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In this paper, we examine the question of the stability of plasmas confined by
magnetic fields. Whereas previous studies of this problem have started from
the magnetohydrodynamic equations, we pay closer attention to the motions of
individual particles. Our results are similar to, but more general than, those
which follow from the magnetohydrodynamic equations.

[. INTRODUCTION

The problem of the behavior of highly ionized plasmas in electromagnetic
fields has recently become the object of considerable interest (7). Although there
is little more involved in the problem than Newton’s laws and Maxwell’s equa-
tions, there are many questions one can ask to which the answers have been by
no means obvious or even easily caleulable. Two of the several rather broad
areas into which these questions fall are the following.

(a) The existence and properties of stationary solutions of the equations.
Here, “stationary’ is not meant to imply that fields and particle positions o1
velocities are absolutely constant, but that averages of these quantities over
times longer than the Larmor period and over the statistical particle distribution
are constant. Collisions between the particles are to be ignored. Effects to be
considered are the diamagnetic and electric effects of the charged particles on the
fields, and, conversely, the effects of the fields in influencing the particle dis-
tribution function.

(b) The stability of these stationary solutions under arbitrary perturbations
of the plasma configuration. Here again collisions are to be ignored. It is known

An energy principle for hydromagnetic stability problems
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The problem of the stability of static, highly conducting, fully ionized plasmas is investigated
by means of an energy principle developed from one introduced by Lundquist. The derivation
of the principle and the conditions under which it applies are given. The method is applied to
find complete stability criteria for two types of equilibrium situations. The first concerns
plasmas which are completely separated from the magnetic field by an interface. The second
is the general axisymmetric system.

1. INTRODUCTION

The investigation of hydromagnetic systems and their stability is of interest in
such varied fields as the study of sunspots, interstellar matter, terrestrial magnetism,
auroras and gas discharges. An excellent summary and bibliography of these
applications has been given by Elsasser (1955, 1956). The stability of hydromagnetic
systems has been extensively investigated in a fundamental series of papers by
Chandrasekhar (1952 to 1956).

The present work is concerned with those hydromagnetic equilibria in which the
fluid velocity at each point is assumed to vanish. It is divided into two parts. The
first is a development of an energy principle, originally stated by Lundquist (1951,
1952), for investigating the stability of such systems. The second part consists of
the application of this principle to obtain a number of specific results for such
systems.

The ‘normal mode’ technique is the usual method for the investigation of stability
in many systems, mechanical, electrical, etc. It consists of solving the linearized
equations of motion for small perturbations about an equilibrium state. The system
is said to be unstable if any solution increases indefinitely in time; if no such solution
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7
MHD Equilibria and Stability

This chapter 1s devoted to the analysis of MHD equilibria and stability. By
equilibria, we mean a plasma state that 1s time-independent. Such states may
or may not have equilibrium flows. When the states do not have equilibrium
flows, that 1s, U = 0 in some appropriate frame of reference, the equilibria
are called magnetostatic equlibria. When the states have flows that cannot
be simply eliminated by a Galilean transformation, the equilbria are called
magnetohydrodynamic equilibria. When we introduce small perturbations in a
particular equilibrium which 1s itself time-independent, the time dependence of the
perturbations determines the stability of the system. If an equilibrium is unstable,
the 1nstability typically grows exponentially in time. The mathematical problem
for the stability of magnetostatic equilibria 1s made tractable due to the formulation
of the so-called energy principle. It turns out that when MHD equilibria contain
flows that are spatially dependent, the power of the energy principle 1s weakened
significantly, and there has been a general tendency to rely on the normal mode
method, for which we provide simple examples.
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Figure 7.8 The potential energy of a mechanical system has points of stable
equilibrium, characterized by §°W/dx* > 0, and points of unstable equilibrium,
characterized by 6*W/dx* < 0.



7.3.3 The Linear Force Operator for Magnetostatic Equilibria

0&(r, 1)
U= : 7.3.12
ot ( )
’E 1
Omo = —[(VXB)XBg+(VXBy XB]- VP, (7.3.13)
ot* o
B =V X (& X%XBy). (7.3.14)
0Pm
s +omoV-U+U-Vp,0=0, (7.3.15) PE
pmo 5 = F(E), (7.3.19)
ot
where F(&), the linear force operator, 1s given by
With the linearized form of the adiabatic equation of state (6.1.34),
1
OP Py 0p,n VP F(&) = —[(VX{V X (EXBo)}) X By + (VX Bg) X{V X (&XBo)}]
a—+U-VPO—7 0 g 20 vp,0 =0, (7.3.16) Ho
! Pmo OF Pmo +V[E-VPy+yPy(V-E)]. (7.3.20)
to obtain
oP
E+U-VPO+)/P0(V-U):O. (7.3.17)

P=-§.-VPy—yPyV-E. (7.3.18)



7.3.4 The Normal Mode Method

£(r,1) = Z £..(r)exp(—iwyt). (7.3.22)

—omo w;, &, = F(E,). (7.3.23)

The normal mode method 1s a brute force method for determining the
eigenmodes and eigentrequencies of the system using Eq. (7.3.23). Once these are
known, the general solution (7.3.22) can be constructed by superposition. Next,
we discuss the energy principle, which 1s a more subtle and even more powerful
method of testing the stability of a magnetostatic equilibrium.



7.3.5 The Energy Principle

d (|1 OE |

~Pm0 |~ ot

o .12 — —£ F(E,) d’x=0, (7.3.33)

By simple inspection, one can see that Eq. (7.3.33) 1s an energy conservation
equation for the perturbed system. It implies that

0K + OW = C = constant, (7.3.36)
where
1 0E|*
OK = — mol—1 d 7.3.37
: fv puo || dx (7.3.37)

1s the perturbed kinetic energy and

st:—l f & .F(&)dx (7.3.38)
V

2
1s the perturbed potential energy. Note that this equation differs from Eq. (6.4.21)
for the total energy, W, because it represents the energy change, 0 W, relative to the
equilibrium state, due to the linearized small-amplitude perturbation.



7.3.0 A More Useful Form for oW

1 1
SW = f L VX (EXBo)R +yPylV - £
2 v | MO

—E Jox{VX(EXBy) =& -V(§-VPy)|dx. (7.3.52)

The first two terms on the right-hand side of the above equation are positive and
stabilizing, while the third and fourth terms can be destabilizing. The first term
represents the energy required to bend field lines. The second term represents
the energy required to compress a plasma with non-zero equilibrium pressure.
The third term, which depends explicitly on the equilibrium current density, J,
can potentially drive instabilities of the “kink” type. The fourth term, which
depends explicitly on the equilibrium pressure gradient, can potentially drive
instabilities of the “ballooning” or “interchange” type. For an ideal MHD plasma,
an 1nstability always arranges its eigenfunction in such a way as to minimize
the stabilizing contributions to 0W (the first and second terms). For example,
in an 1nfinite cylinder or a torus, the marginally stable (w, = 0) eigenfunctions
are incompressible and obey the condition V - £ = 0, which reduces the second
stabilizing term in O W to zero.
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Kink Modes
(The most dangerous instabilitig§ for current-carrying plasma.)
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Reduced MHD (Simple, but Powerful Theory from 1970’s)

* M. Rosenbluth, D. Monticello, H. Strauss,
» Cylindrical Reduced MHD and R. White, Phys Fluids 19, 1987 (1976).

* |deal instabilities « H. Strauss, D. Monticello, M. Rosenbluth,
and R. White, Phys Fluids 20, 390 (1977).
» Tearing instabilities
* R.Izzo, et al., Phys Fluids 26, 3066 (1983).
« RWMs and FWMs
* G.T.A. Huysmans, J.P. Goedbloed, and W.
KERNER, “Free boundary resistive modes
in tokamaks” Phys. Fluids B 5, 1545 (1993).
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The Physics of Fluids, Vol. 19, No. 12, December 1976

Numerical studies of nonlinear evolution of kink modes in

tokamaks

Marshall N. Rosenbluth,* D. A. Monticello,! and H. R. Strauss?
Institute for Advanced Study, Princeton, New Jersey 08540

R. B. White

Plasma Physics Laboratory, Princetonr University, Princeton, New Jersey 08540
(Received 22 December 1975; final manuscript received 22 June 1976)

A set of numerical techniques for investigating the full nonlinear unstable behavior of low-£ kink modes
of given helical symmetry in tokamaks is presented. Uniform current density plasmas display complicated
deformations including the formation of large vacuum bubbles provided that the safety factor ¢ is
sufficiently close to integral. Fairly large m =1 deformations, but not bubble formation, persist for a
plasma with a parabolic current density proftle (and hence shear). Deformations for m> 2 are, however,

greatly suppressed.

. INTRODUCTION

It has been suggested by Kadomtsev® that the kink
mode plays an instrumental role in the disruptive in-
stability seen in tokamaks. The imagined mechanism
is that the nonlinear kink mode development leads to
highly distorted shapes with the vacuum on the inside
and the plasma on the outside, the so-called bubble state.

The expected large distortions of the plasma led us
to treat the problem by numerical methods. A numer-
ical treatment of the nonlinear kink mode in tokamaks
in a straightforward way is difficult, however, because
of the various time scales involved (Alfvén waves and
sound waves, and relatively slow kinks) and because of
the free boundary between plasma and vacuum. In Sec,

13

Il. THE REDUCED SET OF EQUATIONS

The energy reservoir for free boundary kinks is very
large and the toroidal case is adequately treated by the
cylindrical approximation. Hence, we model the
tokamak by a cylinder of length L =27R, R being the
major radius of the plasma.

‘We also restrict ourselves to following the nonlinear
development of perturbations of a fixed helical symme-
try. This, together with the fact that the walls and
equilibrium are cylindrical, implies that all quantities
are functions of 7, 7, and f only, where 7=m6+ kz and
k=n/R. Here, m and » are the mode numbers of the
original perturbation, which has the form f(7) exp[i(m#
+ kz)],

Helical symmetry has the obvious advantage of reduc-
ing the three-dimensional numerical calculation to a
two-dimensional one [8/8z=(k/m)(8/86)]. In addition,
this symmetry, together with V+ B=0 implies that B,,
B,, and B, may be related to a scalar ¥ by

1 8y % kr
Br=3390 Be= =5, B (1)
or
B=VyxZ-(kr/m)BS+B,Z . (2)

The function ¥ is a flux function, i.e., (B* V)y=0, It
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Cylindrical Reduced MHD

the order of €’B,. To lowest order in € this unknown vari-
ation of the toroidal field can be eliminated from the problem
by taking the curl of the momentum equation. The resulting
equations are the standard low-# tokamak reduced equa-
tions that describe free-boundary kink modes”:

2
R2 aV-u
dt

=|B - V|Vid¥),

Ay = Iy(r/2) )
Ay~ A, = o(r) +(r, 9)

W _ RIB. Vp,\important

ot
B =VyXVE+ 1,V¢,
V=R:VuXV¢,

d° d°

Vi = .
" 9R? 0z*

Plasma Physics Series
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Figure 5.1 Helical perturbation of the tokamak plasma con-
sidered as a cylindrical column of length 2R with identical ends:
(a) initial start; (b) perturbation of the m = 3 mode.
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Reduced MHD
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Basic Derivation
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Stream Function and Poloidal Flux
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Simplifying the MHD Equations
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Simplifying the Induction Equation
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"Simplest” Kink Mode Theory

® Reduced MHD (plasma torus with a strong toroidal field)

® Kink modes &
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Importance of B:V
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First: Equilibrium

APPH 6102 Plasma Physics 11: In-Class Worksheet

Answer the following without looking at your notes or textbooks.

Question

In this problem, you are to derive the plasma equilibrium condition for a low-3, very
large aspect ratio (a/R < 1), magnetized plasma cylinder. This equilibrium condition
is expressed as the relationship between the plasma pressure, P(1)), and the plasma flux
function v (r), which will be a function of radius, 7.

23



(F“”Sf) Equilibrium
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Step 1: Equilibrium (Shafranovs Simplest Case)
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Wessons Cylindrical Equilibrium
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Linearized Reduced MHD
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Alfven Waves in Shafranovs Equilibrium




Global Kink Eigenmodes
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Global Kink Eigenmodes
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Wessons Cylindrical Equilibrium
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Wessons Kink Modes

THE  tCenk neo0i C AUEES THES

L — . L ) ét. £, _
ST s ¢ PLas TS paspono  MQuicklr? SO
| 5 -0 AL THA  Tiame €77

Rouietery TRAT W& @ Ao

——

e TO  Foka A DuTeATEs, ID, ST GG Ll

IS 1o K s PoASera (S A W Eorcin” (=R d lBACon

R A

OuT Stok, ™~ 2CSpors@ $& AL W U, ¢ VCESP O TO,

~\
TO SpeJ b oz L S g

Lo L 77 \)_?,[n)j Lol HAVE
Fo. TXHE L s D AT t%_dé:&ﬁr&fcj

(6 mpupid, (Tres s JELL EACE

Lo e _#‘; ¢,
ACE CORRE~T PUCHES /FuLbI

F/TH:{ Soaf
lbt??\hz‘ré;a‘s f’;ﬁ'sm.»st

]O»,__,.ﬂf_gmvd,_/ Aro TTTIK

~

s meagungo B7 (7. 6:2)
34 -




Next Lecture:

» Examining the properties of kink modes in the (straight) reduced MHD formalism.
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