column boun-
dary (p= 0) and on the surface of the supercon-
ducting ring, i.e. the plasma boundary coincides
with the magnetic surface. If there are no volume
currents in the plasma, the plasma pressure on
the column surface registers a jump, p = const.,
which should be balanced by a corresponding jump
in the magnetic field pressure. However, the
pressure of the magnetic field of the current

(24)
8?r 8TT Vca - rr COSW

is not constant on the ring surface, being greater
on the internal side. In order to balance it, we
need to add a field transverse to the plane of the
ring so as to strengthen the field of the ring cur-
rent outside the ring and weaken it inside (Fig.4).

\ ^

FIG.4. Diagram of the combination of the proper magnetic field of a
ring current with transverse balancing magnetic field.

2.4. MAGNETIC FIELD OF EQUILIBRIUM
CONFIGURATION

Thus, the total poloidal magnetic field of a to-
roidal plasma column in equilibrium should be the
sum of the proper field of the current flowing
through the plasma and of the field of the external
sources (in the presence of a conducting casing,
this is the field of the image currents). The dis-
tribution of the total equilibrium poloidal field
depends on the distribution of the plasma pressure
and the density of the longitudinal current in the
plasma column. It is , however, important that
in the first approximation of the expansion in p/R
the distribution of this field outside the plasma
does not depend on the details of pressure and
current distribution but is determined solely by
the integral characteristics of the column, such

1 In the case of a plasma column, this restriction is less rigorous.
The distribution of the magnetic field outside the plasma is described
satisfactorily by the approximate formulae, even when a /R^ 0.7 (see
Section 5.3).

as Pi introduced earlier and the value of the
internal inductance of the unit length of the
column

(25)

Let us take the plasma column axis as the co-
ordinate axis. The distribution of the poloidal
field on the outermost toroidal magnetic surface
of the plasma column, which determines the whole
configuration of the external equilibrium field,
has the form

(26)Hw(a,w) = H^H-g-Acosu)

where A is the coefficient of asymmetry of the
poloidal field determined by the formula [4, 7, 8]

A = (27)

It was assumed above that the plasma pressure
is isotropic. But if the plasma pressure PH along
the lines of force is not equal to the transverse
pressure px, then, in the case H^ » Hp , <p>
is replaced by <\p±)> in the pressure-balance
equation and the coefficient of asymmetry A takes
the form

A
47T(<P||)

We write the flux function tf/ (9) in the form

(28)

(29)

where <//e = C2P cosw corresponds to the field of
the external sources. Determining constants Cj
and C2 from the condition that the normal field
component (H«n)= 0 and the condition of continuity
of the tangential field component H^(a, u)= HJj(a, u)
= Hj (1 + (a/Rp)Acosu) on the plasma surface,

C, = - 27rlp 9, A , *
— - a2 A+ - (30)

(31)

we find the flux function of the equilibrium con
figuration

(32)

(33)
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currents in coils outside the plasma must be specified. Numerical calculations are 
ideally suited to these design problems. 

Two particularly good discussions of the equilibrium problem and its solution 
have recently appeared. MacNamara [8] briefly reviews tokamak equilibrium calcula- 
tions and emphasizes the computation of 30 equilibria in systems with nonisotropic 
pressure. Lackner [9] reviews axisymmetric toroidal calculations with particular 
emphasis on iterative schemes for the nonlinearities and gives an excellent discussion 
of the treatment of plasma shaping. Our intention is to describe the equilibrium 
section of the Princeton Equilibrium, Stability, and Transport package (PEST) [lo] 
for tokamak calculations, to describe some applications of the code as it has been 
used for tokamak design at Princeton, and to present recent extensions which make it 
possible to calculate equilibria with given safety factor profiles or asymmetric cross 
sections. 

The equilibrium problem in a toroidal axisymmetric system consists of solving an 
elliptic partial differential equation for the poloidal flux function Y(X, Z), subject to 
proper boundary conditions outside the plasma. The typical geometry is shown in 
Fig. 1. We use a Green’s function formulation to determine Dirichlet boundary condi- 
tions on the edge of a computational domain and finite difference methods to solve 
the partial differential equation. Since the problem is highly nonlinear, it is necessary 
to employ iterative procedures. 

FIG. 1. Computational domain g. 

The problem is most easily solved when we prescribe the pressure p(Y) and a 
toroidal field function g(Y) such that Bb = RB,,g(Y)/X with B,, the externally imposed 
vacuum toroidal field at an arbitrary radius R. The cylindrical coordinates (X, 4, Z) 
are shown in Fig. I. For completeness, we describe the program using this prescription 
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stability functions D, and D, as well as studies of global modes with the PEST code 
[IO] indicates that this equilibrium should be stable with respect to ideal MHD modes. 
Detailed comparisons of the numerical results with analytic calculations [I, 21 for 
this case have been carried out as part of a program to design a sensing system to 
control the positioning of the plasma column during experimental operation by adjust- 
ing the currents in the vertical field coils [31]. 

MAJOR RADIUS POSITION (meters) 

FIG. 4. A typical PLT equilibrium with &, = 0.23 and 1.05 < q < 5.3. The solid curve marks 
the position of the vacuum vessel. The pluses and minuses denote ths poloidal field coils. 

Similar studies, using the formalism of Sec. III to investigate the effect of rapid 
plasma heating on equilibrium and stability, have been made for the Princeton Toroidal 
Fusion Test Reactor (TFTR). The discovery that ballooning instabilities are not 
localized near a magnetic surface was made using these equilibria [32]. 

B. The Princeton Divertor Experiment (PDX) 

The main application of the code to configurations where the plasma surface is 
determined by a magnetic separatrix has been in the design of the PDX device. A 
major problem in the design has been to insure that the plasma can be formed in a 
small region and heated to an interesting plasma regime such that the field lines inside 
the separatrix are kept away from any material wall for the duration of the experiment. 
Studies such as the one shown in Fig. 5 have made significant impact on the design 
of the poloidal field coil configuration in the device. Figure 5a shows the shapes of the 
magnetic surfaces early in the discharge when the plasma is cold; Fig. 5b describes 
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The equilibrium equation, obtained from Eqs. (l), (2), and (4), is 

a i aY av 
XZi?TS+ azz __ = 2nXJ6, 

with 

J4 = -2~ c 4 XdY+ R”B;” dgg” ~- ~ 
1 2X dY (7) 

When the plasma is surrounded by a vacuum region, Jb is nonzero only in the interior 
of the plasma where Y < Y, , and p(Y) = 0 for Y 3 Y, . The self-consistent deter- 
mination of this plasma-vacuum interface, Y = Y, , is an important part of the solu- 
tion. lt introduces a fundamental nonlinearity into the problem, even if p(Y) and 
g(Y) are chosen to depend linearly on Y. The physical boundary conditions for Eq. (6) 
are that Y be constant on some contour if the system is surrounded by a conducting 
wall, or that Y vanishes at X = 0 and co. 

The iterative procedure employed to solve the problem is illustrated schematically 
in Fig. 2. It consists basically of two nested loops; an outer loop (labeled m) in which 
approximate Dirichlet boundary conditions for Y are determined for the computa- 
tional domain L???‘, and an inner loop (labeled n) which iterates over the nonlinear 
“source” term, XJ, , and, hence, converges to a solution of Eq. (6) with fixed boundary 
values on S%?. 
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FIG. 2. Code flow chart. The dashed section is inserted when p(U) and q(Y), rather than p(y) 
and g(Y) are specified. 

The iteration procedure is conveniently divided into the following steps: 

Step A : Initialization 
Choosing a good initial approximation to the solution is an important aspect of the 

problem, both with regard to minimization of the computer time required and because 
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PLASMA EQUILIBRIUM IN A TOKAMAK

V.S. MUKHOVATOV, V.D. SHAFRANOV
I.V. Kurchatov Institute of Atomic Energy,
Moscow, Union of Soviet Socialist Republics

ABSTRACT. The paper summarizes the basic information on the equilibrium of a toroidal plasma column in systems of the
Tokamak type. It considers the methods of maintaining a plasma in equilibrium with the help of a conducting casing, an
external maintaining field and the iron core of a transformer. Attention is paid to the role of the inhomogeneity of the main-
taining field. It is shown in particular how the shape of the column cross-section depends on the curvature of the lines of force
of the maintaining field. For the case (which has practical importance) weak asymmetry of the field distribution in the trans-
verse cross-section, this paper describes a uniform method of consideration, which takes into account the influence of different
factors on the equilibrium position of the column. This method is used for calculating plasma equilibrium in a Tokamak model
with a conducting casing. Account is here taken of the effect of gaps in the casing and of finite electrical conductivity. Some
cases of plasma equilibrium which are outside the standard Tokamak scheme are also considered, such as equilibrium in a con-
ducting shell having the shape of a racetrack, equilibrium where the whole current is transferred by relativistic runaway elec-
trons and equilibrium at high plasma pressure 8j ~R/a.

CONTENTS. 1. Introduction. 2. General relations. 2.1. Pressure-balance equation. 2.2. Poloidal
magnetic field (general formulae). 2.3. Superconducting ring with current. 2.4. Magnetic field of
equilibrium configuration. 3. Methodsofmaintainingaplasmacolumninequilibrium. 3.1. Maintaining
of a plasma column by the magnetic field of external conductors. 3.1.1. Stability relative to
displacement along the axis of symmetry. 3.1.2. Stability relative to horizontal displacement.
3.1.3. Evaluation of distortion in the shape of the column resulting from inhomogeneity of the maintaining
field. 3.1.4. Relationship between the stability of the equilibrium position and the shape of the plasma
column cross-section. 3.2. Maintaining by an ideally conducting casing. 3.3. Maintaining by the
iron core of a transformer. 4. Equilibrium with allowance for various complicating factors. 4 .1. Equi-
librium in an ideal casing in the presence of an additional control field. 4.2. Field of control loops.
4.3. Effect of gaps in an ideally conducting casing. 4.3.1. Calculation of a maintaining field in
the presence of gaps. 4.3.2. Consideration of the effect of the transformer core. 4.3.3. Effect of gaps
on the shape of the plasma column. 4.3.4. Effect of longitudinal gaps. 4.4. Field of currents flowing
along the liner. 4.5. Equilibrium in a conducting casing in the presence of a limiter. 4.5.1. Diagram
of the equilibrium radii of the column. 4.5.2. Effect of currents forming a circuit through the limiter
on the equilibrium of the plasma column. 4.6. Equilibrium in the approximation of a thin casing.
4.7. Determination of the characteristics of a plasma column from measurements of the magnetic fields
outside the plasma. 4.8. Penetration of the corrugations of the longitudinal magnetic field inside a con-
ducting casing. 5. Some non-standard cases of equilibrium. 5.1. Equilibrium in a racetrack. 5.2. A
plasma column with run-aw ay electrons. 5.3. Equilibrium at high plasma pressure. 5.4. Tokamak with
maximum permissible plasma pressure — 'Maximak1. 5.5. Determination of plasma column parameters from
measurements of the magnetic fields outside the plasma for an arbitrary shape of column cross-section.

SELECTED NOTATION

Minor radius of the plasma column, i . e .
radius of the cross-section of the toroidal
magnetic surface, outside which current
density is small in comparison with the
average one.
Minor radius of the casing.
Radius of diaphragm aperture-
Minor radius of the liner.
Minor radius of the toroidal surface on
which the internal control conductors are
located.
Same for the external control conductors.
Same for the primary winding of the
transformer.
Minor radius of the internal surface of
the toroidal iron core.

J.0

Minor radius of the external surface of the
toroidal iron core.
Thickness of the liner wall.
Thickness of the casing wall.
Displacement of the plasma column.
Displacement of the plasma column in an
ideal casing (Eq. (60)).
Toroidal (longitudinal) magnetic field.
Poloidal magnetic field.
Magnetic field transverse to the torus
plane.
Strength of the maintaining equilibrium
magnetic field (Eq. (37)).
Transverse magnetic field of the internal
control conductors in the discharge
chamber (p<bi) in the case of an ideal
casing.
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Numerical Determination of Axisymmetric Toroidal 
Magnetohydrodynamic Equilibria 

J. L. JOHNSON,* H. E. DALHED, J. M. GREENE, R. C. GRIMM, Y. Y. HSIEH, 
S. C. JARDIN, J. MANICKAM, M. OKABAYASHI, R. G. STORER,+ A. M. M. TODD, 

D. E. Voss, AND K. E. WEIMER 

Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08544 

Received July 13, 1978; revised October 20, 1978 

Numerical schemes for the determination of stationary axisymmetric toroidal equilibria 
appropriate for modeling real experimental devices are given. Iterative schemes are used 
to solve the elliptic nonlinear partial differential equation for the poloidal flux function Y. 
The principal emphasis is on solving the free boundary (plasma-vacuum interface) equilib- 
rium problem where external current-carrying toroidal coils support the plasma column, 
but fixed boundary (e.g., conducting shell) cases are also included. The toroidal current 
distribution is given by specifying the pressure and either the poloidal current or the safety 
factor profiles as functions of Y. Examples of the application of the codes to tokamak 
design at PPPL are given. 

I. INTRODUCTION 

The determination of MHD equilibrium configurations is an integral part of the 
problem of designing plasma confinement devices and interpreting their operational 
results. Even in tokamaks with circular plasma cross section, finite pressure effects 
make the magnetic surfaces nonconcentric so that full solution of the partial differen- 
tial equation is important [l, 21. Interest [3, 41 in tokamaks with noncircular cross 
sections makes these calculations even more essential. Detailed parametric studies of 
high-/3 tokamak properties [5] may determine the criteria for design of the next 
generation of tokamak devices. Equilibrium calculations play a major role in reactor 
studies where a knowledge of the plasma configuration (produced, for example, by 
divertors) provides the basic framework for detailed system design. 

Very little can be done on this problem analytically. A few exact equilibria [6] 
have been obtained in simple closed form, but they are usually associated with 
nearly constant toroidal current inside the plasma and have little shear. More compli- 
cated analytical solutions [7] are only of limited value in detailed tokamak design. 
Furthermore, analytic solutions give little information for real systems where the 

* On loan from Westinghouse Research and Development Center, Pittsburgh, Pa. 
+ The Flinders University of South Australia, Bedford Park, South Australia. 
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Grad-Shafranov Equation
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Grad-Shafranov Equation (1D example)
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Grad-Shafranov Equation (2D example)
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Grad-Shafranov Equation (2D example)
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Cylindrical Reduced MHD 
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“In memory of Boris Kadomtsev,” by E P Velikhov et al 1998, Phys.-Usp. 41 1155;  
[https://doi.org/10.1070/PU1998v041n11ABEH000508]
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Basic Derivation
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Stream Function and Poloidal Flux
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Simplifying the MHD Equations

 11



Simplifying the Induction Equation
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“Simplest” Kink Mode Theory
• Reduced MHD (plasma torus with a strong toroidal field)


• Kink modes
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Importance of B⋅∇
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First: Equilibrium
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Step 1: Equilibrium (Shafranov’s Simplest Case)
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Wesson’s Cylindrical Equilibrium
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Linearized Reduced MHD
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Alfvén Waves in Shafranov’s Equilibrium
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Global Kink Eigenmodes
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Global Kink Eigenmodes
Boundary conditions
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Kink Mode
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Wesson’s Cylindrical Equilibrium
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Wesson’s Kink Modes
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Wesson’s Kink Modes
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Next Lecture:

• Examining the properties of kink modes in the (straight) reduced MHD formalism.
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