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Collective Modes in Inhomogeneous Plasmas: Kinetic and Advanced Fluid Theory 
(IOP Publishing 2000) 

Jan Weiland 

Collective Modes in Inhomogeneous Plasmas: Kinetic and Advanced Fluid Theory presents the collective 
drift and MHD-type modes in inhomogeneous plasmas from the point of view of two-fluid and kinetic theory. 
Written by an internationally respected plasma transport theoretician, this introductory monograph 
emphasizes the description of the plasma rather than the geometry to present a more general approach to 
a large class of plasma problems. Starting with generalized fluid equations for low frequency phenomena, 
the author shows how drift waves and MHD-type modes can arise from the effects of inhomogeneities in 
the plasma. The kinetic description is then presented to reveal a host of phenomena ranging from vortex 
modes and finite Larmor radius effects to trapped and fast particle instabilities, transport, diffusion, and 
other advanced fluid effects. Theoretical and computational plasma physicists modeling confined plasmas 
will find this illustrated book a very valuable addition to their collection.

https://research.chalmers.se/en/person/elfjw
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206 Magnetohydrodynamics

where we have introduced the symbols ξ and h for the internal energy and the
enthalpy, respectively. Assuming that the surface integral vanishes at infinity, the
above equation simplifies to

∂

∂t

∫

V

(
1
2
ρmU 2 + ξ+

B2

2µ0

)
d3x = 0, (6.4.18)

which can be written in the form of an energy conservation equation

K +W = constant, (6.4.19)

where

K =
∫

V

1
2
ρmU 2 d3x (6.4.20)

is the kinetic energy, and

W =
∫

V

(
P

γ− 1
+

B2

2µ0

)
d3x (6.4.21)

is the potential energy. These energy conservation equations will be useful later
when we consider the stability of various MHD systems.

6.5 Magnetohydrodynamic Waves

Next we consider the propagation of small-amplitude waves in a homogeneous
ideal (infinitely conducting) MHD fluid. The relevant equations are Faraday’s law
(6.1.30), the mass continuity equation (6.1.31), the momentum equation (6.1.32),
and an equation of state, which we take to be the adiabatic equation of state
(6.1.34). Since waves usually occur on time-scales sufficiently short that no heat
flows, the adiabatic equation of state is expected to be a good approximation. The
equations are linearized in the usual way by assuming that U,ρm,B, and P are
the sum of a spatially uniform time-independent zero-order (0) quantity plus a
small first-order (1) perturbation, i.e., U = U1, ρm = ρm0 + ρm1, B = B0 +B1, and
P = P0 +P1. The linearized first-order equations of motion then become

∂ρm1

∂t
+ ρm0∇ ·U1 = 0, (6.5.1)

ρm0
∂U1

∂t
=

1
µ0

(∇×B1)×B0 −∇P1, (6.5.2)

∂B1

∂t
=∇× (U1 ×B0), (6.5.3)
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and

P1 = γ

(
P0

ρm0

)
ρm1. (6.5.4)

In the above equation, it is convenient to introduce the speed of sound VS, which
is defined by the equation

V 2
S = γ

P0

ρm0
=
γκ T0

m
, (6.5.5)

where T0 is the zero-order temperature, and m is the average molecular mass.
Next, we Fourier-analyze the above equations by making the usual operator
substitutions, ∇→ ik and ∂/∂t → −iω. At this point we also drop the subscript
1 on the first-order terms, which can be distinguished from the zero-order terms by
the subscript 0 on the zero-order terms. The resulting equations are

−iωρ̃m + iρm0k · Ũ = 0, (6.5.6)

−iωρm0Ũ =
i
µ0

(k× B̃)×B0 − ikP̃, (6.5.7)

−iωB̃ = ik× (Ũ×B0), (6.5.8)

P̃ = V 2
S ρ̃m. (6.5.9)

Eliminating ρ̃m from the above equation by using Eq. (6.5.6), we obtain the
following equation for the first-order pressure perturbation:

P̃ = V 2
S
ρm0

ω
k · Ũ. (6.5.10)

Using the above equation, the pressure P̃ can be eliminated from Eq. (6.5.7),
which, after multiplying by iω/ρm0, becomes

ω2Ũ =
−ω
µ0ρm0

(k× B̃)×B0 +V 2
Sk(k · Ũ) . (6.5.11)

Finally, B̃ can be eliminated from the above equation by using Eq. (6.5.8), which
gives the homogeneous equation for the fluid velocity:

ω2Ũ =
1
µ0ρm0

{k× (k× [Ũ×B0])}×B0 +V 2
S k(k · Ũ). (6.5.12)

With no loss in generality, we can assume that B0 = (0,0,B0) and k =
(k sinθ,0,k cosθ), as shown in Figure 6.6. Working out the cross-products in
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k · Ũ. (6.5.10)

Using the above equation, the pressure P̃ can be eliminated from Eq. (6.5.7),
which, after multiplying by iω/ρm0, becomes

ω2Ũ =
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θ

Figure 6.6 The coordinate system used to analyze MHD wave propagation.

Eq. (6.5.12), dividing by k2, and factoring out B2
0 , we obtain the equation

(ω
k

)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= V 2

A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy cos2 θ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+V 2

S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x sin2 θ+ Ũz sinθcosθ

0
Ũ x sinθcosθ+ Ũz cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.5.13)

where the quantity

VA = B0/
√
µ0ρm0 (6.5.14)

has units of velocity and is called the Alfvén velocity, after Alfvén (1942).
Substituting υp = ω/k for the phase velocity, the homogeneous equation (6.5.13)
can be written in matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ2
p−V 2

S sin2 θ−V 2
A 0 −V 2

S sinθcosθ

0 υ2
p −V 2

A cos2 θ 0

−V 2
S sinθcosθ 0 υ2

p−V 2
S cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (6.5.15)

This equation has non-trivial solutions for Ũ if and only if the determinant of the
matrix is zero, which gives the dispersion relation

Ð(k,ω) =
(
υ2

p−V 2
A cos2 θ

) [
υ4

p−υ2
p

(
V 2

A +V 2
S

)
+V 2

AV 2
S cos2 θ

]
= 0. (6.5.16)

It can be shown that the dispersion relation has three roots:

υ2
p =

1
2

(
V 2

A +V 2
S

)
− 1

2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
, (6.5.17)

υ2
p = V 2

A cos2 θ, (6.5.18)

υ2
p =

1
2

(
V 2

A +V 2
S

)
+

1
2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
. (6.5.19)

The roots, Eqs. (6.5.17), (6.5.18), and (6.5.19), are called the slow magnetosonic
mode, the transverse Alfvén mode (also called the shear Alfvén mode), and the fast
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Ũy

Ũz
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= 0. (6.5.15)

This equation has non-trivial solutions for Ũ if and only if the determinant of the
matrix is zero, which gives the dispersion relation

Ð(k,ω) =
(
υ2

p−V 2
A cos2 θ

) [
υ4

p−υ2
p

(
V 2

A +V 2
S

)
+V 2

AV 2
S cos2 θ

]
= 0. (6.5.16)

It can be shown that the dispersion relation has three roots:
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The roots, Eqs. (6.5.17), (6.5.18), and (6.5.19), are called the slow magnetosonic
mode, the transverse Alfvén mode (also called the shear Alfvén mode), and the fast
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Eq. (6.5.12), dividing by k2, and factoring out B2
0 , we obtain the equation
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, (6.5.13)

where the quantity

VA = B0/
√
µ0ρm0 (6.5.14)

has units of velocity and is called the Alfvén velocity, after Alfvén (1942).
Substituting υp = ω/k for the phase velocity, the homogeneous equation (6.5.13)
can be written in matrix form as
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= 0. (6.5.15)

This equation has non-trivial solutions for Ũ if and only if the determinant of the
matrix is zero, which gives the dispersion relation
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A cos2 θ

) [
υ4

p−υ2
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(
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= 0. (6.5.16)

It can be shown that the dispersion relation has three roots:
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υ2
p =

1
2

(
V 2

A +V 2
S

)
+

1
2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
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The roots, Eqs. (6.5.17), (6.5.18), and (6.5.19), are called the slow magnetosonic
mode, the transverse Alfvén mode (also called the shear Alfvén mode), and the fast
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where we have introduced the symbols ξ and h for the internal energy and the
enthalpy, respectively. Assuming that the surface integral vanishes at infinity, the
above equation simplifies to

∂

∂t

∫

V

(
1
2
ρmU 2 + ξ+

B2

2µ0

)
d3x = 0, (6.4.18)

which can be written in the form of an energy conservation equation

K +W = constant, (6.4.19)

where

K =
∫

V

1
2
ρmU 2 d3x (6.4.20)

is the kinetic energy, and

W =
∫

V

(
P

γ− 1
+

B2

2µ0

)
d3x (6.4.21)

is the potential energy. These energy conservation equations will be useful later
when we consider the stability of various MHD systems.

6.5 Magnetohydrodynamic Waves

Next we consider the propagation of small-amplitude waves in a homogeneous
ideal (infinitely conducting) MHD fluid. The relevant equations are Faraday’s law
(6.1.30), the mass continuity equation (6.1.31), the momentum equation (6.1.32),
and an equation of state, which we take to be the adiabatic equation of state
(6.1.34). Since waves usually occur on time-scales sufficiently short that no heat
flows, the adiabatic equation of state is expected to be a good approximation. The
equations are linearized in the usual way by assuming that U,ρm,B, and P are
the sum of a spatially uniform time-independent zero-order (0) quantity plus a
small first-order (1) perturbation, i.e., U = U1, ρm = ρm0 + ρm1, B = B0 +B1, and
P = P0 +P1. The linearized first-order equations of motion then become

∂ρm1

∂t
+ ρm0∇ ·U1 = 0, (6.5.1)

ρm0
∂U1

∂t
=

1
µ0

(∇×B1)×B0 −∇P1, (6.5.2)

∂B1

∂t
=∇× (U1 ×B0), (6.5.3)
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Eq. (6.5.12), dividing by k2, and factoring out B2
0 , we obtain the equation

(ω
k

)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= V 2

A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy cos2 θ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+V 2

S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x sin2 θ+ Ũz sinθcosθ

0
Ũ x sinθcosθ+ Ũz cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.5.13)

where the quantity

VA = B0/
√
µ0ρm0 (6.5.14)

has units of velocity and is called the Alfvén velocity, after Alfvén (1942).
Substituting υp = ω/k for the phase velocity, the homogeneous equation (6.5.13)
can be written in matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ2
p−V 2

S sin2 θ−V 2
A 0 −V 2

S sinθcosθ

0 υ2
p −V 2

A cos2 θ 0

−V 2
S sinθcosθ 0 υ2

p−V 2
S cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (6.5.15)

This equation has non-trivial solutions for Ũ if and only if the determinant of the
matrix is zero, which gives the dispersion relation

Ð(k,ω) =
(
υ2

p−V 2
A cos2 θ

) [
υ4

p−υ2
p

(
V 2

A +V 2
S

)
+V 2

AV 2
S cos2 θ

]
= 0. (6.5.16)

It can be shown that the dispersion relation has three roots:

υ2
p =

1
2

(
V 2

A +V 2
S

)
− 1

2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
, (6.5.17)

υ2
p = V 2

A cos2 θ, (6.5.18)

υ2
p =

1
2

(
V 2

A +V 2
S

)
+

1
2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
. (6.5.19)

The roots, Eqs. (6.5.17), (6.5.18), and (6.5.19), are called the slow magnetosonic
mode, the transverse Alfvén mode (also called the shear Alfvén mode), and the fast
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Eq. (6.5.12), dividing by k2, and factoring out B2
0 , we obtain the equation

(ω
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)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= V 2

A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy cos2 θ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+V 2

S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x sin2 θ+ Ũz sinθcosθ

0
Ũ x sinθcosθ+ Ũz cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.5.13)

where the quantity

VA = B0/
√
µ0ρm0 (6.5.14)

has units of velocity and is called the Alfvén velocity, after Alfvén (1942).
Substituting υp = ω/k for the phase velocity, the homogeneous equation (6.5.13)
can be written in matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ2
p−V 2

S sin2 θ−V 2
A 0 −V 2

S sinθcosθ

0 υ2
p −V 2

A cos2 θ 0

−V 2
S sinθcosθ 0 υ2

p−V 2
S cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (6.5.15)

This equation has non-trivial solutions for Ũ if and only if the determinant of the
matrix is zero, which gives the dispersion relation

Ð(k,ω) =
(
υ2

p−V 2
A cos2 θ

) [
υ4

p−υ2
p

(
V 2

A +V 2
S

)
+V 2

AV 2
S cos2 θ

]
= 0. (6.5.16)

It can be shown that the dispersion relation has three roots:

υ2
p =

1
2

(
V 2

A +V 2
S

)
− 1

2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
, (6.5.17)

υ2
p = V 2

A cos2 θ, (6.5.18)

υ2
p =

1
2

(
V 2

A +V 2
S

)
+

1
2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
. (6.5.19)

The roots, Eqs. (6.5.17), (6.5.18), and (6.5.19), are called the slow magnetosonic
mode, the transverse Alfvén mode (also called the shear Alfvén mode), and the fast
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Eq. (6.5.12), dividing by k2, and factoring out B2
0 , we obtain the equation
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎡
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Ũ x sin2 θ+ Ũz sinθcosθ

0
Ũ x sinθcosθ+ Ũz cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.5.13)

where the quantity

VA = B0/
√
µ0ρm0 (6.5.14)

has units of velocity and is called the Alfvén velocity, after Alfvén (1942).
Substituting υp = ω/k for the phase velocity, the homogeneous equation (6.5.13)
can be written in matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ2
p−V 2

S sin2 θ−V 2
A 0 −V 2

S sinθcosθ

0 υ2
p −V 2

A cos2 θ 0

−V 2
S sinθcosθ 0 υ2

p−V 2
S cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
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Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (6.5.15)

This equation has non-trivial solutions for Ũ if and only if the determinant of the
matrix is zero, which gives the dispersion relation

Ð(k,ω) =
(
υ2

p−V 2
A cos2 θ

) [
υ4

p−υ2
p

(
V 2

A +V 2
S

)
+V 2

AV 2
S cos2 θ

]
= 0. (6.5.16)

It can be shown that the dispersion relation has three roots:

υ2
p =

1
2

(
V 2

A +V 2
S

)
− 1

2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
, (6.5.17)

υ2
p = V 2

A cos2 θ, (6.5.18)

υ2
p =

1
2

(
V 2

A +V 2
S

)
+

1
2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
. (6.5.19)

The roots, Eqs. (6.5.17), (6.5.18), and (6.5.19), are called the slow magnetosonic
mode, the transverse Alfvén mode (also called the shear Alfvén mode), and the fast
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where we have introduced the symbols ξ and h for the internal energy and the
enthalpy, respectively. Assuming that the surface integral vanishes at infinity, the
above equation simplifies to

∂

∂t

∫

V

(
1
2
ρmU 2 + ξ+

B2

2µ0

)
d3x = 0, (6.4.18)

which can be written in the form of an energy conservation equation

K +W = constant, (6.4.19)

where

K =
∫

V

1
2
ρmU 2 d3x (6.4.20)

is the kinetic energy, and

W =
∫

V

(
P

γ− 1
+

B2

2µ0

)
d3x (6.4.21)

is the potential energy. These energy conservation equations will be useful later
when we consider the stability of various MHD systems.

6.5 Magnetohydrodynamic Waves

Next we consider the propagation of small-amplitude waves in a homogeneous
ideal (infinitely conducting) MHD fluid. The relevant equations are Faraday’s law
(6.1.30), the mass continuity equation (6.1.31), the momentum equation (6.1.32),
and an equation of state, which we take to be the adiabatic equation of state
(6.1.34). Since waves usually occur on time-scales sufficiently short that no heat
flows, the adiabatic equation of state is expected to be a good approximation. The
equations are linearized in the usual way by assuming that U,ρm,B, and P are
the sum of a spatially uniform time-independent zero-order (0) quantity plus a
small first-order (1) perturbation, i.e., U = U1, ρm = ρm0 + ρm1, B = B0 +B1, and
P = P0 +P1. The linearized first-order equations of motion then become

∂ρm1

∂t
+ ρm0∇ ·U1 = 0, (6.5.1)

ρm0
∂U1

∂t
=

1
µ0

(∇×B1)×B0 −∇P1, (6.5.2)

∂B1

∂t
=∇× (U1 ×B0), (6.5.3)
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Eq. (6.5.12), dividing by k2, and factoring out B2
0 , we obtain the equation
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Ũ x sin2 θ+ Ũz sinθcosθ

0
Ũ x sinθcosθ+ Ũz cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.5.13)

where the quantity

VA = B0/
√
µ0ρm0 (6.5.14)

has units of velocity and is called the Alfvén velocity, after Alfvén (1942).
Substituting υp = ω/k for the phase velocity, the homogeneous equation (6.5.13)
can be written in matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ2
p−V 2

S sin2 θ−V 2
A 0 −V 2

S sinθcosθ

0 υ2
p −V 2

A cos2 θ 0

−V 2
S sinθcosθ 0 υ2

p−V 2
S cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (6.5.15)

This equation has non-trivial solutions for Ũ if and only if the determinant of the
matrix is zero, which gives the dispersion relation

Ð(k,ω) =
(
υ2

p−V 2
A cos2 θ

) [
υ4

p−υ2
p

(
V 2

A +V 2
S

)
+V 2

AV 2
S cos2 θ

]
= 0. (6.5.16)

It can be shown that the dispersion relation has three roots:

υ2
p =

1
2

(
V 2

A +V 2
S

)
− 1

2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
, (6.5.17)

υ2
p = V 2

A cos2 θ, (6.5.18)

υ2
p =

1
2

(
V 2

A +V 2
S

)
+

1
2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
. (6.5.19)

The roots, Eqs. (6.5.17), (6.5.18), and (6.5.19), are called the slow magnetosonic
mode, the transverse Alfvén mode (also called the shear Alfvén mode), and the fast
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206 Magnetohydrodynamics

where we have introduced the symbols ξ and h for the internal energy and the
enthalpy, respectively. Assuming that the surface integral vanishes at infinity, the
above equation simplifies to

∂

∂t

∫

V

(
1
2
ρmU 2 + ξ+

B2

2µ0

)
d3x = 0, (6.4.18)

which can be written in the form of an energy conservation equation

K +W = constant, (6.4.19)

where

K =
∫

V

1
2
ρmU 2 d3x (6.4.20)

is the kinetic energy, and

W =
∫

V

(
P

γ− 1
+

B2

2µ0

)
d3x (6.4.21)

is the potential energy. These energy conservation equations will be useful later
when we consider the stability of various MHD systems.

6.5 Magnetohydrodynamic Waves

Next we consider the propagation of small-amplitude waves in a homogeneous
ideal (infinitely conducting) MHD fluid. The relevant equations are Faraday’s law
(6.1.30), the mass continuity equation (6.1.31), the momentum equation (6.1.32),
and an equation of state, which we take to be the adiabatic equation of state
(6.1.34). Since waves usually occur on time-scales sufficiently short that no heat
flows, the adiabatic equation of state is expected to be a good approximation. The
equations are linearized in the usual way by assuming that U,ρm,B, and P are
the sum of a spatially uniform time-independent zero-order (0) quantity plus a
small first-order (1) perturbation, i.e., U = U1, ρm = ρm0 + ρm1, B = B0 +B1, and
P = P0 +P1. The linearized first-order equations of motion then become

∂ρm1

∂t
+ ρm0∇ ·U1 = 0, (6.5.1)

ρm0
∂U1

∂t
=

1
µ0

(∇×B1)×B0 −∇P1, (6.5.2)

∂B1

∂t
=∇× (U1 ×B0), (6.5.3)
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component disappears completely is also a special case that only occurs at
θ = 0.)

For θ = π/2 the homogeneous equation is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ2
p − (V 2

A +V 2
S) 0

0 υ2
p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0. (6.5.27)

In this case, the dispersion relation has only one non-trivial root, υ2
p = V 2

A + V 2
S.

The eigenvectors corresponding to this root are Ũ = (Ũx,0,0), B̃ = (0,0, B̃z), Ẽ =
(0, Ẽy,0), and ρ̃m = ρm0(Ũx/υp). These eigenvectors share features of both an
electromagnetic wave and a sound wave.

For intermediate wave normal angles, the two magnetosonic modes have both
longitudinal (i.e., sound wave) and transverse (i.e., electromagnetic) components.
Further insight into the nature of the magnetosonic waves at intermediate wave
normal angles can be gained by considering the limit V 2

S ≪ V 2
A. Under this

condition it can be shown that the magnetosonic part of the dispersion relation
is approximately

Ð(k,ω) = (υ2
p −V 2

A) (υ2
p −V 2

S cos2 θ) = 0. (6.5.28)

As shown in Figure 6.10, the isotropic root υ2
p =V 2

A has eigenvectors corresponding
to a nearly transverse electromagnetic wave with only a small longitudinal (i.e.,
sound wave) component, and the anisotropic root υ2

p = V 2
S cos2 θ has eigenvectors

corresponding to a sound wave with only a small electromagnetic component
(Ẽ≃0 and B̃≃0).

Since the plasma pressure is much smaller than the magnetic field pressure when
V 2

S ≪ V 2
A, the fluid motion for the slow magnetosonic wave is constrained to be

nearly parallel to the static magnetic field. The group velocity and wave energy
flow are also nearly parallel to the static magnetic field. The particle motions and

k k
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~
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wave

Slow magnetosonic
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θ θ~
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Figure 6.10 The eigenvectors for the fast and slow magnetosonic modes.
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Figure 6.8 The eigenvectors for the transverse Alfvén mode.

along the static magnetic field, independent of the wave normal angle. From the
dispersion relation for this mode (6.5.18), it can be shown that the group velocity
is given by

vg =∇kω = VAẑ, (6.5.24)

which is parallel to the static magnetic field, consistent with the fact that the
Poynting flux is parallel to the magnetic field.

The propagation of the transverse Alfvén wave has an interesting analogy with
the propagation of waves on a taut string. From the magnetic pressure tensor we
have seen that the magnetic pressure can be thought of as an isotropic pressure
plus a tension force per unit area, B2/µ0, along the magnetic field. It is well known
that the velocity of propagation of a wave along a taut string is given by

υp =
√

T/λm, (6.5.25)

where T is the tension and λm is the mass per unit length. If we substitute
T = (B2/µ0)∆A for the tension force and λm = ρm∆A for the mass per unit length
(where ∆A is the cross-sectional area), the velocity of propagation is given by
υp = B/

√
µ0ρm, which is just the Alfvén velocity. Thus, the propagation of the

transverse (or shear) Alfvén wave can be thought of as being analogous to
the propagation of a wave on a taut string with the magnetic field providing the
tension and the MHD fluid providing the mass per unit length. This analogy also
suggests that waves on different magnetic field lines propagate independently, as
though they were on separate strings. Thus, even though the wave vector makes
a substantial angle to the magnetic field, as illustrated in Figure 6.9, the wave
energy is transported along the magnetic field lines, just as though the wave were
propagating on a system of taut strings.
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where we have introduced the symbols ξ and h for the internal energy and the
enthalpy, respectively. Assuming that the surface integral vanishes at infinity, the
above equation simplifies to

∂

∂t

∫

V

(
1
2
ρmU 2 + ξ+

B2

2µ0

)
d3x = 0, (6.4.18)

which can be written in the form of an energy conservation equation

K +W = constant, (6.4.19)

where

K =
∫

V

1
2
ρmU 2 d3x (6.4.20)

is the kinetic energy, and

W =
∫

V

(
P

γ− 1
+

B2

2µ0

)
d3x (6.4.21)

is the potential energy. These energy conservation equations will be useful later
when we consider the stability of various MHD systems.

6.5 Magnetohydrodynamic Waves

Next we consider the propagation of small-amplitude waves in a homogeneous
ideal (infinitely conducting) MHD fluid. The relevant equations are Faraday’s law
(6.1.30), the mass continuity equation (6.1.31), the momentum equation (6.1.32),
and an equation of state, which we take to be the adiabatic equation of state
(6.1.34). Since waves usually occur on time-scales sufficiently short that no heat
flows, the adiabatic equation of state is expected to be a good approximation. The
equations are linearized in the usual way by assuming that U,ρm,B, and P are
the sum of a spatially uniform time-independent zero-order (0) quantity plus a
small first-order (1) perturbation, i.e., U = U1, ρm = ρm0 + ρm1, B = B0 +B1, and
P = P0 +P1. The linearized first-order equations of motion then become

∂ρm1

∂t
+ ρm0∇ ·U1 = 0, (6.5.1)

ρm0
∂U1

∂t
=

1
µ0

(∇×B1)×B0 −∇P1, (6.5.2)

∂B1

∂t
=∇× (U1 ×B0), (6.5.3)
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Figure 6.7 Plots of the phase velocities for the three MHD modes as a function
of the wave normal angle for two cases, VA > VS and VA < VS.

magnetosonic mode, respectively. In the low-temperature, low-frequency limit, it
can be shown that for θ = 0 the transverse Alfvén mode corresponds to the n2 =

L mode, and the fast magnetosonic mode corresponds to the n2 = R mode (see
Section 4.4.1). The slow magnetosonic mode disappears completely in the limit of
zero temperature (i.e., VS = 0). The phase velocities of the three modes are shown
as a function of the wave normal angle in Figure 6.7. Two cases, VA > VS and
VA < VS, must be considered. For VA > VS, the transverse Alfvén mode connects
with the fast magnetosonic mode at θ = 0, whereas for VA < VS the transverse
Alfvén mode connects with the slow magnetosonic mode at θ = 0.

Next, we discuss the eigenvectors associated with each of these modes.

6.5.1 The Transverse (or Shear) Alfvén Mode

It can be verified that the root for the transverse Alfvén mode, given by
Eq. (6.5.18), has eigenvectors

Ũ = (0, Ũy,0), (6.5.20)

B̃ = (0, B̃y,0), B̃y = −B0(Ũy/VA) Sign(cosθ), (6.5.21)

Ẽ = (Ẽx,0,0), Ẽx = −B0Ũy, (6.5.22)

ρ̃m = 0. (6.5.23)

These eigenvectors are shown in Figure 6.8.
As can be seen, the fluid motions for this mode are entirely transverse, with no

compressional component (i.e., k · Ũ = 0). This is the reason the mode is called
the transverse Alfvén mode. The propagation velocity is controlled entirely by the
Alfvén speed. Since there is no compression, the fluid pressure and temperature
play no role in the propagation of this mode. From the direction of the electric and
magnetic field, it is easy to see that the Poynting flux, S = (1/µ0) E×B, is parallel
to the static magnetic field B0. The electromagnetic energy flow is then exactly
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Figure 6.6 The coordinate system used to analyze MHD wave propagation.

Eq. (6.5.12), dividing by k2, and factoring out B2
0 , we obtain the equation

(ω
k

)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= V 2

A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy cos2 θ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+V 2

S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x sin2 θ+ Ũz sinθcosθ

0
Ũ x sinθcosθ+ Ũz cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6.5.13)

where the quantity

VA = B0/
√
µ0ρm0 (6.5.14)

has units of velocity and is called the Alfvén velocity, after Alfvén (1942).
Substituting υp = ω/k for the phase velocity, the homogeneous equation (6.5.13)
can be written in matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ2
p−V 2

S sin2 θ−V 2
A 0 −V 2

S sinθcosθ

0 υ2
p −V 2

A cos2 θ 0

−V 2
S sinθcosθ 0 υ2

p−V 2
S cos2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ũ x

Ũy

Ũz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (6.5.15)

This equation has non-trivial solutions for Ũ if and only if the determinant of the
matrix is zero, which gives the dispersion relation

Ð(k,ω) =
(
υ2

p−V 2
A cos2 θ

) [
υ4

p−υ2
p

(
V 2

A +V 2
S

)
+V 2

AV 2
S cos2 θ

]
= 0. (6.5.16)

It can be shown that the dispersion relation has three roots:

υ2
p =

1
2

(
V 2

A +V 2
S

)
− 1

2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
, (6.5.17)

υ2
p = V 2

A cos2 θ, (6.5.18)

υ2
p =

1
2

(
V 2

A +V 2
S

)
+

1
2

[(
V 2

A−V 2
S

)2
+ 4V 2

AV 2
S sin2 θ

]1/2
. (6.5.19)

The roots, Eqs. (6.5.17), (6.5.18), and (6.5.19), are called the slow magnetosonic
mode, the transverse Alfvén mode (also called the shear Alfvén mode), and the fast
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Review: Shear Alfvén Wave (Basic Equations)
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Review: Shear Alfvén Wave
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Compressional (Magnetosonic) Alfvén Wave
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Compressional Alfvén Wave: Perpendicular Current
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Compressional Alfvén Wave
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What is E||?
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Two Fluid Electron Electromagnetics
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Parallel Electron Dynamics: Force Balance

 18



Parallel Electron Dynamics: Continuity
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Parallel Electron Dynamics
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Parallel Electric Field
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Density-Potential Relationship
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Next: Interchange and Kink Modes

• Read Ch. 7 in textbook 

• Equilibrium: review 

• Sec. 7.3.2: Stability of Ideal Magnetostatic Equilibrium (interchange and sausage) 

• Sec. 7.3.3: Linear force operator
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