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It is well known that the linear theory of collisionless damping breaks down after a time r =
(m/egk)}, where k is the wavenumber and & is the amplitude of the electric field. Jacobi elliptic
functions are now used to provide an exact solution of the Vlasov equation for the resonant electrons,
and the damping coefficient is generalized to be valid for times greater than { = 7. This generalized
damping coefficient reduces to Landau’s result when ¢/r < 1; it has an oscillatory behavior when
i /7 is of order unity, and it phase mixes to zero as {/r approaches infinity. The above results are all
shown to have simple physical interpretations.
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Key Points:

+ Nonlinear wave-particle interaction
is demonstrated to be nonadiabatic
« The nonlinear evolution timescale

is comparable to the particle
phase-space trapping timescale

« Subpacket formation s explained
using phase-space bounce motion

of particles
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In Paper I [T. Lafleur e al., Phys. Plasmas 23, 053502 (2016)], we demonstrated (using particle-in-
cell simulations) the definite correlation between an anomalously high cross-field electron transport
in Hall effect thrusters (HETS), and the presence of azimuthal electrostatic instabilities leading to
enhanced electron scattering. Here, we present a kinetic theory that predicts the enhanced scattering
rate and provides an electron cross-field mobility that is in good agreement with experiment. The
large azimuthal electron drift velocity in HET's drives a strong instability that quickly saturates due
to a combination of ion-wave trapping and wave-convection, leading to an enhanced mobility
many orders of magnitude larger than that expected from classical diffusion theory. In addition to
the magnetic field strength, By, this enhanced mobility is a strong function of the plasma properties
(such as the plasma density) and therefore does not, in general, follow simple 1/Bj or 1/By scaling
laws. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4948496]
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Effects of energetic particles on zonal flow generation by toroidal Alfven
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Generation of zonal flow (ZF) by energetic particle (EP) driven toroidal Alfvén eigenmode (TAE) is
investigated using nonlinear gyrokinetic theory. It is found that nonlinear resonant EP contribution
dominates over the usual Reynolds and Maxwell stresses due to thermal plasma nonlinear response.
ZF can be forced driven in the linear growth stage of TAE, with the growth rate being twice the TAE
growth rate. The ZF generation mechanism is shown to be related to polarization induced by resonant
EP nonlinearity. The generated ZF has both the usual meso-scale and micro-scale radial structures.
Possible consequences of this forced driven ZF on the nonlinear dynamics of TAE are also discussed.
Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4962997]
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Diagnosing collisionless energy transfer using
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Turbulence plays a key role in the conversion of the energy of large-scale fields
and flows to plasma heat, impacting the macroscopic evolution of the heliosphere
and other astrophysical plasma systems. Although we have long been able to make



| Inearized Vlasov Equation
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Fourier-Laplace Transform
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Fourier-Laplace Transform
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Figure 9.6 The final stage in evaluating the inverse Laplace transform involves C 2[ 5 Re{vzj
distorting the integration contour around the poles and arranging for the integral ip
to cancel around the rest of the contour. The resulting integrals around the poles 0, ="

are called the residues.

Figure 9.8 To continue D(k, p) analytically into the left half of the complex

Im {v.} | p-plane, the integration contour must be distorted such that it passes below the
X vz= pole at v, = ip/k. This diagram is for k > 0.
e
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Figure 9.7 For Re{p} positive the integration contour in D(k, p) 1s along the
Re{v,} axis.



Electrostatic Dispersion Relation for a Plasma
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Tom O’Nell (1965

I. REVIEW OF THE LINEAR THEORY OF
COLLISIONLESS DAMPING

HE basic equations for the problem are the

Vlasov equation for the electron distribution
and Poisson’s equation. Dawson’s model of colli-
sionless damping' also uses the equation expressing
conservation of energy which is easily derived from
the above two equations. The ions cannot participate
in the high-frequency plasma oscillations and just
form a uniform background charge. Also, the co-
ordinates perpendicular to the propagation vector
of the wave may be integrated out of the Vlasov
equation at the outset; so, 1t i1s only necessary to
consider the problem in one dimension.

* This work was submitted in partial fulfillment of the
requirements for the Ph.D. degree, University of California,
San Diego.

1 J. Dawson, Phys. Fluids 4, 869 (1961).
2 The formalism used in this section is different from that

used by Dawson; however, it is quite similar to the quasi-
linear formalism of W. E. Drummond and D. Pines.
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Fic. 1. The division of the electron distribution into a main
part and a resonant part.

To explain the mechanism of collisionless damping,
Dawson divides the electron distribution into a
main part and a resonant part (see Fig. 1). He shows
that the main part of the distribution supports
the oscillatory motion of the plasma wave and that
the resonant part of the distribution damps the
wave. To get the damping coefficient, he first cal-
culates the rate of increase of the kinetic energy of
the resonant electrons. By invoking the conserva-
tion of energy, he sets this rate of increase of kinetic
energy equal to the rate of decrease of wave energy.
The latter quantity immediately gives the damping
coefficient of the wave.
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Electrostatic Dispersion Relation for a Plasma
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Fourier-Laplace Transform
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Fourier-Laplace Transform
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Fourier-Laplace Transform
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Figure 9.9 The location of the poles 1n the integral for D(k, p) for the Cauchy
distribution function. This diagram assumes that Re{p} 1s positive and that k > 0.
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9.2 The Landau Approach 343
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Figure 9.13 Phase-space trajectories in a frame of reterence (z,v,) moving at the
phase velocity for a sinusoidal electrostatic potential ®(z) = Oy coskz.

16



Figure 9.14 The relative phase-space locations of trapped particles at three
successive phases of the bounce cycle.
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Bounce (Trapping) Frequency
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o Linear Landau (\yhat's wrong with this picture?)

damping
—A/

Nonlinear
damping

Figure 9.15 The nonlinear etfects ot particle trapping tend to increase the wave
amplitude relative to the predictions of linear Landau damping.
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103

It has been predicted by Landau! that electro-
static electron waves in a plasma of finite tem-
perature will be damped, even in the absence of 02
collisions. Landau’s theory has been challenged
on various grounds? and a number of experiments
designed to detect the effect for electrostatic

ol |

POWER

electron waves or ion acoustic waves have been ~
reported.® The existence of the damping is of 109 |

interest not only for its own sake, but because

the method of calculation has been widely used by 2%0 3:0 "

for related problems. We report here prelimi-

nary results of an experiment designed to mea-

sure the Landau damping of electrostatic electron FIG. 1. Raw data. Upper curve is the logarithm of

waves. We observe heavy damping which exhibits received power. Lower curve is interferometer outpu
J , Abscissa is probe separation.

the expected dependence on phase velocity.

PROBE SEPARATION (cm)
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The nonlinear limit of wave growth induced by a low density
cold electron beam in a collisionless plasma is ecalculated
from a simple physical model. The bandwidth of the growing
“noise’’ 18 80 small that the beam interacts with a nearly
sinusoidal electric field. |
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