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Review (1): Adiabatic Electrons

In general the perturbed potential is determined by
Poisson’s equation
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Poisson equation is small. From Eq. (9) the fractional
deviation of electron and ion density is
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Thus the principle of quasineutrality applies. In the
quasineutral regime the plasma potential adjusts its
value to make ni(f)5ne(f) to the first order in
lDe

2 /dx
2. The resulting small fractional charge separa-

tion is computed from Poisson’s equation using the po-
tential rather than vice versa. All the drift-wave dynam-
ics discussed in this review are in the regime of
quasineutrality where r̃Q5Saqaña50 determines the
evolution of the electrostatic potential and the plasma
eigenmodes. Here a is the species index for particles of
charge qa and density na . In terms of the particle cur-
rents ja the quasineutral dynamics is given by Saπ•ja

50. In plasma physics it is conventional to measure tem-
perature in energy units kBTe!Te leaving free the k

symbol for a wave number k associated with the fluctua-
tions. The discussion regarding Fig. 1 applies equally
well to each cell of a wave with dx.p/k . Figure 2 shows
the three-dimensional structure of the drift wave as ob-
served, for example, in either a Q machine or the Co-
lumbia Linear Machine (see Sec. II.B), with the m52
mode dominant. We return to analyze the convection in
Figs. 1 and 2 in Sec. C after discussing the general fea-
tures of the fluctuations.

The condition for the electrons to establish the
Boltzmann distribution in the drift-wave–ion acoustic
wave disturbances follows from the parallel electron
force balance equation. For fluctuations with the parallel
variation k i52p/l i sufficiently strong so that electrons
with thermal velocity ve5(Te /me)1/2 move rapidly along
k i compared with time rate of change of the fields (v

,kive) the dominant terms in the electron fluid force
balance equation
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are the electric field E i52π if and the isothermal pres-
sure gradient π ipe5Teπ ine . The temperature gradient
is small compared with density gradient due to the fast
electron thermal flow associated with k ive.v . Thus
much of the low-frequency drift-wave dynamics falls in
the regime where the Boltzmann description of the elec-
tron response
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Here in the last step it is convenient to adopt an equality
in the sense of defining the linear, adiabatic electron
model. The model requires that ef/Te!1 and k ive

@(n
e

21v2)1/2. For example, both the Hasegawa-Mima
equation and the ideal ion temperature gradient (ITG)
model rely on the adiabatic electron model defined by
Eq. (12). For the simple drift-wave instability, however,
the adiabatic electron response defined by Eq. (12) is
broken by dissipation as we now discuss.

After dropping the electron inertia (me!0) the par-
allel electron force balance becomes
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where pe is the traceless momentum stress tensor that
includes the electron viscosity and h is the electrical
resistivity. Using collisional or neoclassical
transport theory, the nonadiabatic contributions to
Eq. (12) can be computed. For the collisional regime
ne.k ive the electron temperature fluctuations dTe /Te

;(vne /k
i

2ve

2)(dne /ne) and the resistivity contribution
to dne are of the same order, both giving rise to a dne-f

FIG. 1. Drift-wave mechanism showing E3B convection in a
nonuniform, magnetized plasma.

FIG. 2. Three-dimensional configuration of the drift-wave
fields in a cylinder.
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Review (2): Continuity (Drifting Ions)

Ion E×B drift across 
radial density gradient



Review (3): Drift Wave Dispersion Relation

Ion E×B drift across 
radial density gradient



Review (4a): Adding Ion Sound Waves



Review (4b): Adding Ion Inertia

(!! nice)



Next: Collisionless Drift Wave Instability and Transport
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Observation of radially propagating collisionless-drift-wave instability 
Y. Nishida,* T. Dodo,t T. Kuroda, and G. Horikoshi f 
Institute of Plasma Physics, Nagoya University, Nagoya, Japan 
(Received 19 September 1972) 

The radially traveling drift-wave instability is observed in a fully ionized collisionless plasma. The 
observed radial wave number is larger than the azimuthal wave number. The observed frequency, 
in the frame of ErBz plasma rotation, is in good agreement with the calculated frequency of the 
drift instability after the correction of finite ion inertia including the radial wave number, where 
Er is a radial electric field and B z is an axial magnetic field. 

Drift waves can be unstable if there exist an appropriate 
temperature gradient or a finite ion Lamour radius or 
an electron collision. 1 In the case of Te» T j , however, 
where Te and T j are the electron and ion temperature, 
respectively, the collisionless drift wave can also be un-
stable by an effective finite ion inertia combined with 
large perpendicular wave numbers to the magnetic field, 
even if the temperature gradient or a finite-ion Lamour 
radius does not exist. Many experiments reported,2-5 
have not observed the radial propagation except in the 
case of the flute-type plasma rotation. 6 In this paper, it 
is reported that the experimental evidence of the radial-
ly propagating drift-wave instability is proved, and thus 
the drift wave is unstable from the ion inertia effects. 

The experiment has been performed in the magnetic 
channel of a QP-Machine7 which has an 8-m-long uni-
form magnetic field, variable from 0.6 to 3.5 kG. The 
vacuum chamber is made of glass, and its inner diam-
eter is 15 cm. The plasma, produced by a PIG dis-
charge, diffused along the magnetic field into the ex-
perimental region. The residual gas pressure was 
(1 -2) x10- 6 Torr. The helium plasma density was about 
5 x109 cm-3 , the electron temperature 2.5 -3. 5 eV, and 
the ion temperature below 1 eV. A set of two probes, 
separated 90° each in the azimuthal direction e, is in-
serted into the plasma column at the same axial position. 
One of the probes can be moved radially across the plas-
ma column, and the other is fixed at the desired 
position. 

A typical Fourier spectrum of the fluctuation has three 
distinct peaks at about 15 (fo), 22{fl)' and 40 kHz (f2)' 
The frequency variations of these peaks with the mag-
netic field strength are shown in Table I. The wave 
characteristics of the fluctuation are investigated by 
means of the phase-sensitive detection method. The 
signal from the fixed probe is used as the reference 
signal. The variations of the amplitude A(r) and the 
phase kyr of the wave II in the radial direction at the 
fixed e are calculated by the least mean squares method 
from the results of the recorder plots of the phase sen-
sitive detector output. The results are shown in Fig. 1 
with the denSity profiles measured from the ion satura-
tion current. The amplitude of the fluctuation is maxi-
mum at the maximum density gradient. The radial wave 
number k y of a 24-kHz wave is 1.25 cm- I , which is larg-
er than the inverse density gradient scale length K = (d/ 
dr) lnno "" 0.4 cm-I, as seen from the same figure. 

Another measurement by means of the cross-correlation 
function indicates that the waves of 16, 24, and 44 kHz 
propagate in the same direction as the electron diamag-
netic drift velocity due to the radial density gradient. 
The mode number in the azimuthal direction is found to 
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be m = 1 for the waves 10 and II and m = 2 for 12' An at-
tempt was made to determine the axial wave length and 
was found to be much longer than about 200 cm. 

In this experiment, there is the radial electric field By 
caused by the ambipolar diffUSion and from the presence 
of an electron beam from the PIG source in the column 
center. At the position r"" 2 cm, where the amplitude of 
the fluctuation is maximum, By changes from 1 V /cm 
(at 0.6 kG) to 2.5 V /cm (at 1. 4 kG). The plasma rota-
tion frequency IE by B,.B. drift is calculated from the 
observed value By for each magnetic field strength of 
0.6 -1. 4 kG and it is tabulated in Table I. The observed 
frequency 10' which is the lowest frequency of the fluctu-
ation, agrees fairly well with the plasma rotation fre-
quency IE' Here, the azimuthal wave number ky=m/ro 
is about 0.5 cm- l for the m = 1 mode throughout all the 
magnetic field strengths investigated, where ro is the 
radial position at the maximum amplitude. 

The observed values of Te and the density scale length 
K-1 are in the range of 2.6 (for 0.6 kG) -3.4 eV (1.4 kG) 
and 2.5 (for 0.6 kG) -1. 9 cm (for 1. 4 kG), respectively. 
The drift wave frequency 1* = (21T)-1 kyKTec/ eB is calcu-
lated from these values for each magnetic field strength 
and is tabulated in the eighth column in Table I. 1* is 
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FIG. 1. The calculated amplitude (---) and phase (0) of the 
fluctuation as a function of the radial pOSition. The plasma 
density profile is also shown by solid line. Vertical scales are 
a radian for the phase and an arbitrary linear for the amplitude 
and the density, respectively. 
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FIG. 1. The calculated amplitude (---) and phase (0) of the 
fluctuation as a function of the radial pOSition. The plasma 
density profile is also shown by solid line. Vertical scales are 
a radian for the phase and an arbitrary linear for the amplitude 
and the density, respectively. 
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FIG. 1. The calculated amplitude (---) and phase (0) of the 
fluctuation as a function of the radial pOSition. The plasma 
density profile is also shown by solid line. Vertical scales are 
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Anomalous Transport and Stabilization of Collisionless Drift-Wave Instabilities*

W. W. Lee and H. Okuda
Plasma Physics Laboratory, Princeton University, Princeton, ¹seJersey 08540

(Received 10 November 1975)

The nonlinear evolution of collisionless drift-wave instabilities and the associated plas-
ma transport have been studied extensively using particle-code simulations. It is found
that the quasilinear decay of the density profile gives rise to the nonlinear saturation.
The results also indicate that a new mechanism of wave absorption is responsible for the
observed anomalous energy transport, which, in general, is larger than the correspond-
ing particle diffusion and is also less sensitive to shear.

Low-frequency gradient-driven microinstabili-
ties in a magnetically confined plasma have at-
tracted wide-spread interest in recent years in
view of the fact that the resulting enhanced plas-
ma transport is detrimental to confinement. "
While much of the theoretical work has been di-
rected at obtaining relevant stability criteria for
these modes, ' their nonlinear behavior and the
associated plasma transport processes are far
less understood. '"' It is generally believed that
particle-code simulations should play a key role
in helping us to gain insight into these areas and
should provide guidelines for the analytic work.
With that in mind, we have conducted extensive

numerical studies on the drift-wave instability
driven by the finite-Larmor-radius effects in a
low-P collisionless plasma (universal mode), us-
ing a newly developed particle-simulation code. '
In this Letter, we will report on the comparisons
of our results with the existing linear theories.
Such comparisons so far are unavailable from
laboratory experiments. ~" We will also present

results concerning the nonlinear behavior of the
instability with regard to the mechanisms for
the nonlinear saturation and the anomalous plas-
ma transport, and the scaling laws in the pres-
ence of shear. It is our opinion that these results
will have an important influence on the future
development of the nonlinea, r theory for the gradi-
ent-driven mic roinstabilities.
A 2a dimensional (x, y, v„, v~, vg) bounded-plas-

ma model capable of handling a nonuniform sys-
tem has been developed for our purpose. ' The
system is uniform and periodic in y, and is non-
uniform in x where the plasma is bounded be-
tween two conducting walls. The main magnetic
field B, is perpendicular to the inhomogeneous x
direction with Bo,»Bo,. Particles reaching the
walls are reflected so as not to produce sheath
currents and other undesirable effects. '
Let us first present a linear theory pertaining

to our model. For the case of the universal
mode, the governing equation for the perturbed
potential y = y(x) exp(ih, y —iu&t) can be written

CO +97
a n 11 tavIlvtcx

p 2(h 2 92/9x2) h p 2 92/sx2

where n denotes the species, v, =(T„/rn„)'", p„=v,„/v, „, a&*=A,T,~/rn;u&„, w, *=-&o*, u&;*=re*T;/T„v=—(dn/dx)/n, L„—= 1/~lc~ is the density scale length, h~~ =h& cos8, where e is the angle between k
and B„ I& is the Bessel function, and Z is the plasma dispersion function. " Expanding Eq. (I) in the
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to our model. For the case of the universal
mode, the governing equation for the perturbed
potential y = y(x) exp(ih, y —iu&t) can be written

CO +97
a n 11 tavIlvtcx

p 2(h 2 92/9x2) h p 2 92/sx2

where n denotes the species, v, =(T„/rn„)'", p„=v,„/v, „, a&*=A,T,~/rn;u&„, w, *=-&o*, u&;*=re*T;/T„v=—(dn/dx)/n, L„—= 1/~lc~ is the density scale length, h~~ =h& cos8, where e is the angle between k
and B„ I& is the Bessel function, and Z is the plasma dispersion function. " Expanding Eq. (I) in the
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limit of k„p„&1, we obtain the usual mode equation of the form

d'y/dx'+Q(x, cog =0. (2)
We will now consider the solutions of Eq. (2) for several different eases. For a shear-free and con-
stant-~* (or z) case, Eq. (2) can be solved with the boundary conditions y(0) = y(L„)= 0, and the result-
ing dispersion relation is similar to Eq. (1) with —&'/&x' now replaced by 0„'—= (mw/L„) for m = 1, 2,
3, . . . . The normal modes are given by

y = sin(mmx/L, ).
For the case of a spatially dependent u* without shear, we expand Q in Eq. (2) around the maximum
to* at x„' i.e., ~„*(x)=~,„*+a&,„*"(x-x, )'/2, and obtain

(3)

Q g Il2( )2 Q ~[1 + (~ +~~a*)XO~+w~~*"XO0,(x—xg) /2]/TNZ a pn (~+~an*)(Xoa -Xin)/T n (4)

and

A=la(2l+1), l=0, 1, 2, .. . ,

y =II(((lo)"'(x x, ))—exp[-io (x —x,)'/2],

(5)

(6)

respectively, where H& is the Hermite polynomi-
al and 0 =+B. The choice of sign for o is such
that Im«0 as required from the proper bound-
ary conditions for outgoing waves at large x.'"
To simulate a collisionless plasma, "the stan-

dard dipole-expansion technique with finite-size
particles is used. ' The guiding centers of the
particles are loaded initially according to a pre-
scribed density profile and with spatially uniform
temperatures on a 64&& 32 (L„&&L„) spatial grid.
Maxwellian velocity distributions are also used.
The parameters of the simulations are m~/m,
=25, T,/T;=4, A.~, /6 =2, co„/&u~, =2, the aver-
age number density (n) = 8/h2, and a(rms of a
Gaussian particle) =1.5b.. The mesh size b, is
taken as the unit length. All the frequencies are
measured in terms of co~, . These parameters
give k„p; =0.12m and k, p;=0.49n where m, n
=1, 2, 3, . . . . Exact dynamics for the particle
pushing have been used with 4t = 0.5.
Two different density profiles have been used

in the calculations; the exponential profile given
by no(x, t = 0) = (n)I'LL„exp(- zx)/[1 —exp(- KL„)j
with ~ =O.OV 2nd the hyperbolic tangent profile
given by no(x, t = 0) = (n) (1—vol, tanh[(x —x,)/l, ]}
with ~,=0.1, /, =24/m, and x0=32, as shown in
Fig. 1(a). For the exponential profile in which
co* is constant, the most unstable mode, from
Eq. (1), is found to be (m, n) = (1, 1) with m

=0.0064 and y=0.0048 for 8=88.5'. For the case
of the hyperbolic tangent profile, m* has a peak

where X& I~(b„—-) exp(- b„)Z(cv/v 2 0 ~~'Ug„)/W2k}, vg~
The dispersion relation and the localized normal
modes are, from Eqs. (2) and (4),

at +z =36 where ~max 0.12 and Kmax
Equation (5) gives co = 0.0055 and y= 0.0048 for
the most unstable mode (l, m) = (0, 1) for 8 = 88.5'.
Since the two growth rates are the same, we de-
fine (L„)= 1/0.07 as the average density scale
length to describe both systems.
The simulation results of the growth rates for

the two density profiles, measured in terms of
the average density modulation versus time, are
shown in Fig. 1(b) where (n, (x, t)) = J n, (x, t) dx/I „
is the spatial average of the most unstable n =1
mode. The agreement with theory is excellent.
The instability grows above the thermal noise at
t= 400 and exponentiates at the expected growth
rate. The saturation density modulation is about
10%. The corresponding frequencies are found
to be e = 0.004 for both cases at I;= 1200 and are
smaller than the theoretical estimates. This is
due to the quasilinear diffusion to be discussed
later.
The spatial structures of m=1 mode are shown

in Fig. 1(c). For the exponential profile case,
several normal modes in x have initially been ex-
cited which are eventually dominated by the m = 1
mode at t =880. The deviation of the mode struc-
ture from Eq. (3) is again due to the quasilinear
diffusion. For the hyperbolic tangent profile
case, l = 0 is the only unstable mode and its struc-
ture at the linear stage of the instability, I;= 560,
agrees very well with that given by Eq. (6).
As the instability develops, the density profile

undergoes a quasilinear change in time due to
the E && B drift as shown in Fig. 1(a). Initially,
the diffusion takes place at around the maximum
wave amplitude, then gradually evolves into a
plateau, and finally settles into a new stable con-
figuration. The density profiles then oscillate
around the new equilibrium with approximately
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FIG. 1. (a) Time evolution of the density profiles. (b) Growth of the density modulation for n =1 mode. (c) Mode
structures for n = 1 mode. {d) Parallel electron heat transfer patterns. (e) Average velocity distributions.

twice the drift frequency because of the existence
of the large-amplitude waves in the system by
this time. The profiles shown for t = 1600 rough-
ly correspond to the equilibrium states. The so-
lutions from Ecl. (5) have confirmed this observa-
tion; i.e., these final configurations are indeed
linearly stable. In general, the diffusion of the
electrons is found to be slower than that of the
ions. The amplitude of the modes has reached
a maximum at the time of the plateau formation
with eP, /T, =25 and 15', respectively, for the
two cases. Note the initial noise level here is
about 1.5'.
Let us now examine the energy transport proc-

esses associated with the instability which were
first pointed out by Coppi. " The simulation re-
sults have shown that in the linear stage there is
energy transfer from the parallel electron tem-
perature to the waves through inverse Landau
damping in the unstable regions. However, as the
waves grow in amplitude causing the quasilinear
diffusion, a significant amount of electron heat-
ing has been observed elsewhere. After the plas-
ma reaches the stable configuration, the heating
also stops. The electron heat transfer patterns
normalized by the initial temperature (T)„t are
shown in Fig. 1(d). The energy loss from the un-
stable regions is about 10' of the total parallel
electron thermal energy for the exponential case
and 7%%uo for the other. More than half of that

amount, however, is transported by the waves
back to the electrons in other regions causing
large heat transfer. This is due to the quasilin-
ear change in density which alters the local dis-
persions; however, the linear wave absorption
is also responsible for the heating in the hyper-
bolic tangent case." Most of the remaining
amount goes to the ambipolar drift, and relative-
ly little is kept by the waves. No ion heating has
been detected, except for the ion drift parallel to
B,. In Fig. 1(e), the average electron velocity
distribution functions corresponding to those in
Fig. 1(d) are shown along with the measured
phase velocity. The resonance regions are evi-
dently broadened by the instability. This is also
the case for the local distributions.
The nonlinear behavior of the instability re-

ported here does not seem to agree with the vari-
ous existing theories. '"' Instead, the quasilin-
ear diffusion in space is the dominant saturation
mechanism. The theoretical analysis has been
initiated with encouraging results and will be re-
ported later. "
Let us now look at the shear stabilization of

drift waves using the hyperbolic tangent density
profile. The sheared magnetic field is introduced
by adding B,(x) =yBo(x x, )/L, to B-o. We choose
xi = 36 so that J3, = 0 at the maximum II, . As the
shear length decreases, we have observed a re-
duction in the associated plasma transport with
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trons is much less sensitive to shear.
The detailed comparison of the simulation re-

sults with the theory for the shear stabilization
will be reported in a separate paper. '2
The authors wish to acknowledge useful discus-

sions with Dr. C. Oberman, Dr. Y. Y. Kuo, and
Dr. %. M. Tang.

IO — IO0 0.06 O.I2
& LI)&/Ls

FIG. 2. Diffusion and conductivity coefficients ver-
sus shear.

the overall patterns similar to those of the shear-
less case. Again, no ion heating has been detect-
ed. The results also indicate that the saturation
for the partially stabilized drift waves is due to
the quasilinear density decay.
To estimate the particle diffusion and heat con-

ductivity coefficients, the diffusion equation,
6 (no, T,s)/6t = (P~,&,~)3'(no, T,~,)/~x', is used. The
averao'e coefficients versus shear for the hyper-
bolic tangent profile are shown in Fig. 2. For
the shear-free case, the measured D~ is about
28%%uo of the values given by the Bohm diffusion,
D~ -cT,/16eBo, and the turbulent diffusion, D~
y/l't&', by Kadomtsev, ' while K,~ is about four
times bigger. These are also true for the shear-
free exponential case. The Pearlstein and Berk
criterion for the total stabilization by shear' is
(L„)/L, ~ 0.24 for our case. The results shown
in Fig. 2 approach this limit asymptotically if
extrapolation is used. However, our results dif-
fer from the estimate given by Ref. 8. Figure 2
also shows that the heat conductivity for the elec-
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Collisionless drift waves are studied by means of nonlinear numerical simulations in a
three-dimensional sheared slab geometry. The electron dynamics is described by a drift-kinetic
equation, and the ions are treated as a cold fluid. The energy spectra of the turbulent fluctuations and
the dependence of the resulting anomalous transport on various dimensionless plasma parameters
are investigated. It is shown that this model resolves fundamental contradictions between
experimental results and linear drift wave theory, especially the dependence of turbulent transport
on radial position but also the scaling with ion mass. © 1999 American Institute of Physics.
@S1070-664X~99!03606-X#

I. INTRODUCTION

The observed anomalous transport in magnetically con-
fined plasmas is generally attributed to turbulent convection
triggered by various small-scale instabilities.1 Among these
are the drift waves, which play an important role in the edge
region of confinement devices. A careful investigation of the
relevant plasma parameter regime shows that the electron
motion parallel to the magnetic field is usually, at most,
weakly collisional. As a consequence, drift wave turbulence
~which has been described almost exclusively by Braginskii-
type fluid models2 so far! should really be treated within the
framework of kinetic theory. This is done in the present pa-
per where we study the properties of collisionless drift wave
turbulence in a three-dimensional sheared slab geometry.

In treating collisionless electrons in strongly magnetized
plasmas, one can average out the fast gyromotion and derive
a drift-kinetic description for the electron guiding centers.3
Owing to the fact that the electron Larmor radii are orders of
magnitude smaller than typical drift wavelength scales, finite
Larmor radius ~FLR! effects can be neglected. For simplic-
ity, the cold ion approximation is taken ~i.e., the ion tempera-
ture is set to zero! and we concentrate on the electron dy-
namics, which is essential for drift waves. Finite-temperature
gyrokinetic ions will be added later, after we clarified the
fundamental character of the electron dynamics.

Particle simulations dealing with the nonlinear evolution
of collisionless drift waves were initiated in the 1970’s by
Lee, Okuda, and co-workers.4–6 Whereas these investiga-
tions were limited to two spatial dimensions, Cheng and
Okuda7,8 were the first to study the corresponding three-
dimensional case for a cylindrical geometry both with and
without magnetic shear. Both these and similar studies were
seriously limited by computational capability with respect to
particle number, run time, or both. It is only through the
advent of modern supercomputers that numerical computa-
tions like the ones presented here have become feasible. In
order to avoid the numerical noise inherent to particle simu-
lations, we discretize the underlying set of nonlinear partial
integro-differential equations on a stationary phase space
grid. Our Eulerian scheme is based on upwind methods

which have been developed within the computational fluid
dynamics ~CFD! community and are applied to our kinetic
problem. Details are described elsewhere.9

Besides investigating the energy spectra of the fluctua-
tions caused by collisionless drift waves, we also present the
change of the resulting turbulent transport with various di-
mensionless plasma parameters, discussing the numerical re-
sults and their implications. In particular, we will show that
two qualitative contradictions between experiments and lin-
ear drift wave theory can be resolved by nonlinear computa-
tions, namely the dependence of the anomalous transport co-
efficients on radial position1 and ion mass.10

The remainder of this paper is organized as follows. In
Sec. II we derive the basic equations. Section III deals with
nonlinear simulation results concerning collisionless drift
wave turbulence. Among these are the transport scalings
with respect to various local plasma parameters. In Sec. IV
we summarize the obtained results and give some concluding
remarks.

II. BASIC EQUATIONS
A. Drift-kinetic electrons and cold ions

Under typical tokamak edge conditions in the high con-
finement regime ~H-mode!, the parallel electron dynamics is
at most weakly collisional; e.g., for ASDEX Upgrade ~Axi-
symmetric Divertor Experiment!11 we find k ive;ve /qR
;2.6 nei , where k i is a typical parallel wave number, ve is
the electron thermal velocity, q is the safety factor, R is the
major radius, and nei is the electron-ion collision frequency.
Here, we used the nominal parameters q53, R51.65 m,
Te5250 eV, and ne5431019 m23. As a consequence, de-
viations from the adiabatic electron approximation ~which lie
at the heart of drift wave dynamics! are mainly caused by
electron Landau damping, not by electron-ion collisions, and
the parallel electron motion has to be modeled kinetically.

Let us consider a strongly magnetized, collisionless
plasma, i.e., nei!v!V i , where v is a typical frequency
and V i is the ion cyclotron frequency. Hence, the fast gyro-
motion can be averaged out and, if finite Larmor radius
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unchanged. Its nonorthogonality is reflected in the metric,14

π'
25S

]

]x 1
z
Ls

]

]y D
2

1S
]

]y D
2

~14!

and in the parallel boundary condition,15–17

S~x ,y ,z1pqR !5S~x ,y22p ŝx ,z2pqR ! ~15!

for any scalar quantity S. In the perpendicular (x ,y) plane,
periodic boundary conditions

S~x1Lx/2,y ,z !5S~x2Lx/2,y ,z ! , ~16!

S~x ,y1Ly/2,z !5S~x ,y2Ly/2,z ! ~17!

are applied to the simulation box of extension Lx3Ly , yield-
ing quasi-stationary turbulent states for arbitrarily long simu-
lation times. For consistency, the constraint 2p ŝ
5ns(Ly /Lx) with integer ns needs to be obeyed, resulting in
a quantization of the aspect ratio Ly /Lx of the simulation box
holding ŝfi0 constant ~or vice versa!.

C. Dimensionless nonlinear equations

Defining mT5mevT
2 /2B , we now normalize the indepen-

dent and dependent variables according to

S
x
rs
,
y
rs
,
z
qR ,

w
vT
,

m

mT
,
tcs
L'

D∞~x ,y ,z ,w ,m ,t ! ~18!

and

S
f̃ e

ne0vT
23 ,

u i

cs

L'

qR ,
ef

Te0D ∞d ~ f ,u i ,f! . ~19!

The dimensionless equations for f, u i , and f are then given
by

d f
dt 52vT f m

]f

]y 2aew iπ i~ f2 f mf! , ~20!

a ês
du i

dt 52π if1m iπ i

2u i , ~21!

a
d
dt π'

2f5π i S u i2E aew i f d3w D , ~22!

where

d
dt 5

]

]t 1
]f

]x
]

]y 2
]f

]y
]

]x , ~23!

f m5p23/2e2w2, vT5vn1v t (w223/2), vn5L' /Ln , v t
5L' /LT , a5Ai /Zi , and Ai5Mi /Mp . In Eq. ~21! we have
added a parallel viscosity, m i , which serves as a crude model
for ion Landau damping. It turns out, however, that the value
chosen for m i does not affect the numerical results because
in the present model ion Landau damping is much less im-
portant than electron Landau damping. The most important
parameter in the present electrostatic collisionless model is
ae5(L' /qR)(2Mp /me)1/2, which is given by the ratio of
the parallel to the perpendicular dynamical frequencies, i.e.,
thermal electron transit frequency k ive;vT /qR to electron

diamagnetic frequency v!;cs /L' . The parameter ês
5(qR/L')2, which controls the ion inertia, is secondary.

D. Dimensional reduction in velocity space

Equation ~20! can be reduced to one velocity space di-
mension by integrating out the independent variable m which
only occurs explicitly in vT and f m . This procedure leads to

d f N

dt 52vT
N f m

N ]f

]y 2aew iπ i~ f N2 f m
Nf!, ~24!

i.e., a set of decoupled equations for the partially integrated
distribution functions

f N~r,w i ,t ![E
0

`

pmN f ~r,w i ,m ,t !dm , ~25!

where

f m
N5N! p21/2 e2w

i

2
, vT

N5vn1v t ~w i

21N21/2! . ~26!

Since *w i f d3w5*w i f 0 dw i in Eq. ~22!, one really only
needs to retain f 0. However, keeping additional f N’s allows
for better diagnostics of the turbulent system. Defining the
moments

LMN~r,t ![E
2`

`

w
i

M f N~r,w i ,t ! dw i , ~27!

one can write

n5L00, v i5aeL
10 ,

~28!p i5n1T i52L20, p'5n1T'5L01

for the linearized fluctuations of the density ne , the parallel
velocity v i , and the pressure pe of the electrons. These
quantities are normalized according to

S ñene0 ,
ṽ i

cs

L'

qR ,
p̃e
pe0

D ∞d ~n ,v i ,p ! . ~29!

We will only compute the time evolution of f 0 and f 1 ~from
which all the above quantities can be derived! neglecting all
the other f N’s. Note that this step, which greatly enhances
the numerical efficiency, is not an approximation but leads to
an exact solution of the kinetic problem—it only reduces the
number of observable fluid moments.

E. Particle and energy transport

The fluxes

G5^nvx& , Q5 3
2^pvx& ~30!

with
3
2p5 1

2p i1p'5 3
2n1 1

2T i1T' ~31!

and vx52]yf characterize the turbulent particle and heat
transport in the radial direction. Here ^¯& denotes spatial
averaging over the simulation domain. As a consequence of
the above normalizations, G and Q are normalized to
DGB(ne0 /L') and DGB(pe0 /L'), respectively, with the
gyro-Bohm transport coefficient
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DGB5
cTe0rs
eBL'

~32!

corresponding to 3.2 m2/s for the nominal plasma edge pa-
rameters given in Sec. II ~additionally using B52.5 T and
L'52 cm!. The dependence of these normalized fluxes on
various dimensionless model parameters is, in general, non-
linear and needs to be computed numerically.

III. NONLINEAR RESULTS
A. Simulation details

The system of nonlinear partial integro-equations de-
scribing collisionless drift wave turbulence presented in Sec.
II is solved numerically on a massively parallel computer, a
Cray T3E. In order to avoid numerical noise inherent to par-
ticle simulations, we use an Eulerian scheme. Details are
described elsewhere.9 Typically the computational domain in
the four-dimensional phase space (x ,y ,z ,w i) is

@2Lx/2,Lx/2#3@2Ly/2,Ly/2#3@2Lz/2,Lz/2#3@2Lw
i
,Lw

i
# ,

~33!
with Lx532rs , Ly564rs , Lz52pqR , and Lw

i
53vT . In

terms of the nominal plasma parameters given in Sec. II the
spatial domain size is 2 cm 3 4 cm in the perpendicular
plane and 30 m along the magnetic field. The phase space
grid is Nx3Ny3Nz3Nw

i
5323643163100. ~Finer and

coarser grids were used to check numerical convergence.!
Half of the grid points in w i space are used to represent the
region uw iu<0.5vT in which the electron distribution func-
tion varies very strongly in the turbulent state, whereas it is
quite smooth outside of this region.13 The other model pa-
rameters are m̂[2/ae

2510, ŝ53/p , vn51, v t51, a51, and
m i560. In the following we will always use these values
unless stated otherwise.

The initial condition for the distribution function f is a
localized disturbance in real space and a Maxwellian in ve-
locity space,

f ~x ,y ,z ,w i ;t50 !5p e2b(x21y21z2) f m~w i! , ~34!

with u i and f both set to zero. If the simulations are started
with a density fluctuation amplitude well above unity, the
system then relaxes toward a turbulent steady state charac-
terized by stationary transport levels, as is shown in Fig. 1.
Due to the periodic boundary condition in the radial direc-
tion, one can maintain this state for arbitrarily long simula-
tion times without getting quasilinear flattening effects. The
resulting turbulent transport by collisionless drift waves
yields xe;1 m2/s for realistic plasma parameters, which is
of the right order of magnitude to explain the experimentally
observed anomalous transport in the steep gradient zone near
the edge of a tokamak (r/a.0.8).

B. Energy spectra

To obtain a better understanding of the turbulent system,
it is useful to construct energy-like expressions in terms of
squared fluctuating quantities,

E5 1
2^n21~T

i

2/21T'
2 !1~π'f!2&[En1Et1Ee . ~35!

We can define ky spectra of GAB[^AB& where A and B are
two fluctuating quantities in the following way. Due to the
fact that we use periodic boundary conditions in the y direc-
tion, we can Fourier decompose the fluctuations by writing

GAB5K (
m51

Ny

A~km!eikmy j (
n51

Ny

B~kn!eikny jL

5 (
m ,n51

Ny

A~km!B~kn!^ei(km1kn)y j&

5 (
m ,n51

Ny

A~km!B~kn! dm ,2n

5 (
m51

Ny

A~km!B~k2m!5(
l50

Ny/2

GAB~kl!, ~36!

with

GAB~kl!5H
A~kl!B~kl! if l50 or l5Ny/2
2 Re~A!~kl!B~kl!! else

~37!

and kl5l (2p/Ly). Here we used the relations A!(km)
5A(2km) and A(km1Ny

)5A(km) assuming Ny is an even
number.

Figure 2 shows spectra for the fluctuation energies de-
fined in Eq. ~35!. Their general structure is very similar to
that known for the collisional regime.18–20 All spectra dis-
play a strong drop for ky*0.3 which can be described very
accurately by a power law, E(ky)}ky

2x . From this one can
conclude that the turbulent fluctuations are self-similar on
spatial scales smaller than 20rs , corresponding to 1.3 cm for
the nominal plasma edge parameters given in Sec. II. The
system is driven primarily at these intermediate wave num-
bers (ky;0.3) with the E3B nonlinearities in the Eqs. ~20!
and ~22! transferring energy to both smaller and larger wave
numbers through local cascade processes.20 While Ee shows
an inverse cascade to smaller ky ~larger scales!, En and Et
undergo a direct cascade to larger ky ~smaller scales!.13 This
behavior was inferred from runs with the corresponding

FIG. 1. Time evolution of the spatially averaged energy flux Q: stationary
transport level (Q50.1760.02) at fully developed turbulence. For the
nominal plasma edge parameters given in Sec. II this corresponds to xe
50.55 m2/s.
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E3B nonlinearities switched off and is in accordance with
observations made earlier in collisional drift wave turbulence
studies.21

C. Turbulent transport: Dependence on radial
position

It is one of the main goals of numerical plasma turbu-
lence studies to compute and interpret the change of the re-
sulting turbulent transport with various plasma parameters. It
is the main point of this and the next section to show that two
apparent contradictions between experimental observations
and linear drift wave theory can be resolved by nonlinear
simulations, namely the dependence of the anomalous trans-
port coefficients on radial position and ion mass.

Our first aim is to examine variations of the dimension-
less model parameter

m̂[
2

ae
2 5meS

qR
L'

D
2

5S
cs /L'

ve /qR
D
2

, ~38!

which determines the ratio of the two frequencies v!

;cs /L' and k ive;ve /qR , thus weighting the perpendicular
dynamics ~drift waves and E3B turbulence! with respect to
the parallel electron dynamics, i.e., the left-hand side ~LHS!
and right-hand side ~RHS! of the drift-kinetic equation

] f
]t 1vE•π f1vT f m

]f

]y 52aew iπ i~ f2 f mf! . ~39!

A different interpretation of m̂ results from noticing that the
field line connection length is given by 2pqR . Hence, vary-
ing m̂ is synonymous to changing the ratio between the pro-
file scale length L' and the field line connection length.

For m̂!1 one can neglect the terms on the LHS of Eq.
~39!. In this case the electrons move along the magnetic field
lines so fast that they come arbitrary close to their adiabatic
state f5 f mf . In the limit m̂!0, the turbulent transport van-
ishes due to

K f
]f

]y L 5 f mK f
]f

]y L 5 f mK
]

]y S
f2

2 D L 50. ~40!

On the other hand, for m̂@1 Eq. ~39! reduces to

] f
]t 1vE•π f1vT f m

]f

]y 50 ~41!

describing passive convection of the distribution function f
~and of all fluid moments! with the E3B drift velocity vE in
the presence of background gradients. In this ‘‘hydrody-
namic’’ limit one expects very large turbulent transport.

Figure 3 shows simulation results for the dependence of
the turbulent transport on m̂ . Here, m̂ was varied over almost
two orders of magnitude around the ‘‘critical’’ value m̂51.
For m̂,1 the transport increases linearly with m̂; for m̂@1
the system approaches a saturated state of passive E3B con-
vection. Whereas the connection length 2pqR does not
change much radially in most magnetic confinement devices
~except very close to a separatrix where q!`), the profile
length scale L' varies between 1 cm and several m and
strongly decreases toward the edge. Therefore, turbulent
transport by collisionless drift waves plays less of a role in
the plasma core than near the plasma edge.

An important consequence of this result concerns an ap-
parent contradiction between the radial dependence of
anomalous transport as found experimentally and in linear
drift wave theories. Whereas the former observe an increase
toward the edge, the latter usually predict the opposite trend.
To understand this, note that the dimensionless particle flux
G is given in units of DGB(ne0 /L') with the gyro-Bohm
transport coefficient DGB}Te0

3/2/L' . Due to G}m̂}L'
22 this

leads to the scaling

D}Te0
3/2/L'

3 ~42!

for the dimensional diffusion coefficient D. Neglecting this
L' dependence of G , the radially decreasing electron tem-
perature would lead to a radially decreasing turbulent trans-
port, in contrast to experimental findings.1 However, taking
this effect into account results in a radial increase of D if L'

falls off faster than Te0
1/2 . For the simple edge model

ne0~D!2ne0~0 !}D , Te0~D!}D , ~43!

FIG. 2. ky spectra for the fluctuation energies of the E3B drift (Ee), elec-
tron density (En), and electron temperature (Et). The system is driven
primarily at intermediate length scales, 2p/ky;20rs , corresponding to 1.3
cm for the nominal plasma edge parameters given in Sec. II.

FIG. 3. Dependence of the turbulent particle transport G on the parameter
m̂52/ae

2 which controls the adiabaticity of the collisionless drift wave sys-
tem ( ŝ52/p , v t50).
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unchanged. Its nonorthogonality is reflected in the metric,14

π'
25S

]

]x 1
z
Ls

]

]y D
2

1S
]

]y D
2

~14!

and in the parallel boundary condition,15–17

S~x ,y ,z1pqR !5S~x ,y22p ŝx ,z2pqR ! ~15!

for any scalar quantity S. In the perpendicular (x ,y) plane,
periodic boundary conditions

S~x1Lx/2,y ,z !5S~x2Lx/2,y ,z ! , ~16!

S~x ,y1Ly/2,z !5S~x ,y2Ly/2,z ! ~17!

are applied to the simulation box of extension Lx3Ly , yield-
ing quasi-stationary turbulent states for arbitrarily long simu-
lation times. For consistency, the constraint 2p ŝ
5ns(Ly /Lx) with integer ns needs to be obeyed, resulting in
a quantization of the aspect ratio Ly /Lx of the simulation box
holding ŝfi0 constant ~or vice versa!.

C. Dimensionless nonlinear equations

Defining mT5mevT
2 /2B , we now normalize the indepen-

dent and dependent variables according to

S
x
rs
,
y
rs
,
z
qR ,

w
vT
,

m

mT
,
tcs
L'

D∞~x ,y ,z ,w ,m ,t ! ~18!

and

S
f̃ e

ne0vT
23 ,

u i

cs

L'

qR ,
ef

Te0D ∞d ~ f ,u i ,f! . ~19!

The dimensionless equations for f, u i , and f are then given
by

d f
dt 52vT f m

]f

]y 2aew iπ i~ f2 f mf! , ~20!

a ês
du i

dt 52π if1m iπ i

2u i , ~21!

a
d
dt π'

2f5π i S u i2E aew i f d3w D , ~22!

where

d
dt 5

]

]t 1
]f

]x
]

]y 2
]f

]y
]

]x , ~23!

f m5p23/2e2w2, vT5vn1v t (w223/2), vn5L' /Ln , v t
5L' /LT , a5Ai /Zi , and Ai5Mi /Mp . In Eq. ~21! we have
added a parallel viscosity, m i , which serves as a crude model
for ion Landau damping. It turns out, however, that the value
chosen for m i does not affect the numerical results because
in the present model ion Landau damping is much less im-
portant than electron Landau damping. The most important
parameter in the present electrostatic collisionless model is
ae5(L' /qR)(2Mp /me)1/2, which is given by the ratio of
the parallel to the perpendicular dynamical frequencies, i.e.,
thermal electron transit frequency k ive;vT /qR to electron

diamagnetic frequency v!;cs /L' . The parameter ês
5(qR/L')2, which controls the ion inertia, is secondary.

D. Dimensional reduction in velocity space

Equation ~20! can be reduced to one velocity space di-
mension by integrating out the independent variable m which
only occurs explicitly in vT and f m . This procedure leads to

d f N

dt 52vT
N f m

N ]f

]y 2aew iπ i~ f N2 f m
Nf!, ~24!

i.e., a set of decoupled equations for the partially integrated
distribution functions

f N~r,w i ,t ![E
0

`

pmN f ~r,w i ,m ,t !dm , ~25!

where

f m
N5N! p21/2 e2w

i

2
, vT

N5vn1v t ~w i

21N21/2! . ~26!

Since *w i f d3w5*w i f 0 dw i in Eq. ~22!, one really only
needs to retain f 0. However, keeping additional f N’s allows
for better diagnostics of the turbulent system. Defining the
moments

LMN~r,t ![E
2`

`

w
i

M f N~r,w i ,t ! dw i , ~27!

one can write

n5L00, v i5aeL
10 ,

~28!p i5n1T i52L20, p'5n1T'5L01

for the linearized fluctuations of the density ne , the parallel
velocity v i , and the pressure pe of the electrons. These
quantities are normalized according to

S ñene0 ,
ṽ i

cs

L'

qR ,
p̃e
pe0

D ∞d ~n ,v i ,p ! . ~29!

We will only compute the time evolution of f 0 and f 1 ~from
which all the above quantities can be derived! neglecting all
the other f N’s. Note that this step, which greatly enhances
the numerical efficiency, is not an approximation but leads to
an exact solution of the kinetic problem—it only reduces the
number of observable fluid moments.

E. Particle and energy transport

The fluxes

G5^nvx& , Q5 3
2^pvx& ~30!

with
3
2p5 1

2p i1p'5 3
2n1 1

2T i1T' ~31!

and vx52]yf characterize the turbulent particle and heat
transport in the radial direction. Here ^¯& denotes spatial
averaging over the simulation domain. As a consequence of
the above normalizations, G and Q are normalized to
DGB(ne0 /L') and DGB(pe0 /L'), respectively, with the
gyro-Bohm transport coefficient
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