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Los Alarnos Scientijic Laboratory, University of 
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In this paper, we examine the question of the stability of plasmas confined by 
magnetic fields. Whereas previous studies of this problem have started from 
the magnetohydrodynamic equations, we pay closer attention to the motions of 
individual particles. Our results are similar to, but more general than, those 
which follow from the magnetohydrodynamic equations. 

1. INTRODUCTIOX 

The problem of the behavior of highly ionized plasmas in electromagnetic 
fields has recently become the object of considerable interest (1). Although there 
is little more involved in the problem than Newton’s laws and Maxwell’s equa- 
tions, there are many questions one can ask t’o which the answers have been by 
no means obvious or even easily calculable. Two of the several rather broad 
areas into which these questions fall are the following. 

(a) The existence and propertries of stationary solutions of the equations. 
Here, “stationary” is not meant, to imply that fields and particle positions or 
velocities are absolutely constant’, but that averages of these quant’ities over 
times longer than the Larmor period and over the statistical particle disbribut’ion 
are constant. Collisions between the particles are to be ignored. Effects to be 
considered are t,he diamagnetic and electric effects of the charged particles on the 
fields, and, conversely, the effects of the fields in influencing the particle dis- 
tribution function. 

(b) The stability of these stationary solutions under arbitrary perturbations 
of the plasma configuration. Here again collisions are to be ignored. It is known 
that collisions produce a diffusion of charged particles across magnetic fields, 
but we are interested here in instabilit,ies, similar to those in hydrodynamics, in 
which locally coordinated motions of the plasma occur under the influence of 
the average electromagnetic fields. 

Although problems falling under category (a) have been solved in only the 

1 Work performed under the auspices of the Atomic Energy Commission. 
* Now at General Atomic Division, General Dynamics Corporation, San Diego, C’ali- 

fornia. 
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MHD Equilibria and Stability

This chapter is devoted to the analysis of MHD equilibria and stability. By
equilibria, we mean a plasma state that is time-independent. Such states may
or may not have equilibrium flows. When the states do not have equilibrium
flows, that is, U = 0 in some appropriate frame of reference, the equilibria
are called magnetostatic equlibria. When the states have flows that cannot
be simply eliminated by a Galilean transformation, the equilbria are called
magnetohydrodynamic equilibria. When we introduce small perturbations in a
particular equilibrium which is itself time-independent, the time dependence of the
perturbations determines the stability of the system. If an equilibrium is unstable,
the instability typically grows exponentially in time. The mathematical problem
for the stability of magnetostatic equilibria is made tractable due to the formulation
of the so-called energy principle. It turns out that when MHD equilibria contain
flows that are spatially dependent, the power of the energy principle is weakened
significantly, and there has been a general tendency to rely on the normal mode
method, for which we provide simple examples.

In nature and in the laboratory, plasmas can be stable according to the equations
of ideal MHD. However, even ideally stable plasmas can become unstable in the
presence of small departures from idealness, such as a small amount of resistivity.
This may appear counter-intuitive upon first glance unless one takes into account
the fact that in the presence of even small dissipation the frozen field theorem
discussed in Chapter 6 is violated, which enables the plasma to access states of
lower potential energy through motions that would be forbidden for ideal plasmas,
i.e., by allowing magnetic field lines to slip with respect to the plasma fluid. Such
instabilities are called resistive instabilities. These instabilities are part of a general
class of phenomena called magnetic reconnection, which is a subject of great
interest for space, laboratory, and astrophysical plasmas.
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the equilibrium equations does not prove that the configuration can actually exist
in nature, since the equilibrium may be unstable. If the equilibrium is unstable
then the system will start to evolve in time, and will either evolve to some other
completely different equilibrium configuration or never reach a steady state. In
order to understand which equilibria can actually exist in nature it is important to
consider the issue of stability. In this section we discuss some of the techniques
used to analyze the stability of ideal MHD equilibria.

To develop physical intuition about some of the techniques involved, we start
by discussing some simple configurations that can be shown to be unstable using
somewhat restrictive assumptions. We then proceed to develop two methods, called
(i) the normal mode method, and (ii) the energy method, that can be used to test
whether an arbitrary MHD equilibrium is stable or unstable.

7.3.1 MHD Stability: A Mechanical Analogy

It is useful to start the discussion of stability by considering a simple mechanical
analog, which is the motion of a particle in a one-dimensional potential energy
function, W(x), such as the one shown in Figure 7.8.

For such a system, static equilibrium solutions exist at all points for which
the force Fx = −∂W/∂x = 0. To test the stability at a given equilibrium point,
the procedure is to give the particle a small displacement, or perturbation. If the
particle returns to the equilibrium point the system is stable. If it does not return it
is unstable. From simple physical considerations one can see that the condition for
stability is that the equilibrium point must be at a local minimum in the potential
energy. To prove this assertion formally, expand the potential energy in a Taylor
series around one of the equilibrium points. Since ∂W/∂x = 0 at the equilibrium
point, then to lowest order in the displacement, ∆x, the change in the potential
energy relative to the potential energy at the equilibrium point is given by

δW =
1
2

(
∂2W
∂x2

)
∆x2, (7.3.1)

Stable

Unstable
UnstableW(x)

x

Stable Stable

Figure 7.8 The potential energy of a mechanical system has points of stable
equilibrium, characterized by ∂2W/∂x2 > 0, and points of unstable equilibrium,
characterized by ∂2W/∂x2 < 0.
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Figure 7.17 The cusp mirror geometry.

in the potential energy. Our immediate objective will be to re-express the forces
on the right-hand side of the momentum equation (6.1.32) in the form of a
linear operator, called the “linear force operator.” The linear force operator can
then be used to evaluate the change in the potential energy for any arbitrary
perturbation. As in previous analyses involving small perturbations, we will
express all of the relevant MHD quantities as the sum of a time-independent
zero-order (0) quantity plus a small first-order perturbation. The time-independent
zero-order quantities, such as B0, J0, and P0, are assumed to obey the equations
for magnetostatic equilibrium, i.e., Eqs. (7.1.6)–(7.1.8). Note that, in contrast to
previous perturbation analyses of this type, we cannot assume that the zero-order
quantities are homogeneous. Unfortunately, this greatly increases the complexity
of the analysis.

Since it is desirable to work with displacements rather than velocities, we
introduce the perturbed fluid displacement vector ξ(r, t) by means of the equation

U =
∂ξ(r, t)
∂t
. (7.3.12)

Using this relation, it can be shown that the linearized version of the momentum
equation (6.1.32) is given by

ρm0
∂2ξ

∂t2 =
1
µ0

[(∇×B)×B0 + (∇×B0)×B]−∇P, (7.3.13)

where the current density has been eliminated using Ampère’s law (6.1.28) and, as
usual, we have omitted the subscript 1 on the first-order perturbed quantities. The
induction equation (6.3.7) can be integrated over time to give

B =∇× (ξ×B0). (7.3.14)

To obtain an equation for the pressure we combine the linearized form of the mass
continuity equation (6.1.31),

∂ρm

∂t
+ ρm0∇ ·U+U ·∇ρm0 = 0, (7.3.15)
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With the linearized form of the adiabatic equation of state (6.1.34),

∂P
∂t
+U ·∇P0 −

γP0

ρm0

∂ρm

∂t
− γP0

ρm0
U ·∇ρm0 = 0, (7.3.16)

to obtain

∂P
∂t
+U ·∇P0 +γ P0(∇ ·U) = 0. (7.3.17)

Replacing U by ∂ξ/∂t, and integrating over time gives

P = −ξ ·∇P0 −γ P0∇ ·ξ. (7.3.18)

Substituting expressions (7.3.14) and (7.3.18) for B and P, respectively, into
Eq. (7.3.13), we obtain the linear differential equation

ρm0
∂2ξ

∂t2 = F(ξ), (7.3.19)

where F(ξ), the linear force operator, is given by

F(ξ) =
1
µ0

[(∇× {∇× (ξ×B0)})×B0 + (∇×B0)× {∇× (ξ×B0)}]

+∇[ξ ·∇P0 +γ P0(∇ ·ξ)]. (7.3.20)

In principle, given an arbitrary static equilibrium, the equation of motion
(7.3.19) can then be solved to determine all possible plasma displacements ξ(r, t).
In practice, because of the complexity of the linear force operator, such an
approach is difficult (even on a computer) for all but the simplest cases. However,
the linear force operator has some very nice mathematical properties that greatly
simplify the analysis, and lead to two useful and sometimes complementary
approaches, called (1) the normal mode method and (2) the energy method. We
next describe these two methods.

7.3.4 The Normal Mode Method

In the normal mode method, we assume that the displacement vector can be written
as a simple harmonic function of the form

ξn(r, t) = ξn(r)exp(−iωnt), (7.3.21)

where the subscript n designates a particular normal mode of frequency ωn. Since
the equation of motion (7.3.19) is linear in ξ, we can construct a general solution
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ξ(r, t) by a linear superposition, i.e.,

ξ(r, t) =
∑

n

ξn(r)exp(−iωnt). (7.3.22)

To find the constraints on the normal mode frequencies, we start by substituting
expression (7.3.21) into Eq. (7.3.19), which gives

−ρm0 ω
2
n ξn = F(ξn). (7.3.23)

Next, we state the following theorem, the proof of which is assigned as an exercise
(Problem 7.5).

Theorem. The linear force operator F is self-adjoint, i.e., if there are two
eigenfunctions η1 andη2 (satisfying standard boundary conditions), then

∫

V
η2 ·F(η1) d3x =

∫

V
η1 ·F(η2) d3x. (7.3.24)

This theorem has the following corollaries.

Corollary 1. ω2
n is always real.

To prove Corollary 1, consider the complex conjugate of Eq. (7.3.23):

−ρm0 ω
2∗
n ξ∗n = F(ξ∗n). (7.3.25)

Taking the scalar product of both sides of the above equation with ξn and
integrating over the entire volume of the system gives

−ρm0ω
2∗
n

∫

V
ξn ·ξ∗n d3x =

∫

V
ξn ·F(ξ∗n) d3x. (7.3.26)

Identifying η1 = ξn and η2 = ξ∗n, we can then invoke Eq. (7.3.24) and rewrite the
above equation as

−ρm0ω
2∗
n

∫

V
ξn ·ξ∗n d3x =

∫

V
ξ∗n ·F(ξn) d3x

= −ρm0ω
2
n

∫

V
ξ∗n ·ξn d3x. (7.3.27)

Since
∫
ξn · ξ∗n d3x =

∫
|ξn|2 d3x is non-zero for any non-trivial eigenfunction, it

follows from the above equation that

ω2
n =ω

2∗
n . (7.3.28)
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ξ(r, t) by a linear superposition, i.e.,

ξ(r, t) =
∑

n

ξn(r)exp(−iωnt). (7.3.22)

To find the constraints on the normal mode frequencies, we start by substituting
expression (7.3.21) into Eq. (7.3.19), which gives

−ρm0 ω
2
n ξn = F(ξn). (7.3.23)

Next, we state the following theorem, the proof of which is assigned as an exercise
(Problem 7.5).

Theorem. The linear force operator F is self-adjoint, i.e., if there are two
eigenfunctions η1 andη2 (satisfying standard boundary conditions), then

∫

V
η2 ·F(η1) d3x =

∫

V
η1 ·F(η2) d3x. (7.3.24)

This theorem has the following corollaries.

Corollary 1. ω2
n is always real.

To prove Corollary 1, consider the complex conjugate of Eq. (7.3.23):

−ρm0 ω
2∗
n ξ∗n = F(ξ∗n). (7.3.25)

Taking the scalar product of both sides of the above equation with ξn and
integrating over the entire volume of the system gives

−ρm0ω
2∗
n

∫

V
ξn ·ξ∗n d3x =

∫

V
ξn ·F(ξ∗n) d3x. (7.3.26)

Identifying η1 = ξn and η2 = ξ∗n, we can then invoke Eq. (7.3.24) and rewrite the
above equation as

−ρm0ω
2∗
n

∫

V
ξn ·ξ∗n d3x =

∫

V
ξ∗n ·F(ξn) d3x

= −ρm0ω
2
n

∫

V
ξ∗n ·ξn d3x. (7.3.27)

Since
∫
ξn · ξ∗n d3x =

∫
|ξn|2 d3x is non-zero for any non-trivial eigenfunction, it

follows from the above equation that

ω2
n =ω

2∗
n . (7.3.28)
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Figure 7.18 The frequency spectrum of the ideal MHD force operator.

It is possible to obtain not only discrete stable frequencies, but also a continuous
band of stable frequencies, indicated by the dark shaded band.

The normal mode method is a brute force method for determining the
eigenmodes and eigenfrequencies of the system using Eq. (7.3.23). Once these are
known, the general solution (7.3.22) can be constructed by superposition. Next,
we discuss the energy principle, which is a more subtle and even more powerful
method of testing the stability of a magnetostatic equilibrium.

7.3.5 The Energy Principle

To analyze the stability of a static MHD equilibrium using the energy principle,
we essentially follow the same procedure discussed in Section 7.3.1 for a particle
moving in a one-dimensional potential. However, the analysis is more complicated,
since an MHD fluid has an infinite number of degrees of freedom. The first
step is to compute the change in the potential energy, δW, for a small arbitrary
perturbation, ξ, relative to some equilibrium state. To obtain the change in the
potential energy, δW, we start by showing that

d
dt

∫

V

[
1
2
ρm0

∣∣∣∣∣
∂ξ

∂t

∣∣∣∣∣
2

− 1
2
ξ∗ ·F(ξ)

]
d3x = 0, (7.3.33)

where F(ξ) is the linear force operator defined by Eq. (7.3.20). To prove the above
result, consider the left-hand side, which can be written

1
2

∫

V

[
ρm0

∂ξ∗

∂t
· ∂

2ξ

∂t2 + ρm0
∂ξ

∂t
· ∂

2ξ∗

∂t2 −
∂ξ∗

∂t
·F(ξ)−ξ∗ ·F

(
∂ξ

∂t

)]
d3x

=
1
2

∫

V

[
∂ξ∗

∂t
·
{
ρm0

∂2ξ

∂t2 −F(ξ)
}
+
∂ξ

∂t
·
{
ρm0

∂2ξ∗

∂t2 −F(ξ∗)
}]

d3x, (7.3.34)

where in the last step we have used Eq. (7.3.24) to write
∫

V
ξ∗ ·F

(
∂ξ

∂t

)
d3x =

∫

V

∂ξ

∂t
·F(ξ∗) d3x. (7.3.35)
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The normal mode method is a brute force method for determining the
eigenmodes and eigenfrequencies of the system using Eq. (7.3.23). Once these are
known, the general solution (7.3.22) can be constructed by superposition. Next,
we discuss the energy principle, which is a more subtle and even more powerful
method of testing the stability of a magnetostatic equilibrium.

7.3.5 The Energy Principle

To analyze the stability of a static MHD equilibrium using the energy principle,
we essentially follow the same procedure discussed in Section 7.3.1 for a particle
moving in a one-dimensional potential. However, the analysis is more complicated,
since an MHD fluid has an infinite number of degrees of freedom. The first
step is to compute the change in the potential energy, δW, for a small arbitrary
perturbation, ξ, relative to some equilibrium state. To obtain the change in the
potential energy, δW, we start by showing that

d
dt

∫

V

[
1
2
ρm0

∣∣∣∣∣
∂ξ

∂t

∣∣∣∣∣
2

− 1
2
ξ∗ ·F(ξ)

]
d3x = 0, (7.3.33)

where F(ξ) is the linear force operator defined by Eq. (7.3.20). To prove the above
result, consider the left-hand side, which can be written

1
2

∫

V

[
ρm0

∂ξ∗

∂t
· ∂

2ξ

∂t2 + ρm0
∂ξ

∂t
· ∂

2ξ∗

∂t2 −
∂ξ∗

∂t
·F(ξ)−ξ∗ ·F

(
∂ξ

∂t

)]
d3x

=
1
2

∫

V

[
∂ξ∗

∂t
·
{
ρm0

∂2ξ

∂t2 −F(ξ)
}
+
∂ξ

∂t
·
{
ρm0

∂2ξ∗

∂t2 −F(ξ∗)
}]

d3x, (7.3.34)

where in the last step we have used Eq. (7.3.24) to write
∫

V
ξ∗ ·F

(
∂ξ

∂t

)
d3x =

∫

V

∂ξ

∂t
·F(ξ∗) d3x. (7.3.35)
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It is obvious now that, upon using the linear force equation (7.3.19), expression
(7.3.34) vanishes identically.

By simple inspection, one can see that Eq. (7.3.33) is an energy conservation
equation for the perturbed system. It implies that

δK + δW =C = constant, (7.3.36)

where

δK =
1
2

∫

V
ρm0

∣∣∣∣∣
∂ξ

∂t

∣∣∣∣∣
2

d3x (7.3.37)

is the perturbed kinetic energy and

δW = −1
2

∫

V
ξ∗ ·F(ξ) d3x (7.3.38)

is the perturbed potential energy. Note that this equation differs from Eq. (6.4.21)
for the total energy, W, because it represents the energy change, δW, relative to the
equilibrium state, due to the linearized small-amplitude perturbation.

We now prove that δW ≥ 0 is a necessary and sufficient condition for stability.
If a fluid displacement is unstable, the kinetic energy δK will increase in time
without bound. (It will increase exponentially for a linear instability.) But while
δK increases, δW will have to decrease and become negative in order to keep
the energy C given by Eq. (7.3.36) constant. In contrast, if δW ≥ 0,δK must be
bounded from above according to the relation δK ≤ C−δW. In this case, there can
be no unbounded growth of kinetic energy and the plasma is stable. Hence, δW ≥ 0
is a sufficient condition for stability.

To prove that δW ≥ 0 is also a necessary condition for stability, let us consider
an initial displacement such that ξ(r,0) ! 0 but ∂ξ(r,0)/∂t = 0. Furthermore, we
require that this initial displacement makes δW negative. It follows that

C(t = 0) = δW(t = 0)+ δK(t = 0)

= δW(t = 0) < 0. (7.3.39)

Let us define the quantity

I(t) =
1
2

∫

V
ρm0 |ξ|2 d3x. (7.3.40)

The first derivative of I is given by

dI
dt
=

1
2

∫

V
ρm0

(
ξ∗ · ∂ξ

∂t
+ξ · ∂ξ

∗

∂t

)
d3x, (7.3.41)
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(7.3.50) to surface terms, we obtain

δW =
1
2

∫

V

[
1
µ0
|∇× (ξ×B0)|2 +γP0|∇ ·ξ|2

−ξ∗ ·J0 × {∇× (ξ×B0)}−ξ∗ ·∇(ξ ·∇P0)
]
d3x

− 1
2

∫

s
n̂ ·

[
1
µ0
{(ξ∗ ×B0)×B1}+γP0ξ

∗(∇ ·ξ)
]
dA, (7.3.51)

where n̂ is the unit normal on the surface S bounding the plasma. When S is
perfectly conducting, the surface integral vanishes because of boundary conditions
(7.3.46) and (7.3.47), and we are left with

δW =
1
2

∫

V

[
1
µ0
|∇× (ξ×B0)|2 +γP0|∇ ·ξ|2

−ξ∗ ·J0 × {∇× (ξ×B0)}−ξ∗ ·∇(ξ ·∇P0)
]
d3x. (7.3.52)

The first two terms on the right-hand side of the above equation are positive and
stabilizing, while the third and fourth terms can be destabilizing. The first term
represents the energy required to bend field lines. The second term represents
the energy required to compress a plasma with non-zero equilibrium pressure.
The third term, which depends explicitly on the equilibrium current density, J0,
can potentially drive instabilities of the “kink” type. The fourth term, which
depends explicitly on the equilibrium pressure gradient, can potentially drive
instabilities of the “ballooning” or “interchange” type. For an ideal MHD plasma,
an instability always arranges its eigenfunction in such a way as to minimize
the stabilizing contributions to δW (the first and second terms). For example,
in an infinite cylinder or a torus, the marginally stable (ωn = 0) eigenfunctions
are incompressible and obey the condition ∇ · ξ = 0, which reduces the second
stabilizing term in δW to zero.

The current density and the pressure gradient in any given magnetostatic
equilibrium are potential sources of free energy for ideal MHD instabilities. In
most cases of physical interest, δW needs to be computed numerically to determine
the stability for various perturbations, such as kink, ballooning, and interchange
motions. In the next subsection, we consider an analytically tractable example.

7.3.7 The Rayleigh–Taylor Instability

We next discuss the well-known instability known as the Rayleigh–Taylor
instability, which is similar to the Kruskal–Schwarzschild instability discussed
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Ballooning Modes

9



Ballooning Stability

10

Drive: Plasma

Pressure

beta limit

Rc

Rc

(Rc = R)



Kink Modes  
(The most dangerous instabilities for current-carrying plasma.)

11

Drive: Plasma

Current Gradient

current limit



Reduced MHD (Simple, but Powerful Theory from 1970’s)

• Cylindrical Reduced MHD 

• Ideal instabilities 

• Tearing instabilities 

• RWMs and FWMs  

• M. Rosenbluth, D. Monticello, H. Strauss, 
and R. White, Phys Fluids 19, 1987 (1976). 

• H. Strauss, D. Monticello, M. Rosenbluth, 
and R. White, Phys Fluids 20, 390 (1977). 

• R. Izzo, et al., Phys Fluids 26, 3066 (1983). 

• G.T.A. Huysmans, J.P. Goedbloed, and W. 
KERNER, “Free boundary resistive modes 
in tokamaks” Phys. Fluids B 5, 1545 (1993).
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Cylindrical Reduced MHD 

14

“In memory of Boris Kadomtsev,” by E P Velikhov et al 1998, Phys.-Usp. 41 1155;  
[https://doi.org/10.1070/PU1998v041n11ABEH000508]

important



Cylindrical Reduced MHD 
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“In memory of Boris Kadomtsev,” by E P Velikhov et al 1998, Phys.-Usp. 41 1155;  
[https://doi.org/10.1070/PU1998v041n11ABEH000508]

important

Highest Order: 

Only Current Gradient Drive



Reduced MHD
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Basic Derivation
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Stream Function and Poloidal Flux
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Simplifying the MHD Equations
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Simplifying the Induction Equation
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“Simplest” Kink Mode Theory
• Reduced MHD (plasma torus with a strong toroidal field)


• Kink modes

21



Importance of B⋅∇
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First: Equilibrium

APPH 6102 Plasma Physics II: In-Class Worksheet

Answer the following without looking at your notes or textbooks.

Question

In this problem, you are to derive the plasma equilibrium condition for a low-�, very
large aspect ratio (a/R ⌧ 1), magnetized plasma cylinder. This equilibrium condition
is expressed as the relationship between the plasma pressure, P ( ), and the plasma flux
function  (r), which will be a function of radius, r.

The equilibrium equation is the condition of force balance,

⇢
dv

dt
= 0 = �rP + J⇥B ,

together with the absence of equilibrium plasma flow (v = 0) and Ampere’s Law, r⇥B =
µ0J.

For the case of axisymmetry and axial symmetry,  (r) depends only upon r. Then,
when P ( ) depends only upon  , the equation for equilibrium is

r2
? =

1

r

@

@r

✓
r
@ 

@r

◆
= �µ0

@P

@ 
.

Complete the steps and prove the equation, above, for equilibrium is correct.

Additional questions:

• If the plasma safety factor is q(r) = rBz/RBp(r) (with Bz/R = constant), what is
the relationship between the safety factor profile and q(r) (i.e. Ampere’s Law), and

• If Jz ⇡ constant, what is the pressure profile, P (r)?

1
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(First,) Equilibrium
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Step 1: Equilibrium (Shafranov’s Simplest Case)
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Wesson’s Cylindrical Equilibrium
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Linearized Reduced MHD
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Alfvén Waves in Shafranov’s Equilibrium
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Global Kink Eigenmodes
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Global Kink Eigenmodes
Boundary conditions
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Kink Mode
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Wesson’s Cylindrical Equilibrium
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Wesson’s Kink Modes
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Wesson’s Kink Modes
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Next Lecture:

• Examining the properties of kink modes in the (straight) reduced MHD formalism.
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